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Abstract— This paper presents a technique for the Simulta-  We show that this process successfully learns action and
neous Calibration of Action and Sensor Models $CASM) on a sensor models that closely approximate measurements made
mobile robot. While previous approaches to calibration male use manually with a stopwatch and a tape measure

of an independent source of feedbacksCAsM is unsupervised, Th ind f thi . ived foll s
in that it does not receive any well calibrated feedback abau € remqln €r of this .paper IS organized as Tollows. e_C'
its location. Starting with only an inaccurate action mode| it  tion Il explains the experimental setup used and the behavio
learns accurate relative action and sensor models. Furthenore, executed by the robot. Section IIl introduces the termigglo
scAsm is fully autonomous, in that it operates with no human ysed to discuss the action and sensor models. Section IV
supervision. SCASM is fully implemented and tested on a Sony gescripes how the robot can learn a sensor model if given
Aibo ERS-7 robot. . . .
an accurate action model, and Section V describes how an

_ |. INTRODUCTION _ _ action model can be learned from a sensor model. Section VI
~ Mobile robots rely on models of their actions and sensogxplains how these two processes can be combined to learn
in order to interact with their environment. For examplésoth models simultaneously. Section VIl gives experimienta
they may select actions based on thenticipated effects resuilts, Section VIII discusses related work, and Sectn |
and deduce theimctual effects based on their subsequendoncludes and discusses possibilities for future work.
sensations. These sensor and action models are typically

. ; . . 1. EXPERIMENTAL SETUP
calibrated manually, a fairly laborious and often britttegess. We h imol d and tested iall
Furthermore, if the robot is placed in a novel environment € have implemented and testedasm on a commercially

and/or its sensors and actuators change over time, the \éq";ble robot pIat;‘otrr:T\, namely the SonyIkAlbo EdRS.J.
calibrated models can quickly become error-prone. Thisagak ©" € PUrposes of this paper, we use waking and vision
it desirable for this calibration process to be automatedhat Pro¢€ssing modules that we created earlier as part of arlarge
the robot can learn the effects of its actions and the meaniﬁﬁojem [1.]' The walk is def|ngd by a number O.f p,arameters
of its observations without human supervision. that specify the attempted trajectories of the Aibo's fdet.
This paper presents a technique, caliedasm, for a move forwards and backwards at different speeds, the robot

mobile robot to simultaneously learn two calibration fuoos. !nterpolates between parameters for an idle walkhat steps
in place, a fast forwards walks that goes at a speed of, ..

Qne maps the various readings of a visual sensor to rela:k 5 mmis), and a fast backwards wagk that goes at a speed
distances from a fixed landmark, and the other maps a ra .
Umin (—280 mm/s). The action commands are labeled by

of action commands to the velocities of the correspondia desired velocity and have parameters given bv:
movements.SCASM is completely autonomous, and it is y P 9 y:
unsupervised, in that the robot never receives any feedback Pt (e —pi) ifr>0
as to its actual location or velocitgCAsSMs goal is for the Pr= Y pi+ 2 —(pb—pi) ifr<o0

robot to learn action and sensor models that accuratelyctefle Note that Equation (1) is based on the assumption that the

its distances and velocities. _ _ Aibo’s velocity is linear in its walking parameters. Howeyvié
SCASM involves the robot performing the following threey, g out not to be linear at all, as our experimental resuilts
tasks simultaneously. bear out. The robot’s actual velocity varies unpredictatitin
» Walking forwards and backwards while its visual sens@espect to the desired velocicAasmlearns the function from
is faced at a fixed target, covering the entire range tfe robot’s action commands to their corresponding vetexit
relevant distances and velocities. For a visual sensor, we use the Aibo’s camera, which we
« Learning a function from action commands to actualave previously trained to recognize objects in its envirent.
velocities, assuming the distance calibration for thealisuOne of these objects is a colored cylindrical beacon that the
sensor is accurate. robot can use to help it localize while on a playing field. The
« Learning a function from distance observation data teeight of the beacon in the robot’s image plane decreasés wit
its distances from the target, assuming the robot has #e robot’s distance from the beacon; this observed height (
accurate sense of its velocities. pixels) is the visual sensor reading used for the experiment

@
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reported in this paper. The Aibo and the beacon are showhe function from command to velocity by. This is theaction

in Figure 1, along with a view of the beacon taken througimodel that the robot learns along with the sensor moSfiel
the Aibo’s camera. Detailed descriptions of our walking antihe action model also provides information about the rabot’
vision modules are given in [1]. location: z(t) = z(0) + fot A(C(s))ds. scAsM works by
implicitly performing a continual comparison of these two
sources of information. The robot knows the values i,

tr, andC(t), and is faced with the problem of learning the
functions A and S.

Because we are trying to learn two arbitrary continuous
functions, we must represent them with a function approxi-
mator. We use polynomial regression for both functions.tTha
is, for the sensor model, our goal is to learn coefficients
through s; such that the polynomiaEf:0 s;obs’ approxi-
mates the actuad (obs) as closely as possible, whedds the
degree of the polynomial being fitted to the data. Similarly,
the robot will learn coefficienta, throughay for the action
_ _ S model, with the goal ofy.? , a;¢' ~ A(c) over the range
Fig. 1. The A|b<’) and the beacon. The inset is a picture of tredie taken ot ~ommandsc. We use polynomials of degree three and
through the Aibo’'s camera. . .

four for the sensor and action models respectively, based on

While the robot learns the action and sensor models, it m@{ estimation (without detailed experimentation) thatsta
execute a behavior that enables it to experience the fufjerarf™® roughly the polynomial degrees necessary to capture the
of relevant action commands and observations. We accamplf@MPplexity of the functions being modeled.
this by having the Aibo alternatingly walk forwards and SCASMIearns the action and sensor modesn each other
backwards across the range of distances we are interestedinthat it is not given any ground truth as to the robot's
For the experiments reported in this paper, we restrict oflistance to the beacon or its speed. Therefore, it cannot lea
attention to action commands in the rarig&00, 300]. Hence, the two models in any particular units. For example, the@ens

the robot chooses a random action command in the rar{BQdel maps observations onto points on a linear axis, but it
[0, 300] while going forwards and froni—300, 0] during the makes no claims as to what physical distance from the beacon
backwards phase. It continues to execute each action cochm8pfT€Sponds to the number zero, or what length corresponds
for three seconds before choosing a new one. It switch@sthe model's units. Similarly, the action model is learmed
between walking forwards and backwards when the beac@ipitrarily units, although here the number zero is comséa
height in the image gets too big or too small. These si’@ correspond to a speed of zero. However, the learned action

thresholds are chosen manually so as to keep the robotaﬁ'\d sensor models will be consistent with each other. That is
its field of operation. This behavior covers the full rang&nce the robot knows how long a second is, whatever distance
of relevant distances and velocities, as desired. A video NS out to be the unit for the learned distances, thatnitsta

the Aibo performing the training behavior described here RET s€cond is the unit for the learned velocities. Note thiat t
available onliné. is sufficient for it to perform domain-centric tasks, such as

predicting the amount of time a specific action command will
I1l. ACTION AND SENSOR MODELS

take to yield a certain visual sensor reading.
As the robot moves towards and away from the beacon, y 9

we denote its (actual) distance from the beacon at tiras IV. LEARNING THE SENSOR MODEL

z(t). While this is happening, the robot has two sources Of gjrgt we demonstrate that it is possible to learn a relative
information about its location along its axis of movemenkensor model given any constant action. This is done by gotin
For one, the robot receives a sequence of visual SengoL; yhile the robot executes a constant action commarit,
observations, théth one denoted bybs; and occurring at i movying at a constant velocity(c). Thus if this command is
time ¢;.. Each value reported by the visual sensor correspongdg,.ted continuously starting at tirdgthe robot’s location at

to a specific distance. We call this function tsesor model, {ime ¢ will be given byz(t) = z(0) + ¢ - A(c). This provides

and denote it bys, so thatz(ty) = S(obsy) + wi, Wherewy  engugh information to learn the sensor model, even in the
is a zero-mean random offset due to the inherent noise in %ence of knowledge of the value 4fc)

visual sensor. This functiofi is one of the two functions that In particular, in this situation it suffices to learn a furti

the robot is tryir_lg to learn, : from obsy, to ti. If S(obsy) = ty, then sincet, = (z(tx) —
At the same time, the robot continuously executes an actiony)) /A(c), S(obsy) = (2(ts) — z(0))/A(c). This is a shifted

command('(t), that varies with time. Each action comman%nd scaled version of our location, and si smis only

causes the robot to move at a specific velocity, and we den%ﬁng to learn a sensor model up to shifting and scalifigs

Shttp:/www.cs.utexas.edulAustinVilla/legged/ a satisfactory sensor model. The robot learns the functjon b
act-sense performing polynomial regression on the paftésy, ).




SCASM computes the best fit-degree polynomial ta: the randomized behavior described in Section Il. To do this,
data points(zy, yx ), where thez;, are the input data (beaconwe assume that the robot has access to an accurate action
heights) and,;, are the corresponding desired outputs (timeshodel. Although this is not initially the case, in Section VI
For notational consistency, we frame this as a multivaeiablve show how this ability can be incorporated into a process
linear regression by representing each of the powers ofthat can learn both models from scratch.
with its own variablev; = z!. We wish to find o and Given an action modeld, we can use dead reckoning
B = (Bi,---,B4)" such thata + 3"V, ~ y;, as closely as to compute the robot's location as a function of time. As
possible over alk, whereV}, is the vector with(V}); as the mentioned in Section 11, the robot’s locatiarit) is given by
kth value ofv;, which is denoted by, ;. To perform this -|-f0 ) ds, which we denote by, (t). It suffices for
regression, first we defing/ to be then x d matrix andY’ the robot to assume tha(0) = 0, since it is learning relative
the n-dimensional vector given by distances. Thus the robot can accumulate an estimate(fpr
S i S by initializing = to be0 at time0 and continually incrementing
B =—— @ it by A(C(t))At, where At is the amount of time between
) ._increments. Then, by performing cubic regression on thespai
Here thejth column of M represents a centered versmraobsk’m(tk)) (as abo&g), the rolgot eﬁecti\?ely learns a serl?sor

of thl |n_put (;?ta tfo(; ;/arlablej, Whlere tpteh Tean Etﬂe;(:hmodel from the action model. The result of such a regression
variable IS subtracted from every vaiue of that varia "N is shown in Figure 2b). Note that because the action model

represents a centered account of the output data. &hamd used here is inaccurate, the estimates taken while walking

B are given by [2], [3] forwards and backwards are not well aligned with each other.
" Nonetheless, the sensor model learned by the robot is still

_ T — T _1 . Ty, !
p=MTM)H(MTY)  and  a= n (Z i~ Z’B V’) a qualitatively reasonable one, in that as the beacon height
=t =t @3) increases, the rate of change of the corresponding location

Fortunately, the matrid/ " M and the vectod/ 'Y can be decreases, as would be expected.

Mi; = vji — and Y =y; —

maintained incrementally and require constant storageespa V. LEARNING THE ACTION MODEL
; ; T T . .
in the number of data points. That {8{/ ' M); ; and(M " Y); In this section, we assume that the robot has an accurate
evaluate to sensor model and show how the robot can use it to learn an
Z”i KUk — E(Zvi k)(zvj %) action model. To do this, we use the sensor model to give us
n an estimate of our location from each observation. We denote
this estimate by, (¢ ), and it is given byS(obsy ). Our goal is
and i - = i 4 S\TR ;
ZU RO ZU ) Zyk @ to Iearn the functiom(c) = Zf a;c' that causes the values
respectively, so |t suffices to ma|nta|n these sums incremdf (tx) based on4 to match those based oft as closely
tally. as pOSSIb|e That is, we wish to find the coefficieatsthat
Fitting a polynomial to the pairéobsy, t;) entails applying Minimize the error defined by
the above process to the values, = obsk andy, = ty. n 2
When this is done while a constant action commaisibeing E = Y [ws (tx) < / Za, )]
executed, the cubic learned is typically quite an accurate fi k=1

the data, as shown in Figure 2a). n ?
Z[Eg ) ( +Za,/ )] . (5
. . e k=1
" prt where the robot knows the valuesésy, z(t;), and the
. ‘,iii 4 values ofC'(s). This is an instance of a multivariable linear
i
H

z.t%:‘ SRl 1 regression problem witli+ 1 variablesv, throughv, defined
1 — ;

Time"*

(s) »

i ||; ’ asv; = f )* ds. The regression computes the weighis
vii L Wa\vkmg Forwards Observations 0
ot Tenyt | walking Backuards Observatons: (and a value forx( )) that minimize the error. Sinc€'(s)
s s s s . wp—————————,  changes every three seconds, the valuerfof suggested by
Beacon Height (in pixels) Beacon Height . . . . . .
\ b) an estimate for:(0) and the weights:; varies in a piecewise
a

linear manner with respect to time. The regression being
Fig. 2. a) After walking forwards via a constant action, thase the observed perfotmed has the effect of finding the plecewise linear eurv
data points (+), mapped against time. The dashed curve ibasefit cubic that fits the datdty, z4(¢x)) as closely as possible (as shown

to these points. The variation in beacon height at any giiee is due to i i i i
inherent noise in vision. b) The plotted points &wésy, z4(tx)) as the robot in Figure 3), given the constraint that the slope of the line a

performs one full cycle of walking towards the beacon anckinacaway from @ny timet is a constant quartic function ¢t’(z)).
it. The +'s are the observations while walking forwards and the are while To illustrate this, we first learn a rough sensor model using

walking backwards. The polynomial is fitted to all the points the constant action method at the top of Section IV. We then
It is also desirable for the robot to be able to learn a senagme that sensor model to execute the process describedin thi
model while it performs a series of various actions, sucmassection. The result of this process is shown in Figure 3.



Pseudocode for the entire algorithm is given in Figure 4.
At time ¢, the robot makes use of its best estimates thus far
as to the action and sensor models, and S;. Throughout
the learning, the robot maintains two estimates of its ooat
one based on its current sensor modelit), and the other
based primarily on its action modet, (t). After any obser-
vation obsy, at time tg, xs(tx) is given by S;(obsy). At the
same time,z,(t) is maintained by continually incrementing
it by A;(C(t))At, whereAt is the amount of time between
increments andd;(C(t)) is our current best guess as to the
robot’s velocity. Unfortunately, it is not sufficient far, (¢)'s
derivative to be an accurate estimate of the robot’s velocit
Fig. 3.  The plotted points arét;,zs(¢x)) as the robot performs one This still allows for the possibility that,(¢) is a constant
full cycle of walking towards the beacon and backing awaynfris. The displacement away from,(t). When this was tried on the
learned action model is applied to the executed action cammto yield the ; . B
piecewise linear location estimate shown here. robot, it occasionally happened that the models divergeth b
increasing continually, in which case neither model can be

VI. LEARNING BOTH SIMULTANEOUSLY | q telv. T { this, (1) is adjusted t q
. earne accurately. To prevent thig, (¢) is adjusted towards
We have so far demonstrated the ability for the robot t every time an observation is taken. This is accomplished

arh th s ode o e scien model a1 Vrk e eignmer, 1) - (1 1)+ 1. () it

9 P is a constant that determines the strength with whigft)
section how the robot can simultaneously learn both modelés

‘pulled towardse, ().

even when it is given very little useful starting informatio
The idea behind this is that even though the action (sensorja(t) < 0
model learned from an inaccurate sensor (action) model wiIIfOV_ each time steplo
be inaccurate, it will be an improvement. As each model if ¢ <2t then
grows more accurate, its ability to help the other model za(t) < za(t) + Ao (C(2)) At
improve grows. As this bootstrapping process continues, th ~ €ISe
two models converge to functions that accurately reflecttwha  Za(t) < Za(t) + A:(C(¢)) At

Observations: +
Learned Action Model:

0 5 10 15 20 25 20

Time (s)

they are trying to model. end if

Because both models grow in accuracy as time goes on, we If @n observatiombs;, is madethen
would like the regressions to give more weight to the more if ¢ > toare then
recent data points. To do this, we use a weighted regression, Ts(t) < St(ObSIk)
where each data point has a weight that decreases over time. UPDATE 4; with (¢, zs(t))
Note that for both learning directions, there is one redoess Ta(t) = (1= N)za(t) + Azs(2)

data point for each visual sensor observation. Thus we have ~ €nd if _
the weight of each data point start at one and decrease by a UPDATE S; with (2, 24(1))
constant factory < 1 every time a new observation is taken. end if
If there have beem observations so far, this means that the €nd for
n—i
Welght of the data pomts CorreSpondmg to itfeone i ISy " Fig. 4. Algorithm for simultaneous action and sensor modatring. The

To compute the solution to the weighted regression, defifgtine UPDATE incorporates one new data point into the teig regression
W as ann x n diagonal matrix withW; ; = v"~%. Then, we for the model being updated.

can use a weighted version of Equation (3) [3]: The model estimateS; and A; are continually updated in
B=(MTWM) {(MTWY) accordance with the location estimategt) andz,(¢), with
L& n d each model being updated by the location estimate based on
and a= - (Zyl Zy"iz,ajvj,i) 6) the other model. These updates consist of the incremental
"G j j updates that comprise the weighted polynomial regressions

If we define N to be the sum of the weights)"" , 4"~ that give the best fit estimates 8fand 4, as described above.

then M "TWM and M TWY are given by The flow of information is depicted in Figure 5b). Note that
1 because the regressions can be computed incrementally, the
n—k, L n—=k, n—k, . .
E T Uik Yk N(E v Uz,k)(g 7" vsk) can be calculated every time the robot processes an image,

corresponding to abow0 Hertz. This happens concurrently
and Zy"*kvi,kyk - %(Z —y"*’“vi,k)(z y"~ky) (7)) with all of the robot’s other real-time computation, incing
vision and motion processing, all on-board on a singjlé
respectively. These sums can also be maintained incremiHdz processor.
tally, because 7 F1 4Dk = (S0 " F2) + 20a At the start of the training, there is no data to motivate
for any sequencey. either the action model or the sensor model to get the legrnin



VIl. EXPERIMENTAL RESULTS
After scAsM has run for a pre-set amount of time (two
— = b R and a half minutes), we consider its best estimates Aor
— X><<a and S to be the models that it has learned. We evaluate

— t= 2ban
the success ofcAsm by comparing the learned action and

s A sensor models to those measured with a stopwatch and a tape
measure. The measured action model is obtained by measuring
the velocity of each action command that is a multiple of

a) b) 20 from —300 to 300. We measure the velocity of an action
Fig. 5. a) The ramping up process. The arrows indicate oneetimeing COMMand by timing it across an appropriate distance five
learned based on another. Note that aside fég a model is not learned times. The standard deviation of the velocity measurenant f
from until it has been learned for a sufficient amount of tibp.The flow 3 given action command across the five timings never exceeded
of information. The thick arrows represent incorporatingata point into the . . . .
weighted regression for a model. The thin arrows indicas #ach model ¢ MM/s. The measured action model is shown in Figure 7a).

is used to construct the corresponding estimate of the 'solmtation. The
dashed arrow signifie§’s influence on the estimate, .

[eJe]e)

Measured Sensor Model: +
Learned Sensor Modek——

process started. For a period of time at the beginnigg,:,
the robot uses a fixed, pre-set action modé, instead of

Vel.s

A;. We use the identity function fod,, so that4y(c) = c. - Measured Acton Mol +

During this time, the sensor model is learned basedgrbut ’ earmec Action Model——

the action model is not being learned yet, because the sensor” = acioncommana “Beacon Height
model is based on too few data points. After timg,,.; has a) b)
passed, the sensor model can be used to start learning an acti

model. However, until another period of time length,, Fig. 7. A learned action and sensor model

has passed, this new action model is not based on enougRimilarly, the accuracy of the learned sensor model is
data pOintS to be used for Iearning. From tiﬁ‘tgm” into the gauged by Comparing it to a measured sensor model. The
learning on, the action and sensor models can learn from eaghsor model is measured by having the Aibo stand at mea-
other. This ramping up process is depicted in Figure 5a). sured distances from the beacon. The distances used were the

Figure 6 depicts howt,(t) andz,(t) vary over time when multiples of20 cm from 120 cm to 360 cm. At each distance,

S and A are being learned simultaneously. Note that bothe robot looked at the beacon until it had collectéd beacon
oscillate with the robot’s walking towards and away from thbeight measurements. The average of these measurements was
beacon. Asd and.S grow more accurate, their correspondingised as a data point for the sensor model, and their standard
estimates of the location come into stronger agreement. deviation did not exceed.l pixels at any distance. The
measured sensor model is shown in Figure 7b).

The learning process was execulédtimes, with each trial
lasting for two and a half minutes. Figure 7a) shows a typical
learned action model, compared to measured action model
data. Note that since the action model is not learned in any
specific units, in order to compare the learned model to the
measured one, we must first determine the appropriate gcalin
factor. This is done by calculating the scaling factor that
minimizes the mean squared error. On average, the root mean-
square error between the scaled learned action model and the
measured action model wa9.6 + 12.4 mm/s. Compared to
the velocity range 0600 mm/s, this is &.9 percent error. The
best fit possible by a fourth degree polynomial to the meaksure
Fig. 6-| This ;igu’re Showls howéz(t), an(sz?](t) vary élve_r time. In this action model has an error df7.2 mm/s. By contrast, when
e et o s o e s o e s i e same metric is applied to the ntal action modl o
other model’s estimate. with favorable scaling), the error 3.0 mm/s.

Figure 7b) shows a typical learned sensor model with the

The algorithm described above makes use of a few constaft@asured sensor model. The learned sensor médelaps
that did not require any extensive tuning. The discountfactobservations to relative distancégobs;), which are intended
for the regression weightsy, is 0.999. The strength of the to model the actual distances from the beacon. These actual
pull of z, towardsz,, ), is 1/30. These were the first valuesdistances are given by + bS(obs;), wherea andb are two
that were tried fory and . The starting phase time,;,,;, is constants that are not learned. Thus in order to evaluate a
20 seconds. We tried0 seconds first but that was too short./éarned sensor model, we must compute the valuesasfdb
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that minimize the mean squared error between bS(obs;) so inaccurate that no useful information could be recovered
and the measured sensor model. This can be done witlirem them.
linear regression on the point{sS(obsy),dr), wheredy, is VIIl. RELATED WORK

the actual distance corresponding to measuremignt Our Some previous work has focused on mobile robots cali-

evaluation of a sensor model is the root mean-square ernar. . . .
. rating their odometry models automatically based on their
to the measured sensor model, after this process has b

Shsors. For example, Roy and Thrun [4] calibrate the odom-

applied to the learned model. The_average value for this Wgtsry on a wheeled robot using an incremental maximum
70.4%13.9 mm. Compared to the distance range2¢60 mm, likelihood method, while Martinelli et al. [5] and Larsen et

:Eles ﬁeiifrggtee:;o?rﬁg dLTi:se?nﬁ;t%g&?S%brlr? by a cubic tgl. [6] use an augmented Kalman Filter to estimate odometry
: ) . errors. There has also been work on calibrating networks of
Over the course_of.a tr|aI., both quels get progressive, \énsors. However, this work (e.g., [7], [8]) typically fe@s
more accurate. This is depicted in Figure 8. B_Oth model n networks with large numbers of sensors and calibrating
errors are shown, compared to the best possible error {Rbir respective locations and orientations. We know of no
the measured mod_el and the degree Of_ the polynomial bel&%vious work calibrating a sensor based on an action model.
learned. The data is averaged overlalltrials. Furthermore, to the best of our knowledgeasmdiffers from
all previous work along these lines in the following sigrafit
way. SCASM learns models of its actions and sensors starting
Learned Action Model Error without an accurate model of either. Previous approaches to
calibration rely either on accurate training data or on sens
that are already well calibrated (as in [4]).

Error Learned Sensor Model Error |
IX. CONCLUSION AND FUTURE WORK

We have developed a technique by which a mobile robot
can learn an action model and a sensor model from each other
simultaneously. By starting with only a very simplistic iact
% w  wm W w  w model estimate, it is able to learn highly accurate approx-

Time (s) imations to the robot's true action and sensor models. The
Fig. 8. This figure depicts the average error in the learnedatsoas a learning process is completely autonomous and unsupelvise
function of time. The error for the action model is in mm/sdaior the SO that no human oversight or feedback is necessary. We have
sensor model in mm. The horizontal lines are at the minimussibte error implemented the technique on a Sony Aibo ERS-7, which
to the measured models for a polynomial of the appropriagrete successfully calibrates its action commands to the readulta

Although the action and sensor models are not learnedvelocities and its visual sensor readings to the correspgnd
any particular scale, since they are learned from each otldéstances, all over the course of two and a half minutes of
they should be to the same scale. This can be tested dytonomous behavior.
comparing the scaling constants used to give the best fits tdne direction for future work is to explore potential syn-
the measured models, the scaling constant for the actioeimoergies betweerscAsm and particle filtering methods that
andb for the sensor model. These two values should be eqiriiegrate sensor and action models into a position estimate
to each other in absolute value. To evaluate this we compiéeg., [9]). The work presented here represents an exciting
the average distance between the absolute value of the ratarting point towards the long-term challenge of enabfiniy
between the two scaling constants dndhe average distanceautonomous calibration of complex, multi-modal sensor and
is 0.08 & 0.06. This shows that the two learned models araction models on mobile robots.
consistent with each other.

To examine the reliance of our approach to the starting
action model, we performed two tests with more impoverishedWe would like to thank Ben Kuipers for helpful discussions.
starting points. First, we used a piecewise constant moddlanks also to the members of the UT Austin Villa team for
equal tol for positive action commands andl for negative their efforts in developing the software used as a basishier t
ones. This conveys only the direction of the action but ngork reported in this paper. This research was supported in
information about its speed. Ib5 runs, the robot was able part by NSF CAREER award 11S-0237699.
to achieve an average error 8.3 + 24.5 mm in its learned
sensor model and1.3 + 9.2 mm/s in the action model after
2.5 minutes. Even with a starting model of A(x)=1, whicHl P- Stone, K. Dresner, S. T. Erdogan, P. Fidelman, N. KigJdN. Kohl,
. . . . G. Kuhlmann, E. Lin, M. Sridharan, D. Stronger, and G. Hamina “UT
imparts no information about the action model,lénout of 15 Austin Villa 2003: A new RoboCup four-legged team,” The Ustisity
trials the robot was able to achieve an average performance o of Texas at Austin, Department of Computer Sciences, Al kaiooy,

88.6+11.5 mm error in the sensor model af@d.3+6.2 in the Tech. Rep. UT-AI-TR-03-304, 2003, at http://www.cs.uteau/ftp/pub/
Al-Lab/index/html/Abstracts.2003.html#%03-304.

action model after 5 minutes. The remaining trials divergeg; r £ Gunst and R. L. MasorRegression Analysis and its Application.
presumably due to initially learning a pair of models thateve ~ New York: Marcel Dekker, Inc., 1980.
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