
Simultaneous Calibration of Action and Sensor
Models on a Mobile Robot

Daniel Stronger and Peter Stone
Department of Computer Sciences, The University of Texas atAustin

1 University Station C0500, Austin, Texas 78712-1188
{stronger,pstone}@cs.utexas.edu

http://www.cs.utexas.edu/˜{stronger,pstone}

Abstract— This paper presents a technique for the Simulta-
neous Calibration of Action and Sensor Models (SCASM) on a
mobile robot. While previous approaches to calibration make use
of an independent source of feedback,SCASM is unsupervised,
in that it does not receive any well calibrated feedback about
its location. Starting with only an inaccurate action model, it
learns accurate relative action and sensor models. Furthermore,
SCASM is fully autonomous, in that it operates with no human
supervision. SCASM is fully implemented and tested on a Sony
Aibo ERS-7 robot.

I. I NTRODUCTION

Mobile robots rely on models of their actions and sensors
in order to interact with their environment. For example,
they may select actions based on theiranticipated effects
and deduce theiractual effects based on their subsequent
sensations. These sensor and action models are typically
calibrated manually, a fairly laborious and often brittle process.
Furthermore, if the robot is placed in a novel environment
and/or its sensors and actuators change over time, the pre-
calibrated models can quickly become error-prone. This makes
it desirable for this calibration process to be automated, so that
the robot can learn the effects of its actions and the meanings
of its observations without human supervision.

This paper presents a technique, calledSCASM1, for a
mobile robot to simultaneously learn two calibration functions.
One maps the various readings of a visual sensor to relative
distances from a fixed landmark, and the other maps a range
of action commands to the velocities of the corresponding
movements.SCASM is completely autonomous, and it is
unsupervised, in that the robot never receives any feedback
as to its actual location or velocity.SCASM’s goal is for the
robot to learn action and sensor models that accurately reflect
its distances and velocities.

SCASM involves the robot performing the following three
tasks simultaneously.� Walking forwards and backwards while its visual sensor

is faced at a fixed target, covering the entire range of
relevant distances and velocities.� Learning a function from action commands to actual
velocities, assuming the distance calibration for the visual
sensor is accurate.� Learning a function from distance observation data to
its distances from the target, assuming the robot has an
accurate sense of its velocities.

1Simultaneous Calibration of Action and Sensor Models

We show that this process successfully learns action and
sensor models that closely approximate measurements made
manually with a stopwatch and a tape measure.

The remainder of this paper is organized as follows. Sec-
tion II explains the experimental setup used and the behavior
executed by the robot. Section III introduces the terminology
used to discuss the action and sensor models. Section IV
describes how the robot can learn a sensor model if given
an accurate action model, and Section V describes how an
action model can be learned from a sensor model. Section VI
explains how these two processes can be combined to learn
both models simultaneously. Section VII gives experimental
results, Section VIII discusses related work, and Section IX
concludes and discusses possibilities for future work.

II. EXPERIMENTAL SETUP

We have implemented and testedSCASM on a commercially
available robot platform, namely the Sony Aibo ERS-72.
For the purposes of this paper, we use walking and vision
processing modules that we created earlier as part of a larger
project [1]. The walk is defined by a number of parameters
that specify the attempted trajectories of the Aibo’s feet.To
move forwards and backwards at different speeds, the robot
interpolates between parameters for an idle walkpi that steps
in place, a fast forwards walkpf that goes at a speed ofvmax
(335 mm/s), and a fast backwards walkpb that goes at a speed
of vmin (�280 mm/s). The action commands are labeled by
a desired velocityr and have parameters given by:pr = � pi + rvmax (pf � pi) if r � 0pi + rvmin (pb � pi) if r < 0 (1)

Note that Equation (1) is based on the assumption that the
Aibo’s velocity is linear in its walking parameters. However, it
turns out not to be linear at all, as our experimental resultswill
bear out. The robot’s actual velocity varies unpredictablywith
respect to the desired velocity.SCASM learns the function from
the robot’s action commands to their corresponding velocities.

For a visual sensor, we use the Aibo’s camera, which we
have previously trained to recognize objects in its environment.
One of these objects is a colored cylindrical beacon that the
robot can use to help it localize while on a playing field. The
height of the beacon in the robot’s image plane decreases with
the robot’s distance from the beacon; this observed height (in
pixels) is the visual sensor reading used for the experiments

2http://www.aibo.com

reported in this paper. The Aibo and the beacon are shown
in Figure 1, along with a view of the beacon taken through
the Aibo’s camera. Detailed descriptions of our walking and
vision modules are given in [1].

distance

sensor
input

Fig. 1. The Aibo and the beacon. The inset is a picture of the beacon taken
through the Aibo’s camera.

While the robot learns the action and sensor models, it must
execute a behavior that enables it to experience the full range
of relevant action commands and observations. We accomplish
this by having the Aibo alternatingly walk forwards and
backwards across the range of distances we are interested in.
For the experiments reported in this paper, we restrict our
attention to action commands in the range[�300; 300℄. Hence,
the robot chooses a random action command in the range[0; 300℄ while going forwards and from[�300; 0℄ during the
backwards phase. It continues to execute each action command
for three seconds before choosing a new one. It switches
between walking forwards and backwards when the beacon
height in the image gets too big or too small. These size
thresholds are chosen manually so as to keep the robot in
its field of operation. This behavior covers the full range
of relevant distances and velocities, as desired. A video of
the Aibo performing the training behavior described here is
available online3.

III. A CTION AND SENSOR MODELS

As the robot moves towards and away from the beacon,
we denote its (actual) distance from the beacon at timet asx(t). While this is happening, the robot has two sources of
information about its location along its axis of movement.
For one, the robot receives a sequence of visual sensor
observations, thekth one denoted byobsk and occurring at
time tk. Each value reported by the visual sensor corresponds
to a specific distance. We call this function thesensor model,
and denote it byS, so thatx(tk) = S(obsk) + !k, where!k
is a zero-mean random offset due to the inherent noise in the
visual sensor. This functionS is one of the two functions that
the robot is trying to learn.

At the same time, the robot continuously executes an action
command,C(t), that varies with time. Each action command
causes the robot to move at a specific velocity, and we denote

3http://www.cs.utexas.edu/˜AustinVilla/legged/
act-sense

the function from command to velocity byA. This is theaction
model that the robot learns along with the sensor modelS.
The action model also provides information about the robot’s
location: x(t) = x(0) + R t0 A(C(s)) ds. SCASM works by
implicitly performing a continual comparison of these two
sources of information. The robot knows the values ofobsk,tk, andC(t), and is faced with the problem of learning the
functionsA andS.

Because we are trying to learn two arbitrary continuous
functions, we must represent them with a function approxi-
mator. We use polynomial regression for both functions. That
is, for the sensor model, our goal is to learn coefficientss0
through sd such that the polynomial

Pdi=0 siobsi approxi-
mates the actualS(obs) as closely as possible, whered is the
degree of the polynomial being fitted to the data. Similarly,
the robot will learn coefficientsa0 throughad for the action
model, with the goal of

Pdi=0 ai
i � A(
) over the range
of commands
. We use polynomials of degree three and
four for the sensor and action models respectively, based on
our estimation (without detailed experimentation) that these
are roughly the polynomial degrees necessary to capture the
complexity of the functions being modeled.

SCASM learns the action and sensor modelsfrom each other
in that it is not given any ground truth as to the robot’s
distance to the beacon or its speed. Therefore, it cannot learn
the two models in any particular units. For example, the sensor
model maps observations onto points on a linear axis, but it
makes no claims as to what physical distance from the beacon
corresponds to the number zero, or what length corresponds
to the model’s units. Similarly, the action model is learnedin
arbitrarily units, although here the number zero is constrained
to correspond to a speed of zero. However, the learned action
and sensor models will be consistent with each other. That is,
since the robot knows how long a second is, whatever distance
turns out to be the unit for the learned distances, that distance
per second is the unit for the learned velocities. Note that this
is sufficient for it to perform domain-centric tasks, such as
predicting the amount of time a specific action command will
take to yield a certain visual sensor reading.

IV. L EARNING THE SENSOR MODEL

First we demonstrate that it is possible to learn a relative
sensor model given any constant action. This is done by noting
that while the robot executes a constant action command,
, it
is moving at a constant velocity,A(
). Thus if this command is
executed continuously starting at time0, the robot’s location at
time t will be given byx(t) = x(0) + t �A(
). This provides
enough information to learn the sensor model, even in the
absence of knowledge of the value ofA(
).

In particular, in this situation it suffices to learn a function
from obsk to tk. If �S(obsk) = tk, then sincetk = (x(tk) �x(0))=A(
), �S(obsk) = (x(tk)�x(0))=A(
). This is a shifted
and scaled version of our location, and sinceSCASM is only
trying to learn a sensor model up to shifting and scaling,�S is
a satisfactory sensor model. The robot learns the function by
performing polynomial regression on the pairs(obsk; tk).

SCASM computes the best fitd-degree polynomial ton
data points(xk; yk), where thexk are the input data (beacon
heights) andyk are the corresponding desired outputs (times).
For notational consistency, we frame this as a multivariable
linear regression by representing each of the powers ofx
with its own variablevi = xi. We wish to find � and� = (�1; � � � ; �d)> such that� + �>Vk � yk as closely as
possible over allk, whereVk is the vector with(Vk)i as thekth value of vi, which is denoted byvi;k . To perform this
regression, first we defineM to be then � d matrix andY
the n-dimensional vector given byMi;j = vj;i �Pnk=1 vj;kn and Yi = yi �Pnk=1 ykn (2)

Here thejth column ofM represents a centered version
of the input data for variablevj , where the mean for each
variable is subtracted from every value of that variable, and Y
represents a centered account of the output data. Then� and� are given by [2], [3]� = (M>M)�1(M>Y) and � = 1n nXi=1 yi � nXi=1 �>Vi!

(3)

Fortunately, the matrixM>M and the vectorM>Y can be
maintained incrementally and require constant storage space
in the number of data points. That is,(M>M)i;j and(M>Y)i
evaluate to Xk vi;kvj;k � 1n (Xk vi;k)(Xk vj;k)

and
Xk vi;kyk � 1n (Xk vi;k)(Xk yk) (4)

respectively, so it suffices to maintain these sums incremen-
tally.

Fitting a polynomial to the pairs(obsk; tk) entails applying
the above process to the valuesvi;k = obsik and yk = tk.
When this is done while a constant action command
 is being
executed, the cubic learned is typically quite an accurate fit to
the data, as shown in Figure 2a).

Observations:
Best Fit Cubic:

Beacon Height (in pixels)

Time
(s)

Best Fit Cubic (to all data):
Walking Backwards Observations:

Walking Forwards Observations:

Beacon Height

x (t)a

a) b)

Fig. 2. a) After walking forwards via a constant action, these are the observed
data points (+), mapped against time. The dashed curve is thebest fit cubic
to these points. The variation in beacon height at any given time is due to
inherent noise in vision. b) The plotted points are(obsk ; xa(tk)) as the robot
performs one full cycle of walking towards the beacon and backing away from
it. The+’s are the observations while walking forwards and the�’s are while
walking backwards. The polynomial is fitted to all the points.

It is also desirable for the robot to be able to learn a sensor
model while it performs a series of various actions, such as in

the randomized behavior described in Section II. To do this,
we assume that the robot has access to an accurate action
model. Although this is not initially the case, in Section VI
we show how this ability can be incorporated into a process
that can learn both models from scratch.

Given an action modelA, we can use dead reckoning
to compute the robot’s location as a function of time. As
mentioned in Section III, the robot’s locationx(t) is given byx(0)+R t0 A(C(s)) ds, which we denote byxa(t). It suffices for
the robot to assume thatx(0) = 0, since it is learning relative
distances. Thus the robot can accumulate an estimate forx(t)
by initializing x to be0 at time0 and continually incrementing
it by A(C(t))�t, where�t is the amount of time between
increments. Then, by performing cubic regression on the pairs(obsk; x(tk)) (as above), the robot effectively learns a sensor
model from the action model. The result of such a regression
is shown in Figure 2b). Note that because the action model
used here is inaccurate, the estimates taken while walking
forwards and backwards are not well aligned with each other.
Nonetheless, the sensor model learned by the robot is still
a qualitatively reasonable one, in that as the beacon height
increases, the rate of change of the corresponding location
decreases, as would be expected.

V. L EARNING THE ACTION MODEL

In this section, we assume that the robot has an accurate
sensor model and show how the robot can use it to learn an
action model. To do this, we use the sensor model to give us
an estimate of our location from each observation. We denote
this estimate byxs(tk), and it is given byS(obsk). Our goal is
to learn the functionA(
) =Pdi=0 ai
i that causes the values
of x(tk) based onA to match those based onS as closely
as possible. That is, we wish to find the coefficientsai that
minimize the error defined byE = nXk=1 "xs(tk)� x(0) + Z tk0 dXi=0 aiC(s)i ds!#2= nXk=1 "xs(tk)� x(0) + dXi=0 ai Z tk0 C(s)i ds!#2; (5)

where the robot knows the valuesobsk, xs(tk), and the
values ofC(s). This is an instance of a multivariable linear
regression problem, withd+1 variablesv0 throughvd defined
asvi = R t0 C(s)i ds. The regression computes the weightsai
(and a value forx(0)) that minimize the error. SinceC(s)
changes every three seconds, the value forx(t) suggested by
an estimate forx(0) and the weightsai varies in a piecewise
linear manner with respect to time. The regression being
performed has the effect of finding the piecewise linear curve
that fits the data(tk; xs(tk)) as closely as possible (as shown
in Figure 3), given the constraint that the slope of the line at
any timet is a constant quartic function of(C(t)).

To illustrate this, we first learn a rough sensor model using
the constant action method at the top of Section IV. We then
use that sensor model to execute the process described in this
section. The result of this process is shown in Figure 3.

x (t)s

Learned Action Model:
Observations:

Time (s)

Fig. 3. The plotted points are(tk ; xs(tk)) as the robot performs one
full cycle of walking towards the beacon and backing away from it. The
learned action model is applied to the executed action commands to yield the
piecewise linear location estimate shown here.

VI. L EARNING BOTH SIMULTANEOUSLY

We have so far demonstrated the ability for the robot to
learn the sensor model from the action model and vice versa.
Making use of both of these capabilities, we show in this
section how the robot can simultaneously learn both models,
even when it is given very little useful starting information.
The idea behind this is that even though the action (sensor)
model learned from an inaccurate sensor (action) model will
be inaccurate, it will be an improvement. As each model
grows more accurate, its ability to help the other model
improve grows. As this bootstrapping process continues, the
two models converge to functions that accurately reflect what
they are trying to model.

Because both models grow in accuracy as time goes on, we
would like the regressions to give more weight to the more
recent data points. To do this, we use a weighted regression,
where each data point has a weight that decreases over time.
Note that for both learning directions, there is one regression
data point for each visual sensor observation. Thus we have
the weight of each data point start at one and decrease by a
constant factor
 < 1 every time a new observation is taken.
If there have beenn observations so far, this means that the
weight of the data points corresponding to theith one is
n�i.

To compute the solution to the weighted regression, defineW as ann� n diagonal matrix withWi;i =
n�i. Then, we
can use a weighted version of Equation (3) [3]:� = (M>WM)�1(M>WY)

and � = 1n nXi=1 yi � nXi=1
n�i dXj=1 �jvj;i! (6)

If we defineN to be the sum of the weights
Pni=1
n�i,

thenM>WM andM>WY are given byXk
n�kvi;kvj;k � 1N (Xk
n�kvi;k)(Xk
n�kvj;k)
and

Xk
n�kvi;kyk � 1N (Xk
n�kvi;k)(Xk
n�kyk) (7)

respectively. These sums can also be maintained incremen-
tally, because

Pn+1k=1
(n+1)�kzk =
(Pnk=1
n�kzk) + zn+1
for any sequencezk.

Pseudocode for the entire algorithm is given in Figure 4.
At time t, the robot makes use of its best estimates thus far
as to the action and sensor models,At and St. Throughout
the learning, the robot maintains two estimates of its location,
one based on its current sensor model,xs(t), and the other
based primarily on its action model,xa(t). After any obser-
vation obsk at time tk, xs(tk) is given bySt(obsk). At the
same time,xa(t) is maintained by continually incrementing
it by At(C(t))�t, where�t is the amount of time between
increments andAt(C(t)) is our current best guess as to the
robot’s velocity. Unfortunately, it is not sufficient forxa(t)’s
derivative to be an accurate estimate of the robot’s velocity.
This still allows for the possibility thatxa(t) is a constant
displacement away fromxs(t). When this was tried on the
robot, it occasionally happened that the models diverged, both
increasing continually, in which case neither model can be
learned accurately. To prevent this,xa(t) is adjusted towardsxs(t) every time an observation is taken. This is accomplished
by the assignmentxa(tk) (1� �)xa(tk) + �xs(tk), where� is a constant that determines the strength with whichxa(t)
is pulled towardsxs(t).xa(t) 0

for each time stepdo
if t < 2tstart thenxa(t) xa(t) +A0(C(t))�t
elsexa(t) xa(t) +At(C(t))�t
end if
if an observationobsk is madethen

if t > tstart thenxs(t) St(obsk)
UPDATE At with (t; xs(t))xa(t) (1� �)xa(t) + �xs(t)

end if
UPDATE St with (t; xa(t))

end if
end for

Fig. 4. Algorithm for simultaneous action and sensor model learning. The
routine UPDATE incorporates one new data point into the weighted regression
for the model being updated.

The model estimatesSt andAt are continually updated in
accordance with the location estimatesxa(t) andxs(t), with
each model being updated by the location estimate based on
the other model. These updates consist of the incremental
updates that comprise the weighted polynomial regressions
that give the best fit estimates ofS andA, as described above.
The flow of information is depicted in Figure 5b). Note that
because the regressions can be computed incrementally, they
can be calculated every time the robot processes an image,
corresponding to about20 Hertz. This happens concurrently
with all of the robot’s other real-time computation, including
vision and motion processing, all on-board on a single576
MHz processor.

At the start of the training, there is no data to motivate
either the action model or the sensor model to get the learning

tS A tA 0
t = 0

t = t

t = 2tstart

start

S A

x x

S A

s a

a) b)

Fig. 5. a) The ramping up process. The arrows indicate one model being
learned based on another. Note that aside fromA0, a model is not learned
from until it has been learned for a sufficient amount of time.b) The flow
of information. The thick arrows represent incorporating adata point into the
weighted regression for a model. The thin arrows indicate that each model
is used to construct the corresponding estimate of the robot’s location. The
dashed arrow signifiesS’s influence on the estimatexa.

process started. For a period of time at the beginning,tstart,
the robot uses a fixed, pre-set action model,A0, instead ofAt. We use the identity function forA0, so thatA0(
) =
.
During this time, the sensor model is learned based onA0, but
the action model is not being learned yet, because the sensor
model is based on too few data points. After timetstart has
passed, the sensor model can be used to start learning an action
model. However, until another period of time lengthtstart
has passed, this new action model is not based on enough
data points to be used for learning. From time2tstart into the
learning on, the action and sensor models can learn from each
other. This ramping up process is depicted in Figure 5a).

Figure 6 depicts howxs(t) andxa(t) vary over time whenS and A are being learned simultaneously. Note that both
oscillate with the robot’s walking towards and away from the
beacon. AsA andS grow more accurate, their corresponding
estimates of the location come into stronger agreement.

Time (s)

x(t)

Fig. 6. This figure shows howxa(t), and xs(t) vary over time. In this
example run, the+’s are values ofxs(t), and the curve depictsxa(t). Over
time, each model learns how to keep its estimate of the location close to the
other model’s estimate.

The algorithm described above makes use of a few constants
that did not require any extensive tuning. The discount factor
for the regression weights,
, is 0:999. The strength of the
pull of xa towardsxs, �, is 1=30. These were the first values
that were tried for
 and�. The starting phase time,tstart, is20 seconds. We tried10 seconds first but that was too short.

VII. E XPERIMENTAL RESULTS

After SCASM has run for a pre-set amount of time (two
and a half minutes), we consider its best estimates forA
and S to be the models that it has learned. We evaluate
the success ofSCASM by comparing the learned action and
sensor models to those measured with a stopwatch and a tape
measure. The measured action model is obtained by measuring
the velocity of each action command that is a multiple of20 from �300 to 300. We measure the velocity of an action
command by timing it across an appropriate distance five
times. The standard deviation of the velocity measurement for
a given action command across the five timings never exceeded7 mm/s. The measured action model is shown in Figure 7a).

Measured Action Model:
Learned Action Model:

Vel.

Action Command

Learned Sensor Model:
Measured Sensor Model:

Beacon Height

Dist.

b)a)

Fig. 7. A learned action and sensor model

Similarly, the accuracy of the learned sensor model is
gauged by comparing it to a measured sensor model. The
sensor model is measured by having the Aibo stand at mea-
sured distances from the beacon. The distances used were the
multiples of20 cm from120 cm to360 cm. At each distance,
the robot looked at the beacon until it had collected100 beacon
height measurements. The average of these measurements was
used as a data point for the sensor model, and their standard
deviation did not exceed1:1 pixels at any distance. The
measured sensor model is shown in Figure 7b).

The learning process was executed15 times, with each trial
lasting for two and a half minutes. Figure 7a) shows a typical
learned action model, compared to measured action model
data. Note that since the action model is not learned in any
specific units, in order to compare the learned model to the
measured one, we must first determine the appropriate scaling
factor. This is done by calculating the scaling factor that
minimizes the mean squared error. On average, the root mean-
square error between the scaled learned action model and the
measured action model was29:6� 12:4 mm/s. Compared to
the velocity range of600 mm/s, this is a4:9 percent error. The
best fit possible by a fourth degree polynomial to the measured
action model has an error of17:2 mm/s. By contrast, when
the same metric is applied to the initial action modelA0 (also
with favorable scaling), the error is43:0 mm/s.

Figure 7b) shows a typical learned sensor model with the
measured sensor model. The learned sensor modelS maps
observations to relative distances,S(obsk), which are intended
to model the actual distances from the beacon. These actual
distances are given bya + bS(obsk), wherea and b are two
constants that are not learned. Thus in order to evaluate a
learned sensor model, we must compute the values ofa andb

that minimize the mean squared error betweena + bS(obsk)
and the measured sensor model. This can be done with a
linear regression on the points(S(obsk); dk), where dk is
the actual distance corresponding to measurementobsk. Our
evaluation of a sensor model is the root mean-square error
to the measured sensor model, after this process has been
applied to the learned model. The average value for this was70:4�13:9 mm. Compared to the distance range of2400 mm,
this is a2:9 percent error. The best fit possible by a cubic to
the measured sensor model has an error48:8 mm.

Over the course of a trial, both models get progressively
more accurate. This is depicted in Figure 8. Both models’
errors are shown, compared to the best possible error for
the measured model and the degree of the polynomial being
learned. The data is averaged over all15 trials.

Learned Action Model Error

Learned Sensor Model Error

Time (s)

Error

Fig. 8. This figure depicts the average error in the learned models as a
function of time. The error for the action model is in mm/s, and for the
sensor model in mm. The horizontal lines are at the minimum possible error
to the measured models for a polynomial of the appropriate degree.

Although the action and sensor models are not learned to
any particular scale, since they are learned from each other
they should be to the same scale. This can be tested by
comparing the scaling constants used to give the best fits to
the measured models, the scaling constant for the action model
andb for the sensor model. These two values should be equal
to each other in absolute value. To evaluate this we compute
the average distance between the absolute value of the ratio
between the two scaling constants and1. The average distance
is 0:08 � 0:06. This shows that the two learned models are
consistent with each other.

To examine the reliance of our approach to the starting
action model, we performed two tests with more impoverished
starting points. First, we used a piecewise constant model
equal to1 for positive action commands and�1 for negative
ones. This conveys only the direction of the action but no
information about its speed. In15 runs, the robot was able
to achieve an average error of85:3� 24:5 mm in its learned
sensor model and31:3� 9:2 mm/s in the action model after2:5 minutes. Even with a starting model of A(x)=1, which
imparts no information about the action model, on10 out of15
trials the robot was able to achieve an average performance of88:6�11:5 mm error in the sensor model and27:3�6:2 in the
action model after 5 minutes. The remaining trials diverged,
presumably due to initially learning a pair of models that were

so inaccurate that no useful information could be recovered
from them.

VIII. R ELATED WORK

Some previous work has focused on mobile robots cali-
brating their odometry models automatically based on their
sensors. For example, Roy and Thrun [4] calibrate the odom-
etry on a wheeled robot using an incremental maximum
likelihood method, while Martinelli et al. [5] and Larsen et
al. [6] use an augmented Kalman Filter to estimate odometry
errors. There has also been work on calibrating networks of
sensors. However, this work (e.g., [7], [8]) typically focuses
on networks with large numbers of sensors and calibrating
their respective locations and orientations. We know of no
previous work calibrating a sensor based on an action model.
Furthermore, to the best of our knowledge,SCASM differs from
all previous work along these lines in the following significant
way. SCASM learns models of its actions and sensors starting
without an accurate model of either. Previous approaches to
calibration rely either on accurate training data or on sensors
that are already well calibrated (as in [4]).

IX. CONCLUSION AND FUTURE WORK

We have developed a technique by which a mobile robot
can learn an action model and a sensor model from each other
simultaneously. By starting with only a very simplistic action
model estimate, it is able to learn highly accurate approx-
imations to the robot’s true action and sensor models. The
learning process is completely autonomous and unsupervised,
so that no human oversight or feedback is necessary. We have
implemented the technique on a Sony Aibo ERS-7, which
successfully calibrates its action commands to the resultant
velocities and its visual sensor readings to the corresponding
distances, all over the course of two and a half minutes of
autonomous behavior.

One direction for future work is to explore potential syn-
ergies betweenSCASM and particle filtering methods that
integrate sensor and action models into a position estimate
(e.g., [9]). The work presented here represents an exciting
starting point towards the long-term challenge of enablingfully
autonomous calibration of complex, multi-modal sensor and
action models on mobile robots.

ACKNOWLEDGMENTS

We would like to thank Ben Kuipers for helpful discussions.
Thanks also to the members of the UT Austin Villa team for
their efforts in developing the software used as a basis for the
work reported in this paper. This research was supported in
part by NSF CAREER award IIS-0237699.

REFERENCES

[1] P. Stone, K. Dresner, S. T. Erdoğan, P. Fidelman, N. K. Jong, N. Kohl,
G. Kuhlmann, E. Lin, M. Sridharan, D. Stronger, and G. Hariharan, “UT
Austin Villa 2003: A new RoboCup four-legged team,” The University
of Texas at Austin, Department of Computer Sciences, AI Laboratory,
Tech. Rep. UT-AI-TR-03-304, 2003, at http://www.cs.utexas.edu/ftp/pub/
AI-Lab/index/html/Abstracts.2003.html#%03-304.

[2] R. F. Gunst and R. L. Mason,Regression Analysis and its Application.
New York: Marcel Dekker, Inc., 1980.

[3] S. Weisberg,Applied Linear Regression. New York: John Wiley & Sons,
Inc., 1980.

[4] N. Roy and S. Thrun, “Online self-calibration for mobilerobots,” in
Proceeding of the IEEE International Conference on Robotics and
Automation, vol. 3, pp. 2292–2297.

[5] A. Martinelli, N. Tomatis, A. Tapus, and R. Siegwart, “Simultaneous
localization and odometry calibration for mobile robot,” in Proceedings
of the 2003 International Confrerence on Intelligent Robots and Systems,
Las Vegas, NV, October 2003.

[6] T. D. Larsen, M. Bak, N. Andersen, and O. Ravn, “Location estimation
for an autonomously guided vehicle using an augmented Kalman filter to
autocalibrate the odometry,” inFUSION98 Spie Conference, Las Vegas,
NV, July 1998.

[7] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky, “Nonparametric
belief propagation for self-calibration in sensor networks,” in Proceedings
of the third international symposium on Information processing in sensor
networks, Berkeley, CA, April 2004.

[8] R. Moses and R. Patterson, “Self-calibration of sensor networks,” inSPIE
vol. 4743: Unattended Ground Sensor Technologies and Applications IV,
2002.

[9] C. Kwok, D. Fox, and M. Meila, “Adaptive real-time particle filters for
robot localization,” inProc. of the IEEE International Conference on
Robotics & Automation, 2003.

