
Learning Ball Acquisition on a Physical Robot
Peggy Fidelman and Peter Stone

Department of Computer Sciences, The University of Texas atAustin
1 University Station C0500, Austin, Texas 78712-1188

{peggy,pstone}@cs.utexas.edu
http://www.cs.utexas.edu/˜{peggy,pstone}

Abstract— For a robot to learn to improve its performance
based entirely on real-world environmental feedback, the
robot’s behavior specification and learning algorithm must be
constructed so as to enable data-efficient learning. Building
upon previous work enabling a quadrupedal robot to learn a
fast walk with all of the training done on the physical robot
and with no human intervention [1], we demonstrate the ability
of the same robot to learn a more high-level, goal-oriented task
using the same methodology. In particular, we enable the robot
to learn to capture (or “grasp”) a ball. The learning occurs over
about three hours of robot run time and generates a behavior
that is significantly better than a baseline hand-coded behavior.
Our method is fully implemented and tested on a Sony Aibo
ERS-7 robot.

Keywords: task learning, manipulation and grasping, legged
robots

I. I NTRODUCTION

Recent developments in commercial robotics suggest that
before long robots will be ubiquitous in the real world. On
the one hand, companies are deploying increasingly affordable
consumer robots such as Roomba [2] and Aibo [3]. On
the other hand, they are creating increasingly sophisticated
humanoid robots such as Asimo [4] and Qrio [5]. As robots
do begin to make their way out into the real world, it will
become increasingly necessary for them to adapt to constantly
changing, unstructured environments [6]. That is, robots must
be able tolearn to improve their performance based entirely
on feedback from their physical environment, and as a result,
from relatively few training examples.

This paper is concerned with enabling a robot to learn
high-level goal-oriented behaviors. Coding these behaviors by
hand can be time-consuming, and it often leads to brittle
solutions that need to be revised whenever the environment
changes or the low-level skills that comprise the behavior
are refined. Machine learning offers the promise of a way to
generate solutions with little human interaction, so that when
the environment changes the solution can be revised with no
more than a few hours of machine time. It is also possible for
machine learning to lead to better initial solutions than hand-
tuning, because humans are often biased toward exploring a
small part of the space of possible solutions, whereas machine
learning explores the space in a systematic way.

Particular challenges arise when there is no simulator avail-
able for the robot. Because each trial requires interaction
with the physical world in real time, it is not possible to

offset the costs of an inefficient learning algorithm with a
faster processor. The learning algorithm absolutely must make
efficient use of the information gained from each trial.

Previous work has demonstrated that it is possible to learn
locomotion entirely autonomously, with no human intervention
other than battery changes [1], [7]. The success of the work
done by Kohl and Stone was due to several features of the
task being learned, namely:

• The ability of the robot to get its own reward signal;
• The possibility of expressing the policy for this task with

a set of parameters; and
• The existence of an efficient algorithm for learning to

optimize such a parameterized policy.

The main contribution of this paper is to extend this methodol-
ogy to a higher-level, more goal-oriented behavior, namelyball
acquisition by a soccer-playing Aibo robot. Although previous
work has demonstrated the benefits of using machine learning
in conjunction with higher-level behaviors, that learningdid
not serve toimprove the behavior but rather to predict the
effects of the behavior, which was hand-coded [8].

The remainder of this paper is organized as follows. Sec-
tion II describes the background and motivation for this
work. Section III specifies the task to be learned and its
parameterization. Section IV describes the primary machine
learning algorithm used in the work, as well as the setup
of the training scenario carried out by the robot. Section V
details the results of the training, and Section VI discusses
the contributions of this work, as well as possible directions
for the future.

II. BACKGROUND

Acquiring an object is a prerequisite for many types of
manipulations in the world [9], [10]. For example, in the case
of a Sony Aibo robot playing soccer, one of our motivating
test-bed domains [11], it is much easier to design effective
ways for the robot to kick the ball if we may assume that
the ball starts in a specific position relative to the robot.
Furthermore, if the robot can grasp the ball securely enough,
it can move the ball by turning with the ball until the ball
reaches a field position from which the kick is likely to move
the ball to the desired destination (such as in the opponent’s
goal). Thus, as a representative task, we consider the goal of
having a robot walk up to a ball and gain control of it. For
the purposes of this paper, we definecontrol to mean that the



Fig. 1. An Aibo with control of the ball.

robot holds the ball under its chin in such a way that it can
turn with the ball as shown in Figure 1.

As the robot platform for this research, we use the com-
mercially available Sony Aibo ERS-7, a quadruped robot [3].
The ERS-7 has a head with three degrees of freedom, and a
CMOS camera in the head. It has several pressure sensors and
two infrared range sensors, one on the head and one on the
chest. The robot is able to capture frames from the camera at
a rate of 25 Hz, from which our software recognizes objects,
such as the orange ball, based on color segmentation and
aggregation [12]. The infrared chest sensor is relatively noisy,
but provides enough resolution to reliably detect whether or
not the ball is indeed captured as shown in Figure 1 (note
that in this capture position, the ball is not within range of
the camera, which resides in the tip of the Aibo’s nose). This
variety of sensors allows us to rely only on local sensing.
In addition, the 576 MHz 64 bit RISC processor allows all
necessary processing to be done onboard. In this work, we
use a system for vision processing, walking, and kicking that
was developed as part of our larger robot soccer project [11].

III. TASK SPECIFICATION

The task learned in this paper is motivated by our ongoing
development of the UT Austin Villa four-legged robot soccer
team [11]. Our team adopted the following strategy for getting
the ball into the under-chin position described above: whenthe
Aibo is walking to a ball with the intent of kicking it and gets
“close enough,” it first slows down to allow for more precise
positioning, and then it lowers its head to capture the ball
under its chin (this is the “capturing motion”).

However, executing this motion so that the ball is not
knocked away in the process is a challenge: if the head is
lowered when the ball is too far away, the head may knock
the ball away, but if it is not lowered in time, the body of the
robot may bump the ball away. Naturally, the perceived ball
distance at which the head should be lowered depends on how
fast the robot is walking, so the amount that the robot slows
down when close to the ball must be tuned simultaneously

with the timing of the capturing motion. For the same reason,
every time the speed of the base gait changes (due to a newly-
designed gait or a different walking surface, for example),the
approach must be re-tuned. This is a time-consuming task to
perform by hand.

The parameters that control the transition from walking to
capturing the ball are as follows:

• slowdown dist : the ball distance (in millimeters) at
which slowing down begins;

• slowdown factor : the (multiplicative) factor, in the
range [0,1], by which the gait slows down at this point;

• capture angle : the maximum ball angle (in degrees)
at which the capturing motion may begin (see Figure 2);

• capture dist : the ball distance (in millimeters) at
which the capturing motion begins (if the ball is within
the specified angle).

IV. M ACHINE LEARNING METHODOLOGY

Given this parameterization, we are faced with a parameter
optimization problem in four dimensions. Because our policies
can be expressed in this way, and because our domain has the
same efficiency constraints as that of learning fast locomo-
tion for the Aibo, the policy gradient reinforcement learning
algorithm used by Kohl and Stone [13] is a natural choice.

By this method, starting from a base policy{θ1, ..., θN},
t − 1 new policies are chosen by selecting one of{θi −
ǫi, θi, θi + ǫi} randomly for each dimensioni, where ǫi is
a fixed increment particular to dimensioni. Theset policies
(the base policy and thet− 1 randomly selected policies) are
then evaluated, and their scores are used to estimate the partial
derivative in each of theN dimensions, which leads to a new
base policy.

The estimation of partial derivatives works as follows. For
each dimensioni, the policies are divided into three sets
according to the value of parameteri: if its value is θi − ǫi,
the policy is in setS−ǫ,i; if it is θi, the policy is in setS0,i;
and if it is θi + ǫi, the policy is in setS+ǫ,i. Then the average
score over all the policies in each set is computed and used
to build an adjustment vectorA of sizeN . For eachi, if the
average score over the setS0,i is greater than the average score
over each of the other two sets, thenAi = 0; otherwise,Ai

becomes the difference between the average scores over set
S+ǫ,i and setS−ǫ,i. A is then normalized and multiplied by a
scalar step sizeη, so that we will adjust our policy by a fixed
amount each time. The above process comprises one iteration
of the algorithm. For the parameters used in our work, see
Table I.

For comparison, we also implemented and tested the other
two algorithms with which Kohl and Stone had some success
in learning locomotion [1]. One of these algorithms, hill
climbing, is identical to the policy gradient algorithm except
for the way the new base policy is chosen. Rather than
using the scores from the current iteration to calculate which
direction we should move in policy space, in hill climbing
the base policy for the next iteration is simply set equal to



Fig. 2. Illustration ofcapture angle . If the Aibo believes that the center of the ball is to the right of the thick white lines, then it will continue to turn
toward the ball rather than beginning the capturing motion, even if the ball distance is believed to be less thancapture dist .

TABLE I

PARAMETERS FOR THE POLICY GRADIENT ALGORITHM

P
¯
arameter V

¯
alue

Policies per iteration (t) 8
Increment forslowdown dist (ǫ1) 20

Increment forslowdown factor (ǫ2) 0.5
Increment forcapture angle (ǫ3) 5
Increment forcapture dist (ǫ4) 20

Scalar step size (η) 1

the policy that got the best score in the current iteration. The
other algorithm, known as the downhill simplex or “amoeba”
algorithm, involves moving a simplex of points through policy
space [14]. The simplex undergoes various transformationsin
response to the scores received by the policies represented
by its vertices. These transformations are intended to move
the simplex toward more promising parts of the policy space
while preserving its volume. Unlike the policy gradient and
hill climbing algorithms, the amoeba algorithm can effectively
adjust its own step size based on the information it is receiving
about the fitness of the policies that make up its vertices. More
details about the hill climbing and amoeba algorithms can be
found in previous work [1].

One particular challenge for learning ball acquisition is
defining an appropriate reward signal. In learning locomotion,
the time that each potential walk takes to traverse a fixed
distance generates a feedback signal that can rank the relative
merits of each policy on a continuous scale. In our case,
however, there is no straightforward way to rate a particular
policy with regard to “how well” it captures the ball: it either
does or it does not.

Therefore, we use a binary reinforcement signal: if the robot
captures the ball, it receives a reward of 1; if not, it receives a

reward of 0. The Aibo can determine autonomously whether
it has captured the ball by means of the infrared range sensor
on its chest, which reliably registers noise over a certain level
when the ball is being held under the chin. During training,
the score for a given policy is determined by running 12
trials with that policy and averaging the reinforcement signal
over those trials (thus effectively producing a discrete, ordinal
reinforcement signal).

Each trial consists of the robot approaching the ball from a
random location on the standard field used in RoboCup, which
is surrounded by a short wall designed to keep the ball from
leaving the field. If the Aibo successfully captures the ball, it
kicks it in whichever direction it estimates is away from the
wall. (This is to ensure that we will get enough trials with the
ball in the open field, since our kicks are powerful enough that
the ball is often stopped by the wall if kicked from less than
halfway across the field. Trials that begin with the ball at a
wall are also less informative, since capturing the ball here is
much harder, and even a good policy will fail a lot more along
the wall, which can lead to a smaller spread of scores among
policies.) Then, before starting the next trial, the Aibo turns
around approximately180◦ in place in order to knock the ball
away from it if it is still close. Once it has done this, it begins
the next trial by searching for the ball and then approaching
it with the parameters of the current policy (see Figure 3)1.

All learning is done on the Aibo itself, including all calcula-
tions necessary to execute the learning algorithm. Interruptions
caused by dead batteries are of little consequence, since the
algorithm has practically no state: if we resume from the last
base policy, we will never lose as much as an entire iteration.

1Videos depicting the training process can be found at:http://www.cs.
utexas.edu/˜AustinVilla/legged/learned-acquisition/



base policy← initial policy
while base policy is still improvingdo

policies[0]← base policy
for i ∈ [1, t− 1] do

policies[i]← new random policy
end for
for i ∈ [0, t− 1] do

totalscore← 0
slowdown dist← policies[i][1]
slowdown factor ← policies[i][2]
capture angle← policies[i][3]
capture dist← policies[i][4]
for j ∈ [1, num trials per policy] do

while ball farther than slowdowndist do
walk to ball at maxspeed

end while
while ball farther thancapture dist and outside of
capture angle do

walk to ball at speed of(slowdown factor) ∗
maxspeed

end while
lower head over ball
if chest IR sensor senses ballthen

totalscore← totalscore + 1
if center of field to robot’s leftthen

kick to left
else

kick to right
end if

end if
turn 180◦

end for
pscore[i]← totalscore/(num trials per policy)

end for
UPDATE base policy

end while

Fig. 3. Algorithm for learning to approach the ball. In the case of the policy
gradient algorithm, the UPDATE routine chooses a new base policy according
to an estimation of the gradient of policy space. In the case ofhill climbing,
UPDATE sets the base policy to be the highest-scoring policyfrom the last
iteration. The amoeba algorithm does not have “iterations” per se, but each
policy policies[i] is evaluated in the same way as shown here.

V. RESULTS

Starting from a hand-tuned2 policy with an acquisition
success rate of roughly 36%, the robot reached a policy3 with

2This policy was actually hand-tuned for a different parameterization of
the space and then converted mathematically to fit the new parameterization.
However, preliminary work with the original parameterization of the space, for
which the base policy was meticulously tuned, showed that learning generated
a policy which improved over the hand-tuned one by an amount comparable
to the improvement we see here in the new parameter space.

3Videos of the initial policy and the best learned policy can be
found at: http://www.cs.utexas.edu/˜AustinVilla/legged/
learned-acquisition/

a success rate of approximately 64% within seven iterations,
which takes approximately three hours (see Figure 4). With
12 trials for each policy, and 8 policies per iteration, roughly4

672 trials were needed.
This result demonstrates the ability of our robots to learn

this task. Hill climbing and the amoeba algorithm had success
comparable to that of the policy gradient algorithm (see
Figure 5).

Table II shows the values of the best policies found
by the learning algorithms. Note that all methods learned
not to slow down at all (slowdown factor =1). When
slowdown factor is 1, the parameterslowdown dist
has no effect on the robot’s behavior, which is presumably why
the different learning methods produced such a wide range of
values for this parameter.

The fact that all methods learn not to slow down is a
demonstration of the advantage that machine learning can
bestow because of its systematic exploration of the space: in
hand-tuning, we believed that slowing down would make the
ball approach more reliable at the expense of speed, since the
estimations of ball distance should change less rapidly if the
robot is walking more slowly. But we can see here that this is
actually not the case, since our system which optimized only
for reliability actually found that slowing down at all is only
a disadvantage.

It is worth noting that for the policy gradient and amoeba
algorithms, the results we present here correspond to the
first sets of learning parameters we tried (and for the hill
climbing algorithm, the results correspond to the second set
we tried). Consequently, we suspect that these methods are not
particularly sensitive to their parameter settings. In anycase,
these experiments demonstrate the potential reduction in hand-
tuning that can be achieved via machine learning methods.

VI. D ISCUSSION ANDCONCLUSION

The results in Section V demonstrate that we are able to
achieve significant improvements on the ball-capturing task
via autonomous machine learning. All of the learning is done
on a physical robot, with no human intervention, over the
course of a relatively short training time. The resulting training
paradigm is useful in that it saves us time, and can generate
better policies, when compared to manual tuning of an ap-
proach behavior. Indeed, we are using the described automated
training paradigm in our competitive team development for the
RoboCup 2004 robot soccer competition.

The fact that several different learning algorithms generate
comparable improvements from the initial hand-tuned policy
suggests that the main reason for our learning success is the
setup of the task. The results themselves are not very sensitive
to the details of the learning approach (neither to the algorithm
used nor to the parameters used for that algorithm). Thus, the
main contribution of this paper is the demonstration that a non-

4This is approximate because it does not take lost trials due todead batteries
into account.



0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

iterations

su
cc

es
sf

ul
 c

ap
tu

re
s 

ou
t o

f 1
00

 tr
ia

ls

Fig. 4. Progress of the policy gradient algorithm. The dottedline shows the learning curve, produced by running 100-trial evaluations on the base policy
of each iteration. Error bars (showing the 95% confidence interval) are displayed for the two policies (initial and best learned) which were later evaluated
with seven 100-trial runs to establish statistical significance. The fact that the later evaluations yield significantly lower scores is most likely due to robot
deterioration over time.

TABLE II

POLICY VALUES LEARNED BY EACH ALGORITHM .

P
¯
olicy

¯
slowdowndist

¯
slowdownfactor

¯
captureangle

¯
capturedist

Initial 200 0.7 15 110
Best: policy gradient 125.4 1 17.4 152.4

Best: amoeba algorithm 208.4 1 33.4 161.7
Best: hill climbing 240 1 35 170

trivial goal-oriented behavior can be learned efficiently on a
mobile robot with no human intervention.

In our ongoing research, we aim to identify additional
behaviors that can be learned in a similarly autonomous and
efficient fashion, and ultimately to characterize the full range
of characteristics of a task required to enable a mobile robot
to learn to improve its task performance by our methods.

ACKNOWLEDGMENTS

Thanks to the members of the UT Austin Villa team for their
efforts in developing the software used as a basis for the work
reported in this paper. Special thanks to Nate Kohl for sharing
his machine learning infrastructure used for Aibo locomotion.
This research was supported in part by NSF CAREER award
IIS-0237699 and ONR YIP award N00014-04-1-0545.

REFERENCES

[1] N. Kohl and P. Stone, “Machine learning for fast quadrupedal locomo-
tion,” in The Nineteenth National Conference on Artificial Intelligence,
July 2004.

[2] iRobot, “roomba vacuum cleaner robot,” http://www.roombavac.com/.

[3] Sony, “Aibo robot,” 2004, http://www.sony.net/Products/aibo.
[4] Honda, “Asimo robot,” http://world.honda.com/ASIMO/.
[5] Sony, “Qrio robot,” http://www.sony.net/SonyInfo/QRIO/.
[6] R. A. Brooks and M. J. Mataric, “Real robots, real learning problems,”

in Robot Learning, J. H. Connell and S. Mahadevan, Eds. Kluwer
Academic Publishers, 1993, pp. 193–213.

[7] T. Roefer, “Evolutionary gait-optimization using a fitness function based
on proprioception,” inRoboCup-2004: Robot Soccer World Cup VIII,
D. Nardi, M. Riedmiller, and C. Sammut, Eds. Berlin: Springer Verlag,
2005, to appear.

[8] S. Chernova and M. Veloso, “Learning and using models of kicking
motions for legged robots,” inProceedings of the IEEE International
Conference on Robotics and Automation, May 2004.

[9] A. Bicchi and V. Kumar, “Robotic grasping and contact: A
review,” in Proceedings of the IEEE International Conference
on Robotics and Automation, April 2000. [Online]. Available:
http://citeseer.ist.psu.edu/bicchi00robotic.html

[10] I. Kamon, T. Flash, and S. Edelman, “Learning to grasp using visual
information,” The Weizmann Institute of Science, Revhovot, Israel,
Tech. Rep., March 1994. [Online]. Available: http://citeseer.ist.psu.edu/
kamon94learning.html

[11] P. Stone, K. Dresner, S. T. Erdoğan, P. Fidelman, N. K. Jong, N. Kohl,
G. Kuhlmann, E. Lin, M. Sridharan, D. Stronger, and G. Hariharan,
“The UT Austin Villa 2003 four-legged team,” inRoboCup-2003: Robot
Soccer World Cup VII, D. Polani, B. Browning, A. Bonarini, and
K. Yoshida, Eds. Berlin: Springer Verlag, 2004.

[12] P. Stone, K. Dresner, S. T. Erdoğan, P. Fidelman, N. K. Jong, N. Kohl,
G. Kuhlmann, E. Lin, M. Sridharan, D. Stronger, and G. Hariharan, “UT



0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

su
cc

es
sf

ul
 c

ap
tu

re
s 

ou
t o

f 1
00

 tr
ia

ls

iterations

policy gradient
amoeba
hill climbing

Fig. 5. Progress of the amoeba algorithm and hill climbing, in comparison to the progress of the policy gradient algorithm. The learning curves for the
policy gradient algorithm and hill climbing were produced byrunning 100-trial evaluations on the base policy of each iteration. For the amoeba algorithm,
since there is no concept of a “base policy,” 100-trial evaluations were run on every eighth policy tried by the algorithm(because with hill climbing and
the policy gradient algorithm, eight policies were tried periteration). The robot that we had been using for all trainingfailed after iteration 9 of the policy
gradient algorithm, so iterations 10 through 13 of the policygradient algorithm were carried out on a different robot than the rest.

Austin Villa 2003: A new RoboCup four-legged team,” The University
of Texas at Austin, Department of Computer Sciences, AI Laboratory,
Tech. Rep. UT-AI-TR-03-304, 2003, at http://www.cs.utexas.edu/ftp/
pub/AI-Lab/index/html/Abstracts.2003.html#%03-304.

[13] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” inProceedings of the IEEE International
Conference on Robotics and Automation, May 2004.

[14] W. H. Press,Numerical Recipes in C: the art of scientific computing.
Cambridge: Cambridge University Press, 1988.


