Learning Ball Acquisition on a Physical Robot
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Abstract— For a robot to learn to improve its performance offset the costs of an inefficient learning algorithm with a
based entirely on real-world environmental feedback, the faster processor. The learning algorithm absolutely muktem
robot's behavior specification and learning algorithm must be otficient use of the information gained from each trial.
constructed so as to enable data-efficient learning. Building - L .
upon previous work enabling a quadrupedal robot to learn a Prewqus Wo_rk has demonstrated _that it is pos§|ble _to learn
fast walk with all of the training done on the physical robot l0comotion entirely autonomously, with no human intervemt
and with no human intervention [1], we demonstrate the ability other than battery changes [1], [7]. The success of the work

of the same robot to learn a more high-level, goal-oriented task done by Kohl and Stone was due to several features of the
using the same methodology. In particular, we enable the robot task being learned, namely:

to learn to capture (or “grasp”) a ball. The learning occurs over . ' ' . .

about three hours of robot run time and generates a behavior ¢ The ability of the robot to get its own reward signal;

that is significantly better than a baseline hand-coded behavior.  « The possibility of expressing the policy for this task with
Our method is fully implemented and tested on a Sony Aibo a set of parameters; and

ERS-7 robot. « The existence of an efficient algorithm for learning to

Keywords: task learning, manipulation and grasping, legged optimize such a parameterized policy.
robots The main contribution of this paper is to extend this mettodo

ogy to a higher-level, more goal-oriented behavior, narbaly
acquisition by a soccer-playing Aibo robot. Although poas
, ) i work has demonstrated the benefits of using machine learning
Recent developments in commercial robotics suggest ﬂ?ﬁ‘tconjunction with higher-level behaviors, that learnidigl

before long robots Wil_l be ubiquitou_s ir! the re_al world. O ot serve toimprove the behavior but rather to predict the
the one hand, companies are deploying increasingly aﬁtrlmdaeﬁects of the behavior, which was hand-coded [8].

ct:)nsurr‘?er hrob(;)ts hSUCh as Roc_)mbg [2] qndl Aibo h['?x;]t'it:on The remainder of this paper is organized as follows. Sec-
the other hand, they are creating increasingly Sophistical;, || gescribes the background and motivation for this

humangid robots SUCh, as Asimo _[4] and Qrio [5]. As _rOer\?/ork. Section |l specifies the task to be learned and its
do begin to make their way out into the real world, it will

. . arameterization. Section IV describes the primary machin
become increasingly necessary for them to adapt to Cohsta'l%arning algorithm used in the work, as well as the setup
changing, unstruct_ured environments [6]. That is, robansnn of the training scenario carried out by the robot. Section V
be able tolearn to improve their performance based entirel

. ) . etails the results of the training, and Section VI discsisse
on feedback from their physical environment, and as a "*SYHie contributions of this work, as well as possible diretsio
from relatively few training examples.

: : : . for the future.
This paper is concerned with enabling a robot to learn

high-level goal-oriented behaviors. Coding these belauy
hand can be time-consuming, and it often leads to brittle Il. BACKGROUND
solutions that need to be revised whenever the environmenfAcquiring an object is a prerequisite for many types of
changes or the low-level skills that comprise the behaviananipulations in the world [9], [10]. For example, in the €as
are refined. Machine learning offers the promise of a way td a Sony Aibo robot playing soccer, one of our motivating
generate solutions with little human interaction, so thhew test-bed domains [11], it is much easier to design effective
the environment changes the solution can be revised with ways for the robot to kick the ball if we may assume that
more than a few hours of machine time. It is also possible fthe ball starts in a specific position relative to the robot.
machine learning to lead to better initial solutions thandia Furthermore, if the robot can grasp the ball securely enpugh
tuning, because humans are often biased toward exploringg @an move the ball by turning with the ball until the ball
small part of the space of possible solutions, whereas machieaches a field position from which the kick is likely to move
learning explores the space in a systematic way. the ball to the desired destination (such as in the oppanent’
Particular challenges arise when there is no simulatot-avajoal). Thus, as a representative task, we consider the doal o
able for the robot. Because each trial requires interactibaving a robot walk up to a ball and gain control of it. For
with the physical world in real time, it is not possible tahe purposes of this paper, we deficentrol to mean that the

I. INTRODUCTION



with the timing of the capturing motion. For the same reason,
every time the speed of the base gait changes (due to a newly-
designed gait or a different walking surface, for exampies,
approach must be re-tuned. This is a time-consuming task to
perform by hand.

The parameters that control the transition from walking to
capturing the ball are as follows:

o slowdown _dist : the ball distance (in millimeters) at
which slowing down begins;

« slowdown factor : the (multiplicative) factor, in the
range [0,1], by which the gait slows down at this point;

« capture _angle :the maximum ball angle (in degrees)
at which the capturing motion may begin (see Figure 2);

o capture _dist : the ball distance (in millimeters) at
which the capturing motion begins (if the ball is within
the specified angle).

Fig. 1. An Aibo with control of the ball.

robot holds the ball under its chin in such a way that it can
turn with the ball as shown in Figure 1. IV. " MACHINE LEARNING METHODOLOGY

As the robot platform for this research, we use the com- Given this parameterization, we are faced with a parameter
mercially available Sony Aibo ERS-7, a quadruped robot [3bptimization problem in four dimensions. Because our pedic
The ERS-7 has a head with three degrees of freedom, andaa be expressed in this way, and because our domain has the
CMOS camera in the head. It has several pressure sensorssarde efficiency constraints as that of learning fast locomo-
two infrared range sensors, one on the head and one on tiba for the Aibo, the policy gradient reinforcement leagi
chest. The robot is able to capture frames from the cameraafgorithm used by Kohl and Stone [13] is a natural choice.

a rate of 25 Hz, from which our software recognizes objects, By this method, starting from a base poli¢¥., ...,0n},
such as the orange ball, based on color segmentation and 1 new policies are chosen by selecting one {6f —
aggregation [12]. The infrared chest sensor is relativeligy) ¢;,6;,0; + €;} randomly for each dimensioiy wheree; is
but provides enough resolution to reliably detect whether a fixed increment particular to dimensiénTheset policies
not the ball is indeed captured as shown in Figure 1 (nofihe base policy and the— 1 randomly selected policies) are
that in this capture position, the ball is not within range dahen evaluated, and their scores are used to estimate thied par
the camera, which resides in the tip of the Aibo’s nose). Thiferivative in each of théV dimensions, which leads to a new
variety of sensors allows us to rely only on local sensingpase policy.

In addition, the 576 MHz 64 bit RISC processor allows all The estimation of partial derivatives works as follows. For
necessary processing to be done onboard. In this work, a&ch dimensioni, the policies are divided into three sets
use a system for vision processing, walking, and kicking thaccording to the value of parameterif its value is6; — ¢;,
was developed as part of our larger robot soccer project [11lje policy is in setS_;; if it is 6;, the policy is in setSy ;;
and if it is 6; + ¢;, the policy is in setS,. ;. Then the average
score over all the policies in each set is computed and used
to build an adjustment vectot of size N. For each, if the

The task learned in this paper is motivated by our ongoirgyerage score over the s®f; is greater than the average score
development of the UT Austin Villa four-legged robot soccesver each of the other two sets, theR = 0; otherwise, 4;
team [11]. Our team adopted the following strategy for getti becomes the difference between the average scores over set
the ball into the under-chin position described above: when S ; and setS_. ;. A is then normalized and multiplied by a
Aibo is walking to a ball with the intent of kicking it and getsscalar step siz@, so that we will adjust our policy by a fixed
“close enough,” it first slows down to allow for more precisamount each time. The above process comprises one iteration
positioning, and then it lowers its head to capture the balf the algorithm. For the parameters used in our work, see
under its chin (this is the “capturing motion”). Table I.

However, executing this motion so that the ball is not For comparison, we also implemented and tested the other
knocked away in the process is a challenge: if the headtigo algorithms with which Kohl and Stone had some success
lowered when the ball is too far away, the head may knodk learning locomotion [1]. One of these algorithms, hill
the ball away, but if it is not lowered in time, the body of thelimbing, is identical to the policy gradient algorithm eyt
robot may bump the ball away. Naturally, the perceived bdtbr the way the new base policy is chosen. Rather than
distance at which the head should be lowered depends on hging the scores from the current iteration to calculatectvhi
fast the robot is walking, so the amount that the robot slovairection we should move in policy space, in hill climbing
down when close to the ball must be tuned simultaneouglye base policy for the next iteration is simply set equal to

I11. TASK SPECIFICATION



Fig. 2. lllustration ofcapture _angle . If the Aibo believes that the center of the ball is to the tighthe thick white lines, then it will continue to turn
toward the ball rather than beginning the capturing motimenef the ball distance is believed to be less tiwapture _dist .

TABLE | reward of 0. The Aibo can determine autonomously whether
PARAMETERS FOR THE POLICY GRADIENT ALGORITHM it has captured the ball by means of the infrared range sensor

Barameter Value on its chest, which reliably registers noise over a certewvell

Policies per iterationt} 8 when the ball is being held under the chin. During training,

Increment forslowdown dist = (e1) | 20 the score for a given policy is determined by running 12

Increment forslowdown _factor  (e2) 0.5 . . . . .
Increment forcapture _angle (es) 5 trials with that policy and averaging the reinforcemeninsig
Increment forcapture _dist (e4) 20 over those trials (thus effectively producing a discretejral
Scalar step sizey] 1 reinforcement signal).

Each trial consists of the robot approaching the ball from a
random location on the standard field used in RoboCup, which
is surrounded by a short wall designed to keep the ball from

the policy that got the best score in the current iteratidme T leaving the field. If the Aibo successfully captures the bl
other algorithm, known as the downhill simplex or “amoebakicks it in whichever direction it estimates is away from the
algorithm, involves moving a simplex of points through pgli wall. (This is to ensure that we will get enough trials witte th
space [14]. The simplex undergoes various transformaiionsball in the open field, since our kicks are powerful enough tha
response to the scores received by the policies represertteziball is often stopped by the wall if kicked from less than
by its vertices. These transformations are intended to mdvalfway across the field. Trials that begin with the ball at a
the simplex toward more promising parts of the policy spaceall are also less informative, since capturing the balehsr
while preserving its volume. Unlike the policy gradient andnuch harder, and even a good policy will fail a lot more along
hill climbing algorithms, the amoeba algorithm can effeely the wall, which can lead to a smaller spread of scores among
adjust its own step size based on the information it is réegiv policies.) Then, before starting the next trial, the Aibonsi
about the fitness of the policies that make up its verticeseMaaround approximately80° in place in order to knock the ball
details about the hill climbing and amoeba algorithms can lagvay from it if it is still close. Once it has done this, it begi
found in previous work [1]. the next trial by searching for the ball and then approaching
One particular challenge for learning ball acquisition i with the parameters of the current policy (see Figure 3)

defining an appropriate reward signal. In learning locoomti  All learning is done on the Aibo itself, including all caleul
the time that each potential walk takes to traverse a fixg¢idns necessary to execute the learning algorithm. Inpions
distance generates a feedback signal that can rank theveelagaused by dead batteries are of little consequence, simece th
merits of each policy on a continuous scale. In our casglgorithm has practically no state: if we resume from the las

however, there is no straightforward way to rate a particulpase policy, we will never lose as much as an entire iteration
policy with regard to “how well” it captures the ball: it eith

does or it does not.

Therefore, we use a bl_nary relnforcement_5|gnal_: if the_tobo LVideos depicting the training process can be founditag:/fwww.cs.
captures the ball, it receives a reward of 1; if not, it reegei@d utexas.edurAustinVilla/legged/learned-acquisition/



base policy« initial policy a success rate of approximately 64% within seven iterations

while base policy is still improvinglo whic_h takes approximately three _hpurs (sge Figure 4). With
policies|0] — base policy 12 trlqls for each policy, and 8 policies per iteration, rolyd
for i € [1,t — 1] do 672 trials were needed.
policies|i] < new random policy This result demonstrates the ability of our robots to learn
end for this task. Hill climbing and the amoeba algorithm had susces
for i € [0,t — 1] do cgmparable to that of the policy gradient algorithm (see
totalscore «— 0 Figure 5).
slowdown_dist < policies]i][1] Table 1l shows the values of the best policies found
slowdown_factor «— policies|i][2] by the learning algorithms. Note that all methods learned
capture_angle — policies[i][3] not to slow down at all flowdown _factor =1). When
capture_dist « policies[i][4] slowdown _factor is 1, the parameteslowdown _dist
for j € [1, num_trials_per_policy] do has no effect on the robot’s behavior, which is presumably wh
while ball farther than slowdowlist do the different learning methods produced such a wide range of
walk to ball at maxspeed values for this parameter.
end while The fact that all methods learn not to slow down is a
while ball farther thancapture_dist and outside of demonstration of the advantage that machine learning can
capture_angle do bestow because of its systematic exploration of the space: i
walk to ball at speed ofslowdown_factor) + hand-tuning, we believed that slowing down would make the
mazspeed ball approach more reliable at the expense of speed, siece th
end while estimations of ball distance should change less rapidifsf t
lower head over ball robot is walking more slowly. But we can see here that this is
if chest IR sensor senses btien actually not the case, since our system which optimized only
totalscore «— totalscore + 1 for reliability actually found that slowing down at all is kyn
if center of field to robot's lefthen a disadvantage.
kick to left It is worth noting that for the policy gradient and amoeba
else algorithms, the results we present here correspond to the
kick to right first sets of learning parameters we tried (and for the hill
end if climbing algorithm, the results correspond to the secord se
end if we tried). Consequently, we suspect that these methodare n
turn 180° particularly sensitive to their parameter settings. In aage,
end for these experiments demonstrate the potential reductioarid-h
pscoreli] « totalscore/(num_trials_per_policy) tuning that can be achieved via machine learning methods.
end for
UPDATE base policy VI. DIscussiON ANDCONCLUSION
end while

orithm for | b the ball. In thaeaf the ool The results in Section V demonstrate that we are able to
Fig. 3. Algorithm for learning to approach the ball. In theseaf the policy ; i ; _ ;
gradient algorithm, the UPDATE routine chooses a new baseypatcording a,ChIeve significant |mproveme_nts on the ball capturmgk tas
to an estimation of the gradient of policy space. In the caseilbtlimbing, ~Via autonomous machine learning. All of the learning is done
UPDATE sets the base policy to be the highest-scoring pdtioy the last on a physical robot, with no human intervention, over the
iteration. The amoeba algorithm does not have “iteratior” 8, but each oqrse of g relatively short training time. The resultirgjring
policy policies[i] is evaluated in the same way as shown here. . . ! . .
paradigm is useful in that it saves us time, and can generate
better policies, when compared to manual tuning of an ap-
proach behavior. Indeed, we are using the described autdmat
V. RESULTS training paradigm in our competitive team development fier t
RoboCup 2004 robot soccer competition.
The fact that several different learning algorithms getgera
comparable improvements from the initial hand-tuned polic
2This ool wally hand-tuned f different ation of suggests that the main reason for our learning success is the
IS policy was actually hand-tuned for a aifferent param on O . H
the space and then converted mathematically to fit the new pteeration. setup of th_e task. The re_SU|tS themselves _are not VerY sensit
However, preliminary work with the original parameterizatiaf the space, for t0 the details of the learning approach (neither to the élyor
which the base policy was meticulously tuned, showed thanieg generated ysed nor to the parameters used for that algorithm). Thes, th

a policy which improved over the hand-tuned one by an amount acabfe . . . . . .
to the improvement we see here in the new parameter space. main contribution of this paper is the demonstration thadian

SVideos of the initial policy and the best learned policy cae b
found at: http://www.cs.utexas.edu/"AustinVilla/legged/ 4This is approximate because it does not take lost trials ddedd batteries
learned-acquisition/ into account.

Starting from a hand-tunédpolicy with an acquisition
success rate of roughly 36%, the robot reached a polidth
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Fig. 4. Progress of the policy gradient algorithm. The dotied shows the learning curve, produced by running 100-&valuations on the base policy
of each iteration. Error bars (showing the 95% confidencervat) are displayed for the two policies (initial and besarhed) which were later evaluated
with seven 100-trial runs to establish statistical sigaifice. The fact that the later evaluations yield signifigaltiver scores is most likely due to robot
deterioration over time.

TABLE II
PoOLICY VALUES LEARNED BY EACH ALGORITHM.
Policy slowdowndist | slowdownfactor | captureangle | capturedist
Initial 200 0.7 15 110
Best: policy gradient 125.4 1 17.4 152.4
Best: amoeba algorithm 208.4 1 334 161.7
Best: hill climbing 240 1 35 170
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