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Abstract. Reinforcement learning has been successfully applied to sev-
eral subtasks in the RoboCup simulated soccer domain. Keepaway is one
such task. One notable success in the keepaway domain has been the ap-
plication of SMDP Sarsa(\) with tile-coding function approximation [9].
However, this success was achieved with the help of some significant task
simplifications, including the delivery of complete, noise-free world-state
information to the agents. Here we demonstrate that this task simplifi-
cation was unnecessary and further extend the previous empirical results
on this task.

1 Introduction

RoboCup simulated soccer has been a popular test-bed for studying reinforce-
ment learning algorithms over the years. In principle, modern reinforcement
learning methods are reasonably well suited to meeting the challenges of RoboCup
simulated soccer; and RoboCup soccer is a large and difficult instance of many
of the issues which have been addressed in small, isolated cases in previous re-
inforcement learning research. Despite substantial previous work (e.g., [10,7]),
the extent to which modern reinforcement learning methods can meet these
challenges remains an open question.

This article builds upon the work of Stone & Sutton [9] who began scaling
reinforcement learning up to RoboCup simulated soccer by considering a subtask
of soccer involving fewer than the full 22 players. In particular, they consider
the task of keepaway, a subproblem of RoboCup soccer in which one team, the
keepers, tries to maintain possession of the ball within a limited region, while
the opposing team, the takers, attempts to gain possession. Parameters of the
task include the size of the region, the number of keepers, and the number of
takers. We have recently incorporated the framework for this domain into the
standard, open-source RoboCup soccer simulation software [4].

In their previous work, Stone & Sutton [9] apply episodic SMDP Sarsa()\)
with linear tile-coding function approximation (CMACs [1]) to the keepaway
task. The learners choose not from the simulator’s primitive actions (e.g. kick,
dash, and turn) but from higher level actions constructed from a set of basic
skills (implemented by the CMUnited-99 team [8]).

Keepers have the freedom to decide which action to take only when in pos-
session of the ball. A keeper in possession may either hold the ball or pass to
one of its teammates. Keepers not in possession of the ball are required to select



the Receive option in which the fastest player to the ball goes to the ball and
the remaining players try to get open for a pass.

The keepers’ set of state variables are computed based on the positions of: the
keepers K1—K, and takers T1—1,,, ordered by increasing distance from K7; and
C, the center of the playing region. Let dist(a,b) be the distance between a and
b and ang(a,b,c) be the angle between a and ¢ with vertex at b. For 3 keepers
and 2 takers, we used the following 13 state variables: dist(K1, C); dist(Ka, C);
dist(Ks, C); dist(Ty,C); dist(Te,C); dist(Ky, Ka); dist(K1, Ks); dist(Ky,T1);
dist(Kl, TQ); Min(dist(Kg, Tl), dist(KQ, TQ)); Min(dist(Kg, Tl), dist(Kg, Tg));
Min(ang(K27 Kla Tl)a ang(KQa Kla TQ)), Mln(ang(K3a Klv Tl)a ang(K37 Kla TQ))

The behavior of the takers is relatively simple. The two fastest takers to the
ball go to the ball while the remaining takers try to block open passing lanes.

Using this setup, Stone & Sutton [9] were able to show an increase in average
episode duration over time when keepers learned against hand-coded takers.
They compared their results with a Random policy that chooses among its
options with uniform probability, an Always Hold policy, and a hand-coded
policy that uses a decision tree for pass evaluation. Experiments were conducted
on several different field sizes. In each case, the keepers were able to learn policies
that outperformed all of the benchmarks. Most of their experiments matched 3
keepers against 2 takers. However, they also showed that their results extend to
the 4 vs. 3 scenario.

In the RoboCup soccer simulator, agents typically have limited and noisy
sensors: each player can see objects within a 90° view cone, and the precision of
an object’s sensed location degrades with distance. However, to simplify the task,
Stone & Sutton [9] removed these restrictions. The learners were given 360° of
noiseless vision. Here, we demonstrate that these simplifications are unnecessary:
the agents are able to learn successful policies despite having sensor noise and
limited vision. We also extend the results to larger teams and provide further
insights into the previous results based on additional controlled experiments.
One of our key observations is that a large source of the problem difficulty is the
fact that multiple agents learn simultaneously: when a single agent learns in the
presence of pre-trained teammates, it is able to do so significantly more quickly.

2 Experimental Setup and Results

This section addresses each of the following questions with focused experiments
in the keepaway domain:

1. Does the learning approach described above continue to work if the agents
are limited to noisy, narrowed vision?

2. How does a learned policy perform in comparison to a hand-coded policy

that has been manually tuned?

How robust are these policies to differing field sizes?

How dependent are the results on the state representation?

How well do the results scale to larger problems?

Is the source of the difficulty the learning task itself, or the fact that multiple

agents are learning simultaneously?
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2.1 Limited Vision

Limited vision introduces two challenges with respect to the complete vision
setup of Stone & Sutton. First, the agents must model their uncertainty in the
world state and make the appropriate decisions based on those uncertainties.
Second, the agents must occasionally take explicit information-gathering actions
to increase their confidence in the world state.

To model state uncertainty, a player stores a certainty factor along with
each state variable that decays over time. When the player receives sensory
information, it updates its world state and resets the certainty factor. If the
keeper with the ball does not have reliable information about the position of its
teammates, then we force the player to hold the ball and turn its neck until it
has enough information to make a pass.

Using this method, we attempted to reproduce the results of Stone & Sutton
for 3 vs. 2 keepaway on a 20m x 20m field but without the simplification of
unrestricted vision. In their work, keepers were able to learn policies with average
episode durations of around 15 seconds. However, learning with noisy, narrowed
vision is a more difficult problem than learning with complete knowledge of the
state. For this reason, we expected our learners to hold the ball for less time.
However, since these same difficulties impact the benchmark policies, the salient
question is whether or not learning is still able to outperform the benchmarks.

We ran a series of 6 independent
learning trials in which the keepers
ey learned while playing against the
, hand-coded takers. In each run, the
[ oo Z=>4.... Handcoded (before tuning) . .
keepers gradually improved their per-
I /N formance before leveling off after about
Random 25 hours of simulator time. The learn-
Always Hold ing curves are shown in Figure 1.
‘ ‘ ‘ ‘ ‘ ‘ We plotted all 6 trials to give a sense
0 5 10 15 20 % of the variance.

Tralning Time (hours) All of the learning runs were able
to outperform the Always Hold
and Random benchmark policies.
The learned policies also outperformed our Hand-coded policy which we de-
scribe in the next section.
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Fig. 1. Learning curves and benchmarks
for limited vision: 3 keepers vs. 2 takers.

2.2 Comparison to Hand-coded

In addition to the Always Hold and Random benchmark policies described
previously, we compared our learners to a new Hand-coded policy. In this
policy, the keeper in possession, K assigns a score to each of its teammates based
on how “open” they are. The degree to which the player is open is calculated as
a linear combination of the teammate’s distance to its nearest opponent, and the
angle between the teammate, K7, and the opponent closest to the passing lane.
The relative importance of these two features are weighted by the coefficient a.



If the most open teammate has a score above the threshold, 3, then K; will pass
to this player. Otherwise, K7 will hold the ball for one cycle.

This Hand-coded policy was designed to use only state variables and calcu-
lations that are available to the learner. We chose initial values for o and 3 based
on educated guesses. We tuned these values by experimenting with values near
our initial guesses. Altogether, we tried about 30 combinations, before settling
on our final tuned values.

We ran a few thousand episodes of our tuned Hand-coded policy and found
that it was able to keep the ball for an average of 9.6 seconds per episode. Also,
for comparison, we tested our Hand-coded policy before manual tuning. This
policy was able to hold the ball for an average of 8.2 seconds. From Figure 1
we can see that the keepers are able to learn policies that outperform our ini-
tial Hand-coded policy and exhibit performance roughly as good as (perhaps
slightly better than) the tuned version. We examined the Hand-coded policy
further to find out to what degree its performance is dependent on tuning.

2.3 Robustness to Differing Field Sizes

Stone & Sutton already demonstrated that learning is robust to changes in field
sizes [9]. Here we verify that learning is still robust to such changes even with
the addition of significant state uncertainty. We also benchmark these results
against the robustness of the Hand-coded policy to the same changes. Overall,
we expect that as the size of the play region gets smaller, the keepers will have
a harder time maintaining possession of the ball regardless of policy. Here we
compare the Hand-coded policy to learned policies on five different field sizes.
The average episode durations for both solutions are shown in Figure 2. Each
value for the learned runs was calculated as an average of six separately learned
policies.

As can be seen from the table, Kooper Policy
theﬂl:and-§oded Ef licy ((écaes be;(‘ger |Field Size| Hand—coded|Learned (£10)
on the easier problems (30m x 30m
and 25m x 25m), but the learned ;g X gg 12481 122 i (1):1))
policies do better on the more dif- 5 X 5 . ~4 — '4
ficult problems. 0 x 20 9.6 10. 0.

A possible explanation for this 15 x 15 6.1 7.4 + 0.9
result is that the easier cases of keep- 10 x 10 2.7 3.7+ 04

away have more intuitive solutions.
Hence, these problems lend them-
selves to a hand-coded approach.
However, without any impetus to
choose a simpler approach, learned
policies tend to be more asymmetric and irregular. This lack of rhythm seems
to lead to suboptimal performance on easier tasks.

In contrast, when the keepers are forced to play in a smaller area, the “intu-
itive” solution breaks down. The hand-coded keepers tend to pass too frequently,
leading to missed passes. In these more difficult tasks, the trained keepers appear

Fig. 2. Average possession times (in simu-
lator seconds) for hand-coded and learned
policies on various field sizes.



to find “safer” solutions in which the ball is held for longer periods of time. This
approach leads to fewer missed passes and better overall performance than the

hand-coded solution.

2.4 Changing the State Representation

A frequent challenge in machine learning is finding the correct state represen-
tation. In all of the experiments reported so far, we have used the same state
variables as in Stone & Sutton’s work, which were chosen without any detailed
exploration [9]. Here we explore how sensitive the learning is to the set of state

variables used.

As a starting point, notice that our Hand-coded policy uses only a small
subset of the 13 state variables mentioned previously. Because the Hand-coded
policy did quite well without using the remaining variables, we wondered if
perhaps the unused state variables were not essential for the keepaway task.

To test this theory, we performed
a series of learning runs in which
the keepers used only the five vari-
ables from the hand-coded policy.
Figure 3 shows the learning curves
for six runs. As is apparent from
the graph, the results are very sim-
ilar to those in Figure 1. Although
we found that the keepers were able
to achieve better than random per-
formance with as little as one state
variable, the five variables used in
the hand-coded policy seem to be
minimal for peak performance. No-
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Fig.3. Learning with only the 5 state
variables from the Hand-coded policy.

tice by comparing Figures 1 and 3 that the keepers are able to learn at approx-
imately the same rate whether the nonessential state variables are present or

not.
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Fig. 4. Learning with the original 13 state

variables plus an additional two.

To explore this notion further,
we tried adding additional state vari-
ables to the original 13. We ran two
separate experiments. In the first
experiment, we added 2 new angles
that appeared relevant but perhaps
redundant. ang(Ki, C, K»);
ang(K1,C, K3). In the second ex-
periment, we added 2 completely
irrelevant variables: each time step,
new values were randomly chosen
from [—90,90] with uniform proba-
bility.

From Figure 4, we can see that the learners are not greatly affected by the
addition of relevant variables. The learning curves look roughly the same as the



ones that used the original 13 state variables (Figure 1). However, the curves
corresponding to the additional random variables look somewhat different. The
curves can clearly be divided into two groups. In the first group, teams are able
to perform about as well as the ones that used the original 13 variables. In the
second group, the agents perform very poorly. It appears that agents in the
second group are confused by the irrelevant variables while the agents in the
first group are not. This distinction seems to be made in the early stages of
learning (before the 1000th episode corresponding to the first data point on the
graph). The learning curves that start off low stay low. The ones that start off
high continue to ascend.

From these results, we conclude that it is important to choose relevant vari-
ables for the state representation. However, it is unnecessary to carefully choose
the minimum set of these variables.

2.5 Scaling to Larger Problems

In addition to our experiments with 3 vs. 2 keepaway, we ran a series of trials
with larger team sizes to determine how well our techniques scale. First we
performed several learning runs with 4 keepers playing against 3 hand-coded
takers. We compared these to our three benchmark policies. The results are
shown in Figure 5. As in the 3 vs. 2 case, the players are able to learn policies
that outperform all of the benchmarks.

We also ran a series of experiments with 5 vs. 4 keepaway. The learning curves
for these runs along with our three benchmarks are shown in Figure 6. Again,
the learned policies outperform all benchmarks. As far as the authors are aware,
these experiments represent the largest scale keepaway problems that have been
successfully learned to date.

From these graphs, we see that the learning time approximately doubles every
time we move up in size. In 3 vs. 2, the performance plateaus after roughly (by
eyeballing the graphs) 15 hours of training. In 4 vs. 3, it takes about 30 hours
to learn. In 5 vs. 4, it takes about 70 hours.

w w
g Ur 212
g 10l 8
\3)_’, \q"’.’/ 1y M
é 9 ) é 10 Handcoded (tuned)
8 & [
5 8¢ W S o M
?’ ng Handcoded (tuned) % . % Random
B 7 Random B
8 f/ QL 71t
& of &
5 Always Hold 6 Always Hold
0 10 20 30 40 50 60 0 20 40 60 80 100 120
Training Time (hours) Training Time (hours)
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2.6 Difficulty of Multiagent Learning

A key outstanding question about keepaway is whether it is difficult as an indi-
vidual learning task, or if the multiagent component of the problem is the largest
source of difficulty. To see how the number of agents learning simultaneously af-
fects the overall training time, we ran a series of experiments in which a subset
of the keepers learned while the remaining teammates followed a fixed policy
learned previously. We ran each experiment three times. The learning curves for
all nine runs are shown in Figure 7.

From the graph we can see that
the learning curves for 2 learning
agents and 3 learning agents look
roughly the same. However, the runs
with only 1 player learning peak
much sooner. Apparently, having pre-
trained teammates allows an agent
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o s 10 15 20 the presence of a pre-trained team-
Training Time (hours) mate is not helpful. This result sug-
Fig. 7. Learning curves for varying num-  gests that multiagent learning is an
ber of keepers learning simultaneously. inherently more difficult problem than

single agent learning, at least for
this task. In the long run, all three configurations’ learned policies are roughly
equivalent. The number of learning agents does not seem to affect the quality of
the policy, only the rate at which the policy is learned.

3 Related Work

Several previous studies have used keepaway soccer as a machine learning testbed.
Whiteson & Stone [11] used neuroevolution to train keepers in the SoccerBots
domain [3]. The players were able to learn several conceptually different tasks
from basic skills to higher-level reasoning using a hierarchical approach they call
“concurrent layered learning.” The keepers were evaluated based on the number
of completed passes. Hsu & Gustafson [5] evolved keepers for 3 vs. 1 keepaway
in the much simpler and more abstract TeamBots simulator [2]. Keepers were
trained to minimize the number of turnovers in fixed duration games. It is dif-
ficult to compare these approaches to ours because they use different fitness
functions and different game dynamics.

More comparable work to ours applied evolutionary algorithms to train 3
keepers against 2 takers in the RoboCup soccer simulator [6]. Similar to our work,
they focused on learning keepers in possession of the ball. The keepers chose from
the same high-level behaviors as ours. Also, they used average episode duration
to evaluate keeper performance. However, because their high-level behaviors and
basic skills were implemented independently from ours, it is difficult to compare
the two learning approaches empirically. Additional related work is discussed
in [9].



4 Conclusion and Future Work

Taken together, the results reported in this paper show that SMDP Sarsa(\) with
tile-coding scales further and is more robust than has been previously shown.
Even in the face of significant sensor noise and hidden state, it achieves results
at least as good as those of a tuned hand-coded policy.

The main contribution of this paper is a deeper understanding of the dif-
ficulties of scaling up reinforcement learning to RoboCup soccer. We focused
on the keepaway task and demonstrated that players are able to improve their
performance despite having noisy, narrowed vision. We also introduced a new
hand-coded policy and compared it for robustness to our learned policies. We
demonstrated the difficulty of scaling up current methods and provided evidence
that this difficulty arises mainly out of the fact that several agents are learning
simultaneously.
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