
TheCMUnited-98Champion Small-RobotTeam

Manuela Veloso, Michael Bowling, Sorin Achim, Kwun Han, and Peter Stone

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213
fveloso,mhb,sorin,kwunh,pstoneg@cs.cmu.edu

http://www.cs.cmu.edu/~robosoccer

Abstract. In this chapter, we present the main research contributions
of our champion CMUnited-98 small robot team. The team is a multi-
agent robotic system with global perception, and distributed cognition
and action. We describe the main features of the hardware design of
the physical robots, including di�erential drive, robust mechanical struc-
ture, and a kicking device. We brie
y review the CMUnited-98 global
vision processing algorithm, which is the same as the one used by the
previous champion CMUnited-97 team. We introduce our new robot mo-
tion algorithm which reactively generates motion control to account for
the target point, the desired robot orientation, and obstacle avoidance.
Our robots exhibit successful collision-free motion in the highly dynamic
robotic soccer environment. At the strategic and decision-making level,
we present the role-based behaviors of the CMUnited-98 robotic agents.
Team collaboration is remarkably achieved through a new algorithm that
allows for team agents to anticipate possible collaboration opportunities.
Robots position themselves strategically in open positions that increase
passing opportunities. The chapter terminates with a summary of the
results of the RoboCup-98 games in which the CMUnited-98 small robot
team scored a total of 25 goals and su�ered 6 goals in the 5 games that
it played.

1 Introduction

The CMUnited-98 small-size robot team is a complete, autonomous architecture
composed of the physical robotic agents, a global vision processing camera over-
looking the playing �eld, and several clients as the minds of the small-size robot
players. Fig. 1 sketches the building blocks of the architecture.

0 This research is sponsored in part by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL) under agreement
numbers F30602-97-2-0250 and F30602-98-2-0135, and in part by the Department of
the Navy, O�ce of Naval Research under contract number N00014-95-1-0591. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing o�cial policies or endorsements, either
expressed or implied, of the Air Force, of the Department of the Navy, O�ce of Naval
Research or the United States Government.



Coaching/

Perceiving/

Transmitting

Interface

Client

Module

Client

Module

Client

Module

Client

Module

Client

Module

Raw Vision

Data

Action

Code

Robot-specific

Action code

Object

Positions

Fig. 1. The CMUnited architecture with global perception and distributed reaction.

The complete system is fully autonomous consisting of a well-de�ned and
challenging processing cycle. The global vision algorithm perceives the dynamic
environment and processes the images, giving the positions of each robot and
the ball. This information is sent to an o�-board controller and distributed to
the di�erent agent algorithms. Each agent evaluates the world state and uses
its strategic knowledge to make decisions. Actions are motion commands that
are sent by the o�-board controller through radio frequency communication.
Commands can be broadcast or sent directly to individual agents. Each robot has
an identi�cation binary code that is used on-board to detect commands intended
for that robot. Motion is not perfectly executed due to inherent mechanical
inaccuracies and unforeseen interventions from other agents. The e�ects of the
actions are therefore uncertain.

The physical robots themselves are of size 15cm�12cm�10cm. Fig. 2 shows
our robots. A di�erential drive mechanism is used in all of the robots. Two
motors with integrated gear boxes are used for the two wheels. Di�erential drive
was chosen due to its simplicity and due to the size constraints. The size of
our robots conforms to RoboCup Competition rules1. Employing the di�erential
drive mechanism means that the robot is non-holonomic, which makes the robot
control problem considerably more challenging.

Although it may be possible to �t an on-board vision system onto robots of
small size, in the interest of being able to quickly move on to strategic multia-
gent issues, the CMUnited-98 teams uses a global vision system. The fact that
perception is achieved by a video camera overlooking the complete �eld o�ers an
opportunity to get a global view of the world state. This setup may simplify the
sharing of information among multiple agents, but it also presents a challenge
for reliable and real-time processing of the movement of multiple mobile objects,
namely the ball, �ve robots on our team, and �ve robots on the opponent's team.

This chapter presents the main technical contributions of our CMUnited-
98 small robot team. It is organized as follows. Section 2 brie
y overviews the
hardware design of the robots. Section 3 describes the vision processing algo-
rithm. Section 4 presents the motion planning approach for our robots including
path planning to intercept moving targets and obstacle avoidance. Section 5 in-

1 see http://www.robocup.org/RoboCup/



Fig. 2. The CMUnited-98 robots.

troduces the individual and team behaviors of the CMUnited-98 robots. We
introduce the novel concept of anticipation which allows for the robots to e�ec-
tively receive passes from teammates. Section 6 summarizes the results of the
RoboCup-98 games and Section 7 draws conclusions.

2 Hardware

The CMUnited-98 robots are entirely new constructions built upon our experi-
ence in 1997. The new robots represent an upgrade of our own-built CMUnited-
97 robots [8]. In this section, we present some of the `features of our robot design
and refer to the di�erences with the CMUnited-97 robots when appropriate.

The robots of the CMUnited-98 team were designed according to the follow-
ing principles: simple but robust, reliable electronics, and modularized mechan-
ics. These goals were partially achieved in CMUnited-97 and some of the design
was retained. We continue to use the Motorola HC11 8-bit micro-controller run-
ning at 8 MHz and the 40 KBd Radiometrix radio module. Improvements were
made in two major areas: motors and control, and the mechanical chassis.

2.1 Motors and Control

CMUnited-98 uses two high-torque, 6V DC, geared motors, which are overpow-
ered and use a simple PWM control. It is interesting to note that this represents a
simpler design than our CMUnited-97 robots which used hardwired motion con-
trollers where the control loop was implemented in hardware as a Proportional
Integral Derivative (PID) �lter and associated motor encoders. We realized that,
although this design provided accurate navigation, it was not easily interrupt-
ible. We found that these interrupts were often needed in the highly dynamic
robotic soccer environment. Hence, in the CMUnited-98 robots, the closed-loop
motion control is achieved through software using visual feedback.

The new implementation only makes use of a \WRITE" operation to the
corresponding 8-bit register for each requested change in the speed of the mo-
tors. Additionally, a \safety mechanism" guarantees that a \STOP" command



is issued locally by on-board resources in case of a radio link malfunction (i.e.,
when the next valid command is not received within a preset time interval).

The main advantages obtained by implementing these changes are the sim-
pli�cation of the low level motion control, the simpli�cation of the electronic
circuitry design, and the reduction of the space needed by the motion control
functions in the micro-controller's 2Kb EEPROM.

2.2 Mechanical Chassis

In designing the mechanical structure of the CMUnited-98 robots, we focused
on modularity and robustness. The �nal design was a robot with a very compact
and powerful mobile base. It includes a single battery module supplying three
independent power paths (for the main-board, motors, and radio modules.) It
also includes a single board containing all the required electronic circuitry, with
multiple add-on capabilities. This was all combined in a layered design within
an aluminum and plastic Frame. In addition, each of the modules within this
design is completely interchangeable.

The mobile base module includes a kicking device driven by a DCmotor. This
motor is hardware activated by an array of four infrared sensors with adjustable
sensing range which can be enabled or disabled by the software control. The
circular motion of the kicker motor was transformed to linear motion using a
rack-pinion system. The push-pull e�ect of the kicking device was implemented
by alternating the voltage polarity at the DC motor. The push, stop and pull
stages of the kicking action were all timed, which eliminated the need for control
sensors. Other implementations for the kicking device were considered, like a
dual front/back kicker driven by 
exible strings, or a push-pull DC solenoid.
Neither of these met the size, power and precision requirements for a reliable
kicking system.

The hardware design proved to be challenging. By building upon our expe-
rience with CMUnited-97, CMUnited-98 successfully achieves a robust team of
physical robots.

3 Vision Processing

The CMUnited-98 vision module is the same as the one used in the CMUnited-97
team. It successfully implements a very reliable and fast image processing algo-
rithm. In this chapter, we focus mainly our detection and association algorithm
which we present in more detail than in our description of the CMUnited-97
team [8]. In particular, in the setting of a robot soccer game, the ability to de-
tect merely the locations of objects on the �eld is often not enough. We use a
Kalman-Bucy �lter to successfully predict the movement of the ball[8], which is
very suitable since the detection of the ball's location is noisy.

3.1 Color-based Detection

The vision requirements for robotic soccer have been examined by di�erent re-
searchers [3, 4]. Both on-board and o�-board systems have appeared in recent



years. All have found that the response necessary for soccer robots requires a
vision system with a fast processing cycle. However, due to the rich visual in-
put, researchers have found that dedicated processors or even DSPs are often
needed [1, 3]. Our current system uses a frame-grabber with frame-rate transfer
from a 3CCD camera.

The RoboCup rules specify colors for di�erent objects in the �eld and these
are used as the major cue for object detection. The RoboCup rules specify a
green color �eld with speci�c white markings. The ball is an orange golf ball. It
also speci�es a yellow or blue colored circle on the top of the robots, one color
for each team (see Fig. 2.) A single color patch on the robot is not enough to
provide orientation information. Thus, an additional pink color patch was added
to each of our robots. These colors can be di�erentiated reliably in color-space.

The set of detected patches are initially unordered. The detected color patches
on the tops of the robots are then matched by their distance. Using the con-
stant distance between the team-color (blue or yellow) and the pink orientation
patch, our detection algorithm matches patches that are this distance apart.
Two distance-matched patches are detected as a robot.

Noise is inherent in all vision systems. False detections in the current sys-
tem are often of a magnitude of 100 spurious detections per frame. The system
eliminates false detections via two di�erent methods. First, color patches of size
not consistent with the ones on our robots are discarded. This technique �l-
ters o� most \salt and pepper" noise. Second, by adding the distance matching
mechanism described above, false detections are practically eliminated.

3.2 Data Association

The detection scheme described above returns an unordered list of robots for
each frame. To be able to control the robots, the system must associate each
detected robot in the �eld with a robot identi�cation.

Each of the robots is �tted with the same color tops and no attempts are
made to di�erentiate them via color hue. Experience has shown that, in or-
der to di�erentiate 5 di�erent robots by hue, 5 signi�cantly di�erent hues are
needed. However, the rules of the RoboCup game eliminate green (�eld), white
(markings), orange (ball), blue and yellow (team and opponent) from the list of
possibilities. Furthermore, inevitable variations in lighting conditions over the
area of the �eld and noise in the sensing system are enough to make a hue-based
detection scheme impractical.

With each robot �tted with the same color, visually, all robots on our team
look identical to the visual system. With visually homogeneous objects distin-
guishing between them in any given frame is not possible. Data association ad-
dresses this problem by retaining robot identi�cation between subsequent frames.
We devised an algorithm to retain association based on the spatial locations of
the robots.

We assume that the starting positions of all the robots are known. This can
be done trivially by specifying the location of the robots at start time. How-
ever, problems arise when subsequent frames are processed, the locations of the



robots have changed due to robot movements. Association can be achieved by
making two complementary assumptions: 1) Robot displacements over consecu-
tive frames are local; 2) The vision system can detect objects at constant frame
rate. By measuring the maximumrobot velocity, we can know that in subsequent
frames, the robot is not able to move out of a 5cm radius circular region. This
provides the basis of our association technique.

3.3 Greedy Association

With these assumptions in mind, a minimum distance scheme can be used to
retain association between consecutive frames. For each frame, association is
maintained by searching for objects with a minimum displacement. Current
robot positions are matched with the closest positions from the previous frame.

The following is the pseudo-code of a greedy association procedure:

let prev[1::n] be the array of robot locations from the previous frame
let cur[1::m] be the array of robot locations from the current frame
let ma be triangular array of size n� 1 s.t.
ma[i][j] = dist(prev[i]; cur[j])
for i := 1 to m do

�nd smallest element ma[i][j]
save (i; j) as a matched pair
set all elements in row i and column j to be 1

end
if m < n then

forall prev[i] unmatched, save (prev[i]; prev[i])
return the set of saved pairs as the set of matchings.

This algorithm searches through all possible matches, from the smallest dis-
tance pair upwards. Whenever a matched pair is found, it greedily accepts it as
a matching pair. Due to noise, it is possible for the detection system to leave
a robot or two undetected (i.e.. in the pseudo-code m < n). In this case, some
locations will be left unmatched. The unmatched location will then be carried
over to the current frame, and the robots corresponding to this location will be
assumed to be stationary for this one frame.

This algorithmwas implemented and was used in RoboCup-97 and RoboCup-
98. Although the implementation was very robust, we present an improvement
that allows for a globally optimal association.

3.4 Globally Optimal Association

The greedy association algorithm, as described above, fails in some cases. An ex-
ample is the one illustrated in Fig. 3. In the �gure, a greedy algorithm incorrectly
matches the closest square and circular objects.

An improved algorithm was devised to handle the situation depicted above.
The new algorithm generates all possible sets of matching and calculates the
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Fig. 3. A case in which greedy association fails but global optimal association performs
well. The arrow indicates the actual object displacement over subsequent frames f1 and
f2. The dotted lines indicate the wrong matches returned by greedy association.

�tness of each of the complete sets according to the following least square criteria:

NX
i=1

(dist(previ; curi))
2;

where (previ; curi) are the ith matching pair. And the function dist(x; y) is
the Euclidean distance. The set of matches that minimizes the above criteria is
selected.

While these algorithms do not theoretically guarantee perfect associations, in
particular with noisy perception and cluttered environments, the implementation
has proven to be very robust. Our vision processing approach worked perfectly
during the RoboCup-98 games. We were able to detect and track 11 objects (5
teammates, 5 opponents and a ball) at 30 frames/s. Also the prediction provided
by the Kalman-Bucy �lter is an integral factor in our robots' strategic decisions.

4 Motion Control

The goal of our low level motion control is to be as fast as possible while re-
maining accurate and reliable. This is challenging due to the lack of feedback
from the motors, forcing all control to be done using only visual feedback. Our
motion control algorithm is robust. It addresses stationary and moving targets
with integrated obstacle avoidance. The algorithm makes e�ective use of the
prediction of the ball's trajectory provided by the Kalman-Bucy �lter.

We achieve this motion control functionality by a reactive control mechanism
that directs a di�erential drive robot to a target con�guration. Though based
on the CMUnited-97's motion control [8], CMUnited-98 includes a number of
major improvements. The target con�guration for the motion planner has been
extended. The target con�guration includes: (i) the Cartesian position; and (ii)
the direction that the robot is required to be facing when arriving at the target
position. Obstacle avoidance is integrated into this controller. Also, the target
con�guration can be given as a function of time to allow for the controller to
reason about intercepting the trajectory of a moving target.

4.1 Di�erential Drive Control for Position and Direction

CMUnited- 98's basic control rules were improved from those used in CMUnited-
97. The rules are a set of reactive equations for deriving the left and right wheel



velocities, vl and vr , in order to reach a target position, (x�; y�):

� = � � � (1)

(t; r) = (cos2� � sgn(cos�); sin2� � sgn(sin�))

vl = v(t � r)

vr = v(t + r);

where � is the direction of the target point (x�; y�), � is the robot's orientation,
and v is the desired speed (see Fig. 4(a))2.

We extend these equations for target con�gurations of the form (x�; y�; ��),
where the goal is for the robot to reach the speci�ed target point (x�; y�) while
facing the direction ��. This is achieved with the following adjustment:

�0 = � +min
�
�; tan�1

� c
d

��
;

where �0 is the new target direction, � is the di�erence between our angle to the
target point and ��, d is the distance to the target point, and c is a clearance
parameter (see Fig. 4(a).) This will keep the robot a distance c from the target
point while it is circling to line up with the target direction, ��. This new target
direction, �0, is now substituted into equation 1 to derive wheel velocities.

In addition to our motion controller computing the desired wheel veloci-
ties, it also returns an estimate of the time to reach the target con�guration,
T̂ (x�; y�; ��). This estimate is a crucial component in our robot's strategy. It is
used both in high-level decision making, and for low-level ball interception, which
is described later in this section. For CMUnited-98, T̂ (x�; y�; ��) is computed
using a hand-tuned linear function of d, �, and �.

4.2 Obstacle Avoidance

Obstacle avoidance was also integrated into the motion control. This is done by
adjusting the target direction of the robot based on any immediate obstacles in
its path. This adjustment can be seen in Fig. 4(b).

θ’

φ

θ
(x*,y*)

α d

φ∗

c

(a) (b)

Fig. 4. (a) The adjustment of � to �0 to reach a target con�guration of the form
(x�; y�; ��); (b) The adjustment to avoid immediate obstacles.

2 All angles are measured with respect to a �xed coordinate system.



If a target direction passes too close to an obstacle, the direction is adjusted
to run tangent to the a preset allowed clearance for obstacles. Since the motion
control mechanism is running continuously, the obstacle analysis is constantly
replanning obstacle-free paths. This continuous replanning allows for the robot
to handle the highly dynamic environment and immediately take advantage of
short lived opportunities.

4.3 Moving Targets

One of the real challenges in robotic soccer is to be able to control the robots to
intercept a moving ball. This capability is essential for a high-level ball passing
behavior. CMUnited-98's robots successfully intercept a moving ball and several
of their goals in RoboCup-98 were scored using this capability.

This interception capability is achieved as an extension of the control al-
gorithm to aim at a stationary target. Fig. 5(a) illustrates the control path to
reach a stationary target with a speci�c direction, using the control mechanism
described above. Our extension allows for the target con�guration to be given
as a function of time, where t = 0 corresponds to the present,

f(t) = (x�; y�; ��):

At some point in the future, t0, we can compute the target con�guration, f(t0).
We can also use our control rules for a stationary point to �nd the wheel velocities
and estimated time to reach this hypothetical target as if it were stationary. The
time estimate to reach the target then informs us whether it is possible to reach
it within the allotted time. Our goal is to �nd the nearest point in the future
where the target can be reached. Formally, we want to �nd,

t� = minft > 0 : T̂ (f(t)) � tg:

After �nding t�, we can use our stationary control rules to reach f(t�). In addition
we scale the robot speed so to cross the target point at exactly t�.

Unfortunately, t�, cannot be easily computed within a reasonable time-frame.
We approximate this value, t�, by discretizing time with a small time-step. We
then �nd the smallest of these discretized time points that satis�es our estimate
constraint. An example of this is shown in Fig. 5(b), where the goal is to hit the
moving ball.

(a) (b)

Fig. 5. (a) Control for stationary target. (b) Control for moving target.

The target con�guration as a function of time is computed using the ball's
predicted trajectory. Our control algorithm for stationary points is then used to
�nd a path and time estimate for each discretized point along this trajectory,
and the appropriate target point is selected.



5 Strategy

The main focus of our research is on developing algorithms for collaboration
between agents in a team. An agent, as a member of the team, needs to be
capable of individual autonomous decisions while, at the same time, its decisions
must contribute towards the team goals.

CMUnited-97 introduced a 
exible team architecture in which agents are
organized in formations and units. Each agent plays a role in a unit and in a for-
mation [5, 8]. CMUnited-98 builds upon this team architecture by de�ning a set
of roles for the agents. It also introduces improvements within this architecture
to help address the highly dynamic environment.

CMUnited-98 uses the following roles: goalkeeper, defender, and attacker.
The formation used throughout RoboCup-98 involved a single goalkeeper and
defender, and three attackers.

5.1 Goalkeeper

The ideal goalie behavior is to reach the expected entry point of the ball in the
goal before the ball reaches it. Assuming that the prediction of the ball trajectory
is correct and the robot has a uniform movement, we can state the ideal goalie
behavior: given the predicted vg and vb as the velocities of the goalie and of the
ball respectively, and dg and db as the distances from the goalie and the ball to

the predicted entry point, then, we want dg
vg

= db
vb
� �, where � is a small positive

value to account for the goalie reaching the entry point slightly before the ball.
Unfortunately, the ball easily changes velocity and the movement of the robot

is not uniform and is uncertain. Therefore we have followed a switching behavior
for the goalie based on a threshold of the ball's estimated trajectory.

If the ball's estimated speed is higher than a preset threshold, the goalie
moves directly to the ball's predicted entry goal point. Otherwise, the goalie
selects the position that minimizes the largest portion of unobstructed goal area.
This is done by �nding the location that bisects the angles of the ball and the
goal posts as is illustrated in Fig. 6.
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Fig. 6. The goalkeeper positions itself to minimize the unobstructed goal area.

The use of the predicted ball's velocity for the goalie's behavior was shown to
be very e�ective in the RoboCup-98 games. It was particularly appropriate for
defending a penalty shot, due to the accuracy of the predicted ball's trajectory
when only one robot is pushing the ball.



5.2 Defender

The CMUnited-97's team did not have a well-speci�ed defender's role, but our
experience at RoboCup-97 made us understand that the purpose of a defending
behavior is two-fold:

1. to stop the opponents from scoring in our goal; and
2. to not endanger our own goal.

The �rst goal is clearly a defender's role. The second goal comes as the result
of the uncertain ball handling by the robots. The robots can easily push (or
touch) the ball unexpectedly in the wrong direction when performing a di�cult
maneuver.

To achieve the two goals, we implemented three behaviors for the defender.
Blocking, illustrated in Fig. 7(a), is similar to the goalkeeper's behavior except
that the defender positions itself further away from the goal line. Clearing, il-
lustrated in Fig. 7(b), pushes the ball out of the defending area. It does this by
�nding the largest angular direction free of obstacles (opponents and teammates)
that the robot can push the ball towards. Annoying, illustrated in Fig. 7(c), is
somewhat similar to the goalkeeping behavior except that the robot tries to po-
sition itself between the ball and the opponent nearest to it. This is an e�ort to
keep the opponent from reaching the ball.
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(a) Blocking (b) Clearing (c) Annoying

Fig. 7. The defender's behaviors. The dark and light robots represent the defender and
the opponents respectively.

Selecting when each of these behaviors is used is very important to the ef-
fectiveness of the defender. For example, clearing the ball when it is close to
our own goal or when it can bounce back o� another robot, can lead to scoring
in our own goal. We used the decision tree in Fig. 8 to select which action to
perform based on the current state.

The two attributes in the tree, namely Ball Up�eld and Safe to Clear, are
binary. Ball Up�eld tests whether the ball is up�eld (towards the opponent's
goal) of the defender. Safe to Clear tests whether the open area is larger than a
preset angle threshold. If Ball Up�eld is false then the ball is closer to the goal
than the defender and the robot annoys the attacking robot. The CMUnited-98's



annoying behavior needs to select one particular opponent robot to annoy. For
example, when two opponent robots attack simultaneously, the current annoying
behavior is able to annoy only one of them.We are planning on further improving
this behavior for RoboCup-99.

Safe to Clear

Clear

No Yes

YesNo

Annoy

Block

Ball Upfield

Fig. 8. The decision tree heuristic used by the defender to select its behavior.

If Ball Up�eld is true, the defender clears or blocks, depending on the value
of Safe to Clear. Clearing was shown to be very useful at RoboCup-98, with even
a couple of our goals scored directly by a clearing action of the defender.

5.3 Attackers - Active Teammate and Anticipation

Attacking involves one of the best opportunities for collaboration, and much of
the innovation of CMUnited-98 has been developing techniques for �nding and
exploiting these opportunities.

In many multi-agent systems, one or a few agents are assigned, or assign
themselves, the speci�c task to be solved at a particular moment. We view
these agents as the active agents. Other team members are passive waiting to
be needed to achieve another task or assist the active agent(s). This simplistic
distinction between active and passive agents to capture teamwork was realized
in CMUnited-97. The agent that goes to the ball is viewed as the active agent,
while the other teammates are passive.

CMUnited-98 signi�cantly extends this simplistic view in two ways: (i) we
use a decision theoretic algorithm to select the active agent; and (ii) we use a
technique for passive agents to anticipate future collaboration. Passive agents are
therefore not actually \passive;" instead, they actively anticipate opportunities
for collaboration. In CMUnited-98 this collaboration is built on robust individual
behaviors.

IndividualBehaviors. We �rst developed individual behaviors for passing and
shooting. Passing and shooting in CMUnited-98 is handled e�ectively by the
motion controller. The target con�guration is speci�ed to be the ball (using
its estimated trajectory) and the target direction is either towards the goal or
another teammate. This gives us robust and accurate individual behaviors that
can handle obstacles as well as intercepting a moving ball.

Decision Theoretic Action Selection. Given the individual behaviors, we
must select an active agent and appropriate behavior. This is done by a decision
theoretic analysis using a single step look-ahead. With n agents this amounts



to n2 choices of actions involving shooting or a pass to another agent followed
by that agent shooting. An estimated probability of success for each pass and
shot is computed along with the time estimate to complete the action, which is
provided by the motion controller. A value for each action is computed,

Value =
PrpassPrshoot

time
:

The action with the largest value is selected, which determines both the ac-
tive agent and its behavior. Table 1 illustrates an example of the values for the
selection considering two attackers, 1 and 2.

Probability of Success
Attacker Action Pass Shoot Time(s) Value

1 Shoot { 60% 2.0 0.30
1� Pass to 2 60% 90% 1.0 0.54
2 Shoot { 80% 1.5 0.53
2 Pass to 1 50% 40% 0.8 0.25

Table 1. Action choices and computed values are based on the probability of success
and estimate of time. The largest-valued action (marked with an �) is selected.

It is important to note that this action selection is occurring on each iteration
of control, i.e., approximately 30 times per second. The probabilities of success,
estimates of time, and values of actions, are being continuously recomputed. This
allows for quick changes of actions if shooting opportunities become available or
collaboration with another agent appears more useful.

Dynamic Positioning (SPAR). Although there is a clear action to be taken
by the active agent, it is unclear what the passive agents should be doing. Al-
though, in a team multiagent system such as robotic soccer, success and goal
achievement often depends upon collaboration; so, we introduce in CMUnited-
98, the concept that team agents should not actually be \passive."

CMUnited-97's team architecture allowed for the passive agents to 
exibly
vary their positions within their role only as a function of the position of the
ball. In so doing, their goal was to anticipate where they would be most likely to
�nd the ball in the near future. This is a �rst-level of single-agent anticipation
towards a better individual goal achievement [7].

However, for CMUnited-98, we introduce a team-based notion of anticipa-
tion, which goes beyond individual single-agent anticipation. The passive team
members position themselves strategically so as to optimize the chances that
their teammates can successfully collaborate with them, in particular pass to
them. By considering the positions of other agents and the attacking goal, in
addition to that of the ball, they are able to position themselves more usefully:
they anticipate their future contributions to the team.

This strategic position takes into account the position of the other robots
(teammates and opponents), the ball, and the opponent's goal. The position is
found as the solution to a multiple-objective function with repulsion and attrac-
tion points. Let's introduce the following variables:



{ n - the number of agents on each team;
{ Oi - the current position of each opponent, i = 1; : : : ; n;
{ Ti - the current position of each teammate, i = 1; : : : ; (n� 1);
{ B - the current position of the active teammate and ball;
{ G - the position of the opponent's goal;
{ P - the desired position for the passive agent in anticipation of a pass.

Given these de�ned variables, we can then formalize our algorithm for strate-
gic position, which we call SPAR for Strategic Positioning with Attraction and

Repulsion. This extends similar approaches using potential �elds [2], to our
highly dynamic, multi-agent domain. The probability of collaboration is directly
related to how \open" a position is to allow for a successful pass. SPAR maxi-
mizes the repulsion from other robots and minimizes attraction to the ball and
to the goal, namely:

{ Repulsion from opponents. Maximize the distance to each opponent:
8i;maxdist(P;Oi):

{ Repulsion from teammates. Maximize the distance to other passive team-
mates: 8i;maxdist(P; Ti).

{ Attraction to the ball: mindist(P;B).
{ Attraction to the opponent's goal: mindist(P;G).

This is a multiple-objective function. To solve this optimization problem, we
restate this function into a single-objective function. This approach has also been
applied to the CMUnited-98 simulator team [6].

As each term in the multiple-objective function may have a di�erent rele-
vance (e.g., staying close to the goal may be more important than staying away
from opponents), we want to consider di�erent functions of each term. In our
CMUnited-98 team, we weight the terms di�erently, namely wOi

, wTi, wB, and
wG, for the weights for opponents, teammates, the ball, and the goal, respec-
tively. For CMUnited-98, these weights were hand tuned to create a proper
balance. This gives us a weighted single-objective function:

max

 
nX
i=1

wOi
dist(P;Oi) +

nX
i=1

wTidist(P; Ti) �wBdist(P;B) � wGdist(P;G)

!
:

This optimization problem is then solved under a set of constraints:

{ Do not block a possible direct shot from active teammate.
{ Do not stand behind other robots, because these are di�cult positions to
receive passes from the active teammate.

The solution to this optimization problem under constraints gives us a target
location for the \passive" agent. Fig. 9(a) and (b) illustrate these two sets of
constraints and Fig. 9(c) shows the combination of these constraints and the
resulting position of the anticipating passive teammate.

This positioning was very e�ective for CMUnited-98. The attacking robots
very e�ectively and dynamically adapted to the positioning of the other robots.
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(a) Don't block goal shot. (b) Avoid di�cult (c) Anticipate optimal
collaboration. position for collaboration.

Fig. 9. Constraints for the dynamic anticipation algorithm are represented as shaded
regions; (a) and (b) show three opponents and the current position of the ball; (c)
illustrates the position of the passive agent - dark square - as returned by SPAR.

The SPAR anticipation algorithm created a number of opportunities for passes
and rebounds that often led to goals and other scoring chances.

In general, we believe that our approach represents a major step in team
multiagent systems in terms of incorporating anticipation as a key aspect of
teamwork.

6 Results

CMUnited-98 successfully defended our title of the Small Robot Champion at
RoboCup-98 in Paris. The competition involved 11 teams from 7 di�erent coun-
tries. It consisted of a preliminary round of two games, followed by the 8 ad-
vancing teams playing a 3-round playo�. CMUnited-98 won four of �ve games,
sweeping the playo� competition, scoring a total of 25 goals scored and only 6
su�ered. The individual results of these games are in Table 2.

Phase Opponent A�liation Score (CMU - Opp.)
round-robin iXS iXs Inc., Japan 16 { 2

round-robin 5DPO� University of Porto, Portugal 0 { 3
quarter-�nal Paris-8� University of Paris-8, France 3 { 0
semi-�nal Cambridge University of Cambridge, UK 3 { 0

�nal Roboroos University of Queensland, Australia 3 { 1

Table 2. The scores of CMUnited-98's games at RoboCup-98. The games marked with
an � were forfeited at half time.

There were a number of technical problems during the preliminary rounds,
including outside interference with our radio communication. This problem was
the worst during our game against 5DPO, in which our robots were often re-
sponding to outside commands just spinning in circles. This led to our forfeit at
half time and a clear loss against 5DPO, a very good team which ended in third
place at RoboCup-98. Fortunately, the communication problems were isolated
and dealt with prior to the playo� rounds.



The three playo� games were very competitive and showcased the strengths
of our team. Paris-8 had a strong defense with a lot of tra�c in front of the goal.
Our team's obstacle avoidance still managed to �nd paths and to create scoring
chances around their defenders. The �nal two games were very close against very
good opponents. Our interception was tested against Cambridge, and included
blocking a powerful shot by their goalie, which was de
ected back into their
goal. The �nal game against Roboroos demonstrated the dynamic positioning,
especially during the �nal goal, which involved a pass to a strategically positioned
teammate.

7 Conclusion

The success of CMUnited-98 at RoboCup-98 was due to several technical in-
novations, including robust hardware design, e�ective vision processing, reliable
time-prediction based robot motion with obstacle avoidance, and a dynamic role-
based team approach. The CMUnited-98 team demonstrated in many occasions
its collaboration capabilities which resulted from the robots' behaviors. Most re-
markably, CMUnited-98 introduces the concept of anticipation, in which passive
robots (not going to the ball) strategically position themselves using attraction
and repulsion (SPAR) to maximize the chances of a successful pass.

The CMUnited-98 team represents an integrated e�ort to combine solid re-
search approaches to hardware design, vision processing, and individual and
team robot behaviors.
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