
Cooperating with Unknown Teammates in Robot Soccer

Samuel Barrett and Peter Stone
Dept. of Computer Science

The Univ. of Texas at Austin
Austin, TX 78712 USA

{sbarrett,pstone}@cs.utexas.edu

Abstract
Many scenarios require that robots work together as a team
in order to effectively accomplish their tasks. However, pre-
coordinating these teams may not always be possible given
the growing number of companies and research labs creating
these robots. Therefore, it is desirable for robots to be able to
reason about ad hoc teamwork and adapt to new teammates
on the fly. This paper adopts an approach of learning policies
to cooperate with past teammates and reusing these policies to
quickly adapt to the new teammates. This approach is applied
to the complex domain of robot soccer in the form of half
field offense in the RoboCup simulated 2D league. This paper
represents a preliminary investigation into this domain and
presents a promising approach for tackling this problem.

1 Introduction
As the presence of robots grows, so does their need to co-
operate with one another. Usually, multiagent research fo-
cuses on the case where all of the robots have been given
shared coordination protocols before they encounter each
other (Grosz and Kraus 1996b; Tambe 1997; Horling et al.
1999). However, given the growing number of research labo-
ratories and companies creating new robots, not all of these
robots may share the same coordination protocols. There-
fore, it is desirable for these robots to be capable of learn-
ing and adapting to new teammates. This area of research is
called ad hoc teamwork and focuses on the scenario in which
the developers only design a single agent or small subset of
agents that need to adapt to a variety of teammates (Stone et
al. 2010).

Previous research into ad hoc teamwork has established a
number of theoretical and empirical methods for handling
unknown teammates, but these analyses largely focus on
simple scenarios that may not be representative of the real
problems that robots may encounter in ad hoc teams. This
paper moves towards these complex problems by investigat-
ing ad hoc teamwork in the RoboCup 2D simulation domain,
a complex, multiagent domain in which teams of agents co-
ordinate their actions in order to compete against other in-
telligent teams. This domain requires effective cooperation
between the agents while acting in a world with continu-
ous states and continuous actions, all while facing complex

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

opponents. The main contribution of this paper is the intro-
duction of an algorithm for selecting effective actions for co-
operating with a variety of teammates in this domain. This
paper also presents a preliminary empirical evaluation of this
approach. Overall, this paper serves as a preliminary explo-
ration of ad hoc teamwork in a complex domain and dis-
cusses a promising approach for creating intelligent ad hoc
team agents for this problem.

To quickly adapt to new teammates, it is imperative to
use knowledge learned about previous teammates. This pa-
per adopts the method of learning a policy of how to cooper-
ate with previous teammates and then reuses this knowledge
to cooperate with new teammates. Learning these policies
is treated as a reinforcement learning problem, where the
inputs are features derived from the world state and the ac-
tions are soccer moves such as passing or dribbling. Then,
the agent can select from these policies on the fly to adapt to
various teammates.

The remainder of this paper is organized as follows. Sec-
tion 2 situates this research in the literature, and then Sec-
tion 3 describes the problem in more depth. Section 4 de-
scribes the methods used to tackle this problem, and Sec-
tion 5 presents preliminary results. Finally, Section 6 con-
cludes.

2 Related Work
Multiagent teamwork is a well studied area of research. Pre-
vious research into multiagent teams has largely focused on
creating shared protocols for coordination and communica-
tion which will enable the team to cooperate effectively. For
example, the STEAM (Tambe 1997) framework has agents
build a partial hierarchy of joint actions. In this framework,
agents monitor the progress of their plans and adapt their
plans as conditions change while selectively using commu-
nication in order to stay coordinated. Alternatively, the Gen-
eralized Partial Global Planning (GPGP) (Decker and Lesser
1995) framework considers a library of coordination mech-
anisms from which to choose. Decker and Lesser argue that
different coordination mechanisms are better suited to cer-
tain tasks and that a library of coordination mechanisms is
likely to perform better than a single monolithic mechanism.
In SharedPlans (Grosz and Kraus 1996a), agents communi-
cate their intents and beliefs in order to reason about coor-
dinating joint actions, while revising these intents as condi-

To appear in AAAI Workshop on Multiagent Interaction without Prior Coordination (MIPC),
Quebec City, Canada, July 2014.



tions change.
While pre-coordinated multiagent teams are well studied,

there has been less research into teams in which this pre-
coordination is not available. This work builds on the ideas
presented by Barrett et al. (2013), specifically learning mod-
els about past teammates and using these models to quickly
adapt to new teammates. However, that work focused on
a simpler domain in the form of a grid world, while this
work investigates a complex, simulated robotics domain.
One early exploration of ad hoc teamwork is that of Braf-
man and Tennenholtz (1996) in which a more experienced
agent must teach its novice teammate in order to accomplish
a repeated joint task. Another line of research, specifically
in the RoboCup domain, was performed by Bowling and
McCracken (2005). In their scenario, an agent has a differ-
ent playbook from that of its teammates and must learn to
adapt. Their agent evaluates each play over a large number
of games and predicts the roles that its teammates will adopt.

Other research into ad hoc teams includes Jones et
al.’s (2006) work on pickup teams cooperating in a domain
involving treasure hunts. Work into deciding which team-
mates should be selected to create the best ad hoc team was
performed by Liemhetcharat and Veloso (2012). Additional
work includes using stage games and biased adaptive play to
cooperate with new teammates (Wu, Zilberstein, and Chen
2011). However, the majority of these works focus on sim-
ple domains and provide the agent with a great amount of
expert knowledge.

A very closely related line of research is that of op-
ponent modeling, in which agents reason about opponents
rather than teammates. This area of research largely fo-
cuses on bounding the worst case scenario and often re-
stricts its focus onto repeated matrix games. One interest-
ing approach is the AWESOME algorithm (Conitzer and
Sandholm 2007) which achieves convergence and rational-
ity in repeated games. Valtazanos and Ramamoorthy explore
modeling adversaries in the RoboCup domain in (2013).
Another approach is to explicitly model and reason about
other agents’ beliefs such as the work on I-POMDPs (Gmy-
trasiewicz and Doshi 2005), I-DIDs (Doshi and Zeng 2009),
and NIDs (Gal and Pfeffer 2008). However, modeling other
agents’ beliefs greatly expands the planning space, and these
approaches do not currently scale to larger problems.

3 Problem Description
In this paper, we consider the scenario in which an ad hoc
agent must cooperate with a team of agents that it has never
seen before. If the agent is given coordination or communi-
cation protocols beforehand, it can easily cooperate with its
teammates. However, in scenarios where this prior shared
knowledge is not available, the agent should still be able to
cooperate with a variety of its teammates. Specifically, an
agent should be able to leverage its knowledge about pre-
vious teammates in order to help it when it encounters new
teammates.

3.1 Ad Hoc Teamwork
Evaluating an ad hoc team agent is difficult because the eval-
uation relies on how well the agents can cooperate with var-

ious teammates; we only create a single agent rather than
an entire team. Therefore, to estimate the performance of
agents in this setting, we adopt the evaluation framework
proposed by Stone et al. (2010). In this work, Stone et al. for-
mulate the performance of an ad hoc team agent as explicitly
depending on the teammates and domains that it may en-
counter. Therefore, we describe the domain and teammates
that the ad hoc team agents will encounter in the following
sections.

3.2 RoboCup 2D Simulation Domain
The 2D Simulation League is one of the oldest leagues in
RoboCup and is therefore one of the best studied, both in
competition and research. In this domain, teams of 11 au-
tonomous agents play soccer on a simulated 2D field for two
5 minute halves. The game lasts for 6,000 simulation steps,
each lasting 100 ms. At each of these steps, these agents re-
ceive noisy sensory information such as their location, the
location of the ball, and the locations of nearby agents. Af-
ter processing this information, agents select abstract actions
that describe how they move in the world, such as dashing,
kicking, and turning. This domain is used as it provides a
testbed for teamwork in a complex domain without requir-
ing focus on areas such as computer vision and legged loco-
motion.

3.3 Half-Field Offense
Rather than use full 10 minute 11 on 11 game, this work in-
stead uses the quicker task of half field offense introduced
by Shivaram et al. (2007). In Half Field Offense (HFO), a
set of offensive agents attempt to score on a set of defensive
agents, including a goalie, without letting the defense cap-
ture the ball. A view of this game is shown in Figure 1. This
task is useful as it allows for much faster evaluation of team
performance than running full games as well as providing a
simpler domain in which to focus on ways to improve ball
control. In this work, we focus on the setting in which two
offensive agents attempt to score on a defender and a goalie.

If the ball leaves the offensive half of the field or the de-
fense captures the ball, the offensive team loses. If the offen-
sive team scores a goal, they win. In addition, if no goal is
scored within 500 simulation steps (50 seconds), the defense
wins.

At the beginning of each episode, the ball is moved to
a random location within the 25% of the offensive half
closest to the midline. Let length be the length of the soc-
cer pitch. Offensive players start on randomly selected ver-
tices forming a square around the ball with edge length
0.2 · length with an added offset uniformly randomly se-
lected in [0, 0.1 · length]. The goalie begins in the center of
the goal, and the remaining defensive players start randomly
in the back half of their defensive half.

In order to run some existing teams used in the RoboCup
competition, it is necessary to field the entire 11 player team
for the agents to behave correctly. Therefore, it is neces-
sary to create the entire team and then constrain the addi-
tional players to stay away from play, only using the agents
needed for half field offense. This approach may affect the
players used in the HFO, but empirical tests have shown



Figure 1: A screenshot of half field offense in the 2D soccer
simulation league. The green agent is under our control, and
the yellow player is its externally created teammate. These
agents are trying to score against the two red defenders.

that the teams still perform well and that our ad hoc team
agent can still adapt to these teams. We choose a fixed set
of player numbers for the teammates, based on which player
numbers tended to play offensive positions in observed play.
The defensive players use the behavior created by Helios for
the 2013 RoboCup competition, and the player numbers are
similarly selected.

3.4 Teammates
In ad hoc teamwork research, it is important to use
externally-created teammates to evaluate the various ad hoc
team agents. Externally-created teammates are created by
developers other than the authors and represent real agents
that are created for the domain when developers do not plan
for ad hoc teamwork scenarios. They are useful because their
development is not biased to make them more likely to co-
operate with ad hoc team agents. As part of the 2D simula-
tion league competition, teams are required to release binary
versions of their agents following the competition. Specif-
ically, we use the binary releases from the 2013 competi-
tion. These agents provide an excellent source of externally-
created teammates with which to test the possible ad hoc
team agents. Specifically, we use the Helios and Yushan
agents in this work, as well as the Base agent from the Helios
code release.

4 Methods
Intelligent behaviors for cooperating with teammates can
be difficult to design, even if the teammates’ behaviors are
known. In the 2D simulation league, there is the added dif-
ficulty of the domain being noisy and requiring many low
level actions to accomplish any given task. To address this
challenge, we propose that the agent employ a probabilis-
tic planner that uses a stochastic model of the domain and
learns models of its teammates.

4.1 MDP Formulation
Before specifying how to approach this ad hoc teamwork
problem, it is helpful to describe how to model the problem.
Specifically, we model the problem as a Markov Decision
Process (MDP), which is a standard formalism in reinforce-
ment learning (Sutton and Barto 1998) for describing an
agent interacting with its environment. An MDP is 4-tuple
(S,A, P,R), where S is a set of states, A is a set of actions,
P (s′|s, a) is the probability of transitioning from state s to
s′ when after taking action a, and R(s, a) is a scalar reward
given to the agent for taking action a in state s. In this frame-
work, a policy π is a mapping from states to actions, which
defines an agent’s behavior for every state. The agent’s goal
is find the policy that maximizes its long term expected re-
wards. For every state-action pair, Q∗(s, a) represents the
maximum long term reward that can be obtained from (s, a)
and is defined by solving the Bellman equation

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)max
a′

Q∗(s′, a′)

where 0 < γ < 1 is the discount factor representing how
much more immediate rewards are worth compared to de-
layed rewards. The optimal policy π∗ can then be derived
by choosing the action a that maximizes Q∗(s, a) for every
s ∈ S. We now describe how to model the HFO domain as
an MDP.

State A state s ∈ S describes the current positions, orien-
tations, and velocities of the agents as well as the position
and velocity of the ball. Currently, the noiseless versions of
these values are used, but the full noisy estimations provided
by the simulator will be used in future work.

Actions In the 2D simulation league, agents act by select-
ing whether to dash, turn, or kick and specify values like the
power and angle to kick at. Combining these actions to ac-
complish the desired results is a difficult problem. Therefore,
this work builds on the code release by Helios (Akiyama
2010). This code release provides for a number of high level
actions, such as passing, shooting, or moving to a specified
point.

We use a set of 5 high level actions when the agent has
the ball:

1. Shoot – shoot the ball at the goal, avoiding any opponents.
2. Short dribble – dribble the ball a short distance, maintain-

ing control of the ball.
3. Long dribble – dribble the ball a longer distance, which

will require chasing the ball down.
4. Cross – perform a crossing pass near the goal.
5. Pass – perform a direct, leading, or through pass to the

teammate.
Each action considers a number of possible movements of
the ball and evaluates their effectiveness given the locations
of the agent’s opponents and teammates. Each action there-
fore represents a number of possible actions that are re-
duced to discrete actions using the Helios evaluation func-
tion. While using these high level actions restricts the pos-
sibilities that the agent can take, it also enables it to learn



more quickly and prune out ineffective actions, allowing it
to select more intelligent actions with less samples.

Transition Function The transition function is defined by
a combination of the simulated physics of the domain as well
as the actions selected by the other agents. The agent does
not directly model this function; instead it stores samples
observed from played games as described in Section 4.2.

Reward Function The reward function is 1,000 when the
offense wins, -1,000 when the defense wins, and -1 per each
time step taken in the episode. The value of 1,000 is chosen
to be greater than the effects of step rewards over the whole
episode, but not completely outweigh these effects. Other
values were tested with similar results.

4.2 Collecting Data
Rather than explicitly model the MDP’s transition func-
tion, the agent directly uses samples taken from HFO games
with its teammates. For each teammate, the agent plays in
a number of games in which it explores the different avail-
able actions. From each action, the agent stores the tuple
〈s, a, r, s′〉, where s is the original state, a is the action, r is
the reward, and s′ is the resulting state.

We treat an action as going from when the agent begins
the action until the ball is either once again held by the of-
fense or the episode has ended due to the ball leaving play,
the defense controlling the ball, or a goal occurring. Given
that we only control a single agent, when its teammate has
the ball, it will follow its own policy. We also store the re-
sults of the teammates actions in the tuple 〈s, r, s′〉 as we
do not track their actions and our agent follows a fixed pol-
icy when away from the ball. If we could control all of the
agents, we would instead consider the action from the team-
mate’s perspective. If we treated this problem as a single
agent problem, we would instead consider an action to end
only when our agent once again controls the ball.

For each action, the agent observed 10,000 transitions.
Similarly, the agent observed 10,000 transitions where its
teammate had the ball, resulting in a total of 60,000 obser-
vations. This number comes from the 6 types of transitions,
coming from the 5 actions and the transitions when the agent
is away from the ball.

There are many ways to represent the state. Ideally, we
want a compact representation that allows the agent to learn
quickly by generalizing its knowledge about a state to sim-
ilar states without over-constraining the policy. Therefore,
we select 8 features:
• X position – the agent’s x position on the field
• Y position – the agent’s y position on the field
• Orientation – the direction that the agent is facing
• Goal opening angle – the size of the largest open angle of

the agent to the goal
• Teammate’s goal opening angle – the teammate’s goal

opening
• Distance to opponent – the distance to the closest oppo-

nent
• Distance from teammate to opponent – the distance from

the teammate to the closest opponent

• Pass opening angle – the open angle available to pass to
the teammate

4.3 Learning a Policy

Given the stored observations from the previous section, it
is possible to learn a policy from these observations. Specif-
ically, we use the Fitted Value Iteration (FVI) algorithm an-
alyzed by Szepesvari and Munos (2005). Similar to Value
Iteration (VI), FVI iteratively backs up rewards to improve
its estimates of the values of states. Rather than looking at
every state and every possible outcome from each state, FVI
uses samples of these states and outcomes to approximate
the values of state-action pairs. At each iteration, the agent
updates the following equation for each tuple

Q(s, a) = r + γ ∗ V (s′)

where V (s′) is initialized to 0. Then, we update our esti-
mates of V via

V (s′) = maxa′Q(s′, a′)

As Q(s′, a′) is not directly observed, we estimate its values
using function approximation as discussed later in this sec-
tion.

We also consider states in which the teammate has the
ball, where our agent follows a fixed policy. During this
time, we treat this as a single action that the agent must take.

To generalize its knowledge to states and actions it has
not observed, the agent employs function approximation.
While there are many forms of function approximation, pre-
liminary tests showed that neural networks performed better
than other methods in this setting. The effectiveness of neu-
ral networks combined with FVI is backed up by existing
research (Riedmiller 2005). However, neural networks have
a number of open parameters such as the number of hidden
nodes, the number of layers, and activation functions. To ex-
plore these parameters and select effective values, we used
a grid search over these parameters. For each parameter set,
we ran FVI to learn a policy and then tested this policy in
1,000 games.

While this work is focused on learning policies for when
the agent has the ball, considering its policy away from the
ball is very important. In RoboCup, positioning of agents
and assigning robots to roles is often crucial to the team’s
performance (MacAlpine et al. 2012). However, the base
code release by Helios (Akiyama 2010) uses a static role
assignment system, where our agent always attempts to play
the “Center Forward” position. This role is not ideal for the
HFO setting as it prevents passing in many scenarios. There-
fore, we use a simple heuristic function to assign the agent
to the role that is closest to a desired offset from its team-
mate. To find this desired offset, we similarly perform a grid
search over possible x and y offsets.

5 Preliminary Results

This section presents the preliminary results of this work.
Results are for 10,000 games of half field offense.



Team Fraction Scored
Random 0.248
Match 0.292

Random and Positioning 0.338
FVI using Linear Regression with RBFs 0.341

FVI using Neural Network 0.411
FVI using Neural Network and Positioning 0.698

Table 1: Importance of different factors when cooperating
with a Helios 2013 teammate against two Helios defenders.

Policy Learned With

Tr
ue

Ty
pe Base Yushan Helios

Base 0.386 0.309 0.340
Yushan 0.427 0.474 0.421
Helios 0.478 0.489 0.698

Table 2: Cooperating with different teammates against two
Helios defenders.

5.1 Importance of Factors of the Approach
First, let us investigate the importance of different factors
of the approach, such as different learning methods and po-
sitioning approaches. The baseline performance in this do-
main is given by acting randomly given the actions provided
and matching the externally created teammates’ behaviors.
The results in Table 1 show that the learning a policy using
FVI can improve greatly performance, going from a random
performance of 0.248 to 0.411, an improvement of 65%. In
addition, considering the positioning of the agent also im-
proves performance a large amount, especially when using
a learned policy. The total improvement is from 0.248 to
0.698, an improvement of over 180%. Computing the value
function for a given set of parameters takes less than 2 min-
utes on average. Once the value function is computed, se-
lecting actions can be done at real time for the simulator.

5.2 Cooperating with Different Teammates
If the agent encounters a teammate that is following an un-
known behavior, the agent can reuse a policy it has learned
from a past teammate. Table 2 show the results of using poli-
cies learned with past teammates with the current teammate.
The three teammate types considered are the Helios 2013
agent, the Base agent released by Helios in 2013 that our
agent is based on, and the Yushan 2013 agent. We do not
use the WrightEagle agent due to its problems running in
synchronized mode.

These results show that using an incorrect model of the
teammates does hurt performance. Using the policy learned
with the Helios agent does work well with all of the other
teammates, but there is still room for improvement. There-
fore, it is desirable for the agent to select which policy to
follow on the fly.

One approach for this is to treat the problem as a multi-
armed bandit where the different arms are the policies to fol-
low. However, this approach requires many games to learn
as each pull of an arm corresponds to playing a game of
HFO. In addition, this approach requires many observations
of each policy with the new teammate.

It is desirable to learn more quickly, which requires us-
ing information of the teammate’s actions. To this end, it is
possible to compare the teammate’s movements to the stored
〈s, a, r, s′〉 tuples. Specifically, for the n closest states, s, we
can compare the resulting state to the stored s′ and calcu-
late the distance of the teammate from its expected position.
Assuming that the differences are distributed normally al-
lows us to calculate the probability of the teammate ending
up in the observed position. Then, the agent can update its
beliefs about its teammate’s type using a Bayesian update.
However, this problem remains an open problem.

6 Conclusion
The majority of past research on ad hoc teamwork has fo-
cused on domains such as grid worlds or matrix games and
in which only a few agents interact. However, the dream of
applying ad hoc teamwork techniques to real world prob-
lems requires scaling these methods up to more complex and
noisy domains that involve many agents interacting. This
work presents a step towards this goal by investigating ad
hoc teamwork in the area of simulated robot soccer. This re-
search is a preliminary report focusing on how to approach
this complex problem. This paper presents an approach for
learning models that predict teammates’ actions as an effec-
tive way of representing knowledge learned from past team-
mates. Then, we show how this knowledge can be used to
learn intelligent behaviors using a sample-based learning al-
gorithm to select high level actions.

This paper represents a move towards scaling up reason-
ing about ad hoc teamwork to a complex domain involving
many agents. One area for future work is applying this ap-
proach to real robots; for example, in future drop-in player
challenges run at the RoboCup competition, such as those
held in 2013 in the 2D simulation league, the 3D simulation
league, and the Standard Platform League (SPL). Another
interesting avenue for future research is reasoning about
agents that are learning about the ad hoc agent over time.
In the long term, an interesting application of ad hoc team-
work is to allow agents to cooperate with either other agents
or humans by considering them as additional agents in the
domain.

References
Akiyama, H. 2010. Agent2d base code release.
http://sourceforge.jp/projects/rctools.
Barrett, S.; Stone, P.; Kraus, S.; and Rosenfeld, A. 2013. Team-
work with limited knowledge of teammates. In Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence.
Bowling, M., and McCracken, P. 2005. Coordination and adapta-
tion in impromptu teams. In AAAI, 53–58.
Brafman, R. I., and Tennenholtz, M. 1996. On partially controlled
multi-agent systems. Journal of Artificial Intelligence Research
4:477–507.
Conitzer, V., and Sandholm, T. 2007. AWESOME: A general mul-
tiagent learning algorithm that converges in self-play and learns a
best response against stationary opponents. Machine Learning 67.
Decker, K. S., and Lesser, V. R. 1995. Designing a family of
coordination algorithms. In ICMAS ’95, 73–80.



Doshi, P., and Zeng, Y. 2009. Improved approximation of inter-
active dynamic influence diagrams using discriminative model up-
dates. In AAMAS ’09.
Gal, Y., and Pfeffer, A. 2008. Network of influence diagrams: Rea-
soning about agents’ beliefs and decision-making processes. Jour-
nal of Artificial Intelligence Research 33:109–147.
Gmytrasiewicz, P. J., and Doshi, P. 2005. A framework for sequen-
tial planning in multi-agent settings. Journal of Artificial Intelli-
gence Research 24(1):49–79.
Grosz, B., and Kraus, S. 1996a. Collaborative plans for complex
group actions. Artificial Intelligence 86:269–368.
Grosz, B. J., and Kraus, S. 1996b. Collaborative plans for complex
group action. Artificial Intelligence 86(2):269–357.
Horling, B.; Lesser, V.; Vincent, R.; Wagner, T.; Raja, A.; Zhang,
S.; Decker, K.; and Garvey, A. 1999. The TAEMS White Paper.
Jones, E.; Browning, B.; Dias, M. B.; Argall, B.; Veloso, M. M.;
and Stentz, A. T. 2006. Dynamically formed heterogeneous robot
teams performing tightly-coordinated tasks. In ICRA, 570 – 575.
Kalyanakrishnan, S.; Liu, Y.; and Stone, P. 2007. Half field of-
fense in RoboCup soccer: A multiagent reinforcement learning
case study. In RoboCup-2006: Robot Soccer World Cup X, volume
4434 of Lecture Notes in Artificial Intelligence. Berlin: Springer
Verlag. 72–85.
Liemhetcharat, S., and Veloso, M. 2012. Modeling and learning
synergy for team formation with heterogeneous agents. In Proceed-
ings of the 11th International Conference on Autonomous Agents
and Multiagent Systems - Volume 1, AAMAS ’12, 365–374. Rich-
land, SC: International Foundation for Autonomous Agents and
Multiagent Systems.
MacAlpine, P.; Urieli, D.; Barrett, S.; Kalyanakrishnan, S.; Barrera,
F.; Lopez-Mobilia, A.; Ştiurcă, N.; Vu, V.; and Stone, P. 2012. UT
Austin Villa 2011: A champion agent in the RoboCup 3D soccer
simulation competition. In Proc. of 11th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS).
Riedmiller, M. 2005. Neural fitted q iteration first experiences with
a data efficient neural reinforcement learning method. In Gama, J.;
Camacho, R.; Brazdil, P.; Jorge, A.; and Torgo, L., eds., Machine
Learning: ECML 2005, volume 3720 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg. 317–328.
Stone, P.; Kaminka, G. A.; Kraus, S.; and Rosenschein, J. S.
2010. Ad hoc autonomous agent teams: Collaboration without pre-
coordination. In AAAI ’10.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning: An
Introduction. Cambridge, MA, USA: MIT Press.
Szepesvári, C., and Munos, R. 2005. Finite time bounds for sam-
pling based fitted value iteration. In Proceedings of the 22Nd Inter-
national Conference on Machine Learning, ICML ’05, 880–887.
New York, NY, USA: ACM.
Tambe, M. 1997. Towards flexible teamwork. Journal of Artificial
Intelligence Research 7:83–124.
Valtazanos, A., and Ramamoorthy, S. 2013. Bayesian interac-
tion shaping: Learning to influence strategic interactions in mixed
robotic domains. In Proceedings of the 2013 International Con-
ference on Autonomous Agents and Multi-agent Systems, AA-
MAS ’13, 63–70. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online planning for ad
hoc autonomous agent teams. In IJCAI.


