
The Need for Di�erent Domain-Independent Heuristics�

Peter Stone and Manuela Veloso and Jim Blythe
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3890

fpstone, veloso, blytheg@cs.cmu.edu

Abstract

prodigy's planning algorithm uses domain-independ-
ent search heuristics. In this paper, we support our
belief that there is no single search heuristic that per-
forms more e�ciently than others for all problems
or in all domains. The paper presents three di�er-
ent domain-independent search heuristics of increasing
complexity. We run prodigy with these heuristics in
a series of arti�cial domains (introduced in (Barrett
& Weld 1994)) where in fact one of the heuristics per-
forms more e�ciently than the others. However, we
introduce an additional simple domain where the ap-
parently worst heuristic outperforms the other two.
The results we obtained in our empirical experiments
lead to the main conclusion of this paper: planning
algorithms need to use di�erent search heuristics in
di�erent domains. We conclude the paper by advo-
cating the need to learn the correspondence between
particular domain characteristics and speci�c search
heuristics for planning e�ciently in complex domains.

Introduction

prodigy is an integrated architecture for research in
planning and learning (Carbonell, Knoblock, & Minton
1990). The focus of the prodigy project has been on
understanding how an AI planning system can acquire
expertise by using di�erent machine learning strate-
gies. Like all planning systems, prodigy needs to be
able to e�ciently handle multiple interacting goals and
di�erent ways of achieving goals. In this sense, plan-
ning involves deciding among available choices.
Every planning algorithm uses some heuristic strat-

egy to control its decision-making process. It could be
argued that there exists a best planning heuristic that
performs e�ectively for any general-purpose planning

�This research is sponsored by the Wright Laboratory,
Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and the Advanced Research Projects Agency
(ARPA) under grant number F33615-93-1-1330. The views
and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the o�cial policies or endorsements, either
expressed or implied, of Wright Laboratory or the U. S.
Government.

domain. Were that the case, there would be little or no
need to analyze or learn domain and problem charac-
teristics. However, this paper supports our belief that
there is no single domain-independent search heuris-
tic that performs more e�ciently than others for all
problems or in all domains.
In the next section we present prodigy's plan-

ning algorithmand three di�erent domain-independent
search heuristics of apparently increasing complexity.
After this we show the empirical results we obtained by
running prodigy with these di�erent heuristics. We
test them in a series of arti�cial domains (introduced
in (Barrett & Weld 1994)) in which one of the heuris-
tics performs more e�ciently than the others. How-
ever, we introduce an additional simple domain, rep-
resentative of a large class of domains, for which the
apparently worst heuristic outperforms the other two.
This example supports our claim that there is not a
universally best heuristic. Our heuristics, which we
compare with other planners in the following section,
expend di�erent levels of e�ort in analyzing interac-
tions among operators. We conclude the paper by ad-
vocating the need to learn the correspondence between
particular domain characteristics and speci�c search
heuristics for planning e�ciently in complex domains.

Domain-Independent Search Heuristics

in prodigy

prodigy's planning algorithm can be described as a
means-ends analysis planner in the sense that it uses
its internal state of the world to identify what goals it
needs to plan for. It changes the state when it �nds
a plan to achieve a goal. These changes in state are
prodigy's way of simulating the execution of a plan
during the planning process. Because it commits to a
particular execution order while planning, prodigy is
a totally ordered planner. Table 1 shows the skeleton
of prodigy's planning algorithm.
This simpli�ed version of prodigy's algorithm

can be captured by the following regular expression:
(Subgoal Apply�)�. In this context, \Subgoal," corre-
sponding to steps 3 and 4 in table 1, means to choose
a goal for which to plan. \Apply," as in step 5, means

1. Terminate if the goal statement is satis�ed in the
current state.

2. Compute the set of pending goals G, and the set
of applicable operators A. A goal is pending if it is
a precondition, not satis�ed in the current state,
of an operator selected to be in the plan to achieve
a particular goal. An operator is applicable when
all its preconditions are satis�ed in the state.

3. Choose a goal G from G or select an operator A
from A.

4. If G has been chosen, then
� Expand goal G, i.e., get the set O of relevant
instantiated operators that could achieve the
goal G,

� Choose an operator O from O,
� Go to step 1.

5. If an operator A has been selected as directly ap-
plicable, then
� Apply A,
� Go to step 1.

Table 1: A skeleton of prodigy's planning algorithm
and choice points.

to change the internal state. Since prodigy uses the
state to decide which goals still need to be achieved
(step 2), it makes a di�erence whether or not prodigy
applies an operator at a given time.
In this paper we analyze three di�erent domain-

independent search heuristics that prodigy uses to
control the decision of when to subgoal and when to
apply an operator, i.e, how to simulate the execution
of a plan. The heuristics represent di�erent levels of
e�ort in analyzing interactions among operators when
selecting an ordering.

Eager state changes

The �rst heuristic corresponds to the situation in which
prodigy eagerly applies an operator as soon as it
becomes applicable. We name this heuristic savta,
standing for \Subgoal After eVery Try to Apply."
savta corresponds to the following behavior: prodigy
expands goals and changes the state as soon as it �nds
a plan that achieves a particular goal. Here, prodigy
applies operators as soon as they become applicable;
it only subgoals after it has applied every possible op-
erator. Table 2 shows prodigy's planning algorithm
when using savta as its heuristic to control the deci-
sion of when to change its state. Notice that prodigy
loops in step 4 until no more operators are applicable.
The assumption underlying savta's behavior is that

an immediate change in state will generally lead to a
more informed planning situation. savta expects that
the changes in state achieve the goals for which the
operators were selected. Furthermore, savta expects
that these changes will not prevent other pending goals
from being achieved.

1. Terminate if the goal statement is satis�ed in the
current state.

2. Compute the set of pending goals G.
3. Choose a goal G from G.
� Expand goal G, i.e., get the set O of relevant
instantiated operators that could achieve the
goal G,

� Choose an operator O from O.
� Let A=O be the current operator.

4. If A is directly applicable in the current state,
then
� Apply A,
� Identify a new possible applicable operator A.
� Go to step 4.

5. Go to step 1.

Table 2: prodigy's planning algorithm using savta.
prodigy subgoals after it has applied every possible
applicable operator.

Delayed state changes

The other two heuristics maximally delay the possible
changes in state, i.e., they only apply operators when
there are no pending goals. We name both of these
heuristics saba, standing for \Subgoal Always Before
Applying." The saba heuristics share the following be-
havior: prodigy changes the state only after there are
no more goals to expand. Here prodigy builds up a set
of applicable operators from which to choose. The two
saba heuristics di�er in the way they deal with this set
of applicable operators. The �rst, saba-reactive, se-
lects an operator to apply based solely on the current
set, while the second, saba-memory, takes past sets
of applicable operators into account. Table 3 shows
prodigy's planning algorithm following the saba be-
havior. Notice that prodigy may have to enter the
loop in step 3 more than once, since some goals may
need to be reachieved.
Were prodigy to just apply the applicable operators

in the order in which they were discovered, the saba
heuristics would be quite similar to savta. However,
by spending a little bit of e�ort examining the interac-
tions among applicable operators, prodigy can often
apply them in a better order.
With the saba-reactive heuristic, prodigy only ex-

amines the currently applicable operators when decid-
ing which one to apply. In e�ect, prodigy checks for
an operator that satis�es two conditions. First, an op-
erator should not delete any preconditions of any of the
other applicable operators. Second, no other operators
should delete any e�ects of the operator. Further, if
none of the applicable operators satisfy both of these
conditions, saba gives preference to the �rst condition.
By using the two conditions mentioned above,

prodigy may increase its chances of successfully ap-
plying operators without having to backtrack. These
conditions guide prodigy through the search space,

1. Terminate if the goal statement is satis�ed in the
current state.

2. Compute the set of pending goals G.
3. If G is not empty then
� Choose a goal G from G and remove G from
G.

� Expand goal G, i.e., get the set O of relevant
instantiated operators that could achieve the
goal G,

� Choose an operator O from O.
� Go to step 3.

4. Compute the set of applicable operators A.
5. Select an operator A from A.
� Apply A.
� Go to step 1.

Table 3: prodigy's planning algorithm using saba.
prodigy always subgoals before applying any opera-
tors.

possibly helping it �nd a more direct path to the so-
lution. However, they do not prune prodigy's search
space.1

Like saba-reactive, saba-memory �rst checks to see
if any operator satis�es the same two conditions: the
operator doesn't delete any preconditions, and its ef-
fects are never deleted. However, when no operator
satis�es these conditions, it examines the interactions
among operators more deeply. It uses a bias to main-
tain its focus of attention by preferring operators that
work towards the same goal as the most recently ap-
plied operator did. The most interesting di�erence be-
tween the two heuristics is that, as indicated by its
name, saba-memory saves the information it extracts
from this examination and uses it for future choices.
Using saba-memory, prodigy can thus choose an op-
erator based on past interactions between operators,
even if they are no longer apparent in the current list
of operators.
One can view the heuristics we have examined in

this section as representing di�erent patterns of com-
mitment strategies in search. savta commits eagerly
to the order of applying operators, and delays com-
mitment to the choice of operators. In contrast, the
saba heuristics delay commitment to step ordering,
but commit eagerly to the operators used to achieve
goals.

Domain-Dependence of the Heuristics

We empirically compare the performance of our three
heuristics in a set of arti�cial domains created by Bar-
rett and Weld.2 These domains were devised to inves-

1We have also created a version of saba that prunes the
search space when it is provably impossible to be deleting
a solution from the space.

2We use D0
S
1, Dm

S
1, D1

S
1�, and Dm

S
2� as presented

in detail in (Barrett & Weld 1994) and in (Barrett & Weld

tigate the relative performance of planners that reason
about a partial order of plan steps and those that use
a total order. The domains were used to test the hy-
pothesis that a set of serializability properties play a
key role in predicting performance. Barrett and Weld
found that their two total-order planners performed
poorly in these domains. Since Prodigy uses a total
order we were interested in its performance on this set
of domains. We have also been testing our heuristics
in a set of classical domains.
We ran all of our tests on a SPARC station. In each

domain, we generated random problems having one to
�fteen goals: ten problems with each number of goals.
We used these same 150 problems to test each of the
three heuristics. To get our data points, we averaged
the results for the ten problems with the same number
of goals. We graph the average time that prodigy
took to solve the problems versus the number of goals.

D0S1: all heuristics work

D0S1 is a domain in which all goals are independent.
Each of the �fteen operators looks like:3

Operator preconds adds deletes
Ai fIig fGig fg

Since none of the operators delete anything, it does not
matter in what order the goals are solved, or in what
order the operators are applied. In this case, all three
heuristics perform roughly linearly4 (Figure 1). Note

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16

T
i
m
e
:

m
s
e
c

Number of Goals

SABA-memory
SABA-reactive

SAVTA

Figure 1: prodigy's performance with di�erent
heuristics in domain D0S1

that the saba heuristics have some overhead involved
in choosing from among several applicable operators,
so that savta slightly outperforms the sabas. How-
ever, since we are mostly interested in the orders of the

1993).
3In all domains described in this paper, Ii are true in

the initial state, and Gi are goals to be achieved.
4Although the time is not linear, it is signi�cantly sub-

quadratic. The number of nodes searched, however, is per-
fectly linear in the number of goals since prodigy does not
have to backtrack. This type of linearity holds in all other
cases where we mention sub-quadratic time behavior.

graphs, the three heuristics essentially perform equally
well.

D
m
S
1 and D1

S
1�: savta fails

DmS1 and D1S1� are two domains in which the order
of application matters.5 The operators in DmS1 look
like:

Operator preconds adds deletes
Ai fIig fGig fIjjj < ig

Since each operator deletes the preconditions of all op-
erators numerically before it, these operators can only
be applied in increasing numerical order. Similarly,
the operators must be applied in a particular order in
D1S1�. This domain has the following operators:

Operator preconds adds deletes
Ai fIig fGig fIi+1; I�g
A2
�

fP�g fG�g fI1g
A1
�

fI�g fP�g fg

In D1S1�, G� is an additional goal in every problem.
Since savta applies operators as soon as they be-

come applicable, prodigy can end up backtracking
heavily when using this heuristic. For instance in
DmS1, suppose we give prodigy the problem to at-
tain G7 and G4 with I7 and I4 true in the initial
state. prodigy will begin by �nding that operator
A7 achieves G7, and then will immediately apply A7.
However, A7 deletes I4. Thus, when prodigy next
tries to solve G4, it will fail and need to backtrack.
With more than two goals, this problem is compounded
exponentially (Figure 2).
On the other hand, the two saba heuristics choose

the operators to apply more carefully. Using the same
example, prodigy still �nds that A7 achieves G7, but
now before applying A7, it �nds that A4 achieves G4.
Then, noticing that A7 deletes I4, prodigy realizes
that A4 must be applied before A7. In this way,
prodigy avoids having to backtrack. In fact, in both
of these domains, prodigy avoids having to back-
track at all, resulting in sub-quadratic performance
in the number of goals (Figure 2). Thus, for DmS1

and D1S1� (both laboriously serializable according to
Barrett and Weld), prodigy with either of the saba
heuristics performs well.

DmS2�: saba-reactive fails

DmS2� is a domain in which saba-memory clearly
outperforms both savta and saba-reactive. As in
D1S1�; G� is always one goal of a problem. Here the
operators look like:

Operator preconds adds deletes
A1
i fIig fPig fPjjj < ig

A2
i fPig fGig fPjjj < ig

A� fI�g fG�g fIij8ig [fGij8ig

5
D
m
S
2 from (Barrett & Weld 1994) is another such do-

main. We ran the same experiments on this domain and
achieved results similar to those for Dm

S
1 and D1

S
1�.

0

500

1000

1500

2000

0 2 4 6 8 10 12 14 16

T
i
m
e
:

m
s
e
c

Number of Goals

SABA-memory
SABA-reactive

SAVTA

(a)

0

500

1000

1500

2000

0 2 4 6 8 10 12 14 16

T
i
m
e
:

m
s
e
c

Number of Goals

SABA-memory
SABA-reactive

SAVTA

(b)

Figure 2: prodigy's performance with di�erent
heuristics in domains DmS1 (a) and D1S1� (b)

Note that with two goals plus G�, the optimal ordering
of operators is A1

2, A
1
1, A�, A2

1, A
2
2.

In this domain, saba-memory is the best of our three
heuristics. savta performs poorly for the same reason
as in the previous three domains. However here, saba-
reactive also performs poorly (Figure 3). The essen-
tial reason for saba-reactive's failure is that after the
�rst operator is applied, every applicable operator ei-
ther deletes a precondition of another operator, or has
an e�ect deleted by another operator. Furthermore,
several of the applicable operators only have an e�ect
deleted (thus giving them priority according to saba-
reactive's two conditions). Since several operators end
up with equal priority, saba-reactive ends up making
arbitrary choices. saba-memory recti�es this situa-
tion by analyzing more deeply the interactions among
operators, and thus achieving the optimal order with-
out backtracking. In particular, saba-memory's use of
past applicable-operator lists allows it to exhibit sub-
quadratic behavior in the number of goals (Figure 3).

D0-side-e�ect: The saba's fail

In every domain to this point, saba-reactive has per-
formed at least as well as savta, and saba-memory
has performed at least as well as saba-reactive. How-

0

2000

4000

6000

8000

10000

0 2 4 6 8 10 12 14 16

T
i
m
e
:

m
s
e
c

Number of Goals

SABA-memory
SABA-reactive

SAVTA

Figure 3: prodigy's performance with di�erent
heuristics in domain DmS2�

ever, we are not trying to argue that saba-memory
is a universally ideal heuristic for prodigy. On the
contrary, we argue that there is no such thing as a
universally ideal search heuristic for any planner: the
best type of search depends at least on the domain, and
probably on the problem as well. To this end, we now
present a simple domain in which savta outperforms
both of the saba heuristics. This domain represents
the class of domains where one operator opportunisti-
cally adds several di�erent goals.
D0-side-e�ect is a domain in which it is advanta-

geous to apply an operator as soon as possible. There
is only one operator in this domain:

Operator preconds adds deletes
A fg fGij0 < i � 15g fg

Here all the goals are achieved by this one operator.
Using the saba heuristics in this domain, prodigy

subgoals on each of its goals before it ever applies the
operator. Then, it applies the operator once and is
done. In this case, prodigy behaves linearly in the
number of goals it needs to solve (Figure 4).

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

T
i
m
e
:

m
s
e
c

Number of Goals

SABA-memory
SABA-reactive

SAVTA

Figure 4: prodigy's performance with di�erent
heuristics in domain D0-side-e�ect

Using the savta heuristic, however, prodigy solves

problems in this domain in constant time, i.e. inde-
pendent of the number of goals (Figure 4). Since the
same operator achieves all goals, prodigy now discov-
ers that this operator achieves its �rst goal and imme-
diately applies the operator, thus solving all its other
goals as well.
Another class of domains where savta outperforms

the saba heuristics is those in which there are several
di�erent operators that can achieve a goal. Here the
saba heuristics run into problems because prodigy

chooses operators that are appropriate in the cur-
rent state; however, the state may be di�erent when
prodigy tries to apply them. We have also created
and tested such a domain, achieving similar results,
where savta outperforms the saba heuristics.

Discussion

We have shown that di�erent domain-independent
search heuristics work best in di�erent domains. In
particular, saba-memory works best in D0S1, DmS1,
D1S1�, and DmS2�, while savta is more appropri-
ate in D0-side-e�ect. The cyclical dominance relation-
ships among the di�erent heuristics supports our be-
lief that no domain-independent search heuristic dom-
inates others across all domains (Figure 5).

SAVTA

SABA-reactive

SABA-memory

D0-side-effect

D0-side-effect

DmS2*

DmS1, D1S1*,
and DmS2*

DmS1, D1S1*,
and DmS2*

Figure 5: The cyclical dominance relationships of our
heuristics. An arrow from x to y means that heuris-
tic x performs better than heuristic y in the indicated
domain(s).

Again, we are not trying to suggest that saba-
memory is a \better" heuristic than savta. In-
stead, we believe we have evidence that no heuristic
is appropriate for all problems and in all domains.
Thus we are interested in trying to discover which
domain-independent heuristics are best for which do-
mains (for related work, see (Ginsberg & Geddis 1991;
Minton 1993)). We would like to extend prodigy's
learning strategies to include the ability to decide for
itself which domain-independent search heuristic to use
in which situation.
Our results suggest that the saba heuristics work

best for problems in which operators for di�erent goals

interfere with one another. However savta works best
for problems in which operators fortuitously achieve
goals other than those for which they were chosen.

savta is also more appropriate than the saba

heuristics for problems in which the correct choice of
operator to achieve a goal depends on the state at the
time it is going to be applied. Perhaps there is a bet-
ter heuristic than savta to handle cases such as these.
And there are certainly more heuristics that work well
in domains that we have not yet explored. In any case,
we feel it is now clear that planners should have a li-
brary of di�erent domain-independent search heuris-
tics that they can use for di�erent problems and for
di�erent domains.

prodigy and Other Planners

We brie
y consider the relationship between prodigy

and the three simple planners tested by Barrett and
Weld on the same domains that we use in this pa-
per (Barrett & Weld 1993; 1994). These are pocl,
which maintains a partial order of applicable operators
and uses \causal links" to maintain goal protections,
tocl, which also uses causal links but maintains ap-
plicable operators in a total order, and topi, which
maintains applicable operators in a total order and re-
stricts applicable operators to be added to the front of
the list (the \pi" stands for \prior insertion"). Barrett
and Weld do not investigate the e�ect of heuristics on
any of these planners, but extend a relationship be-
tween planners and domains|serializability|to one
that captures the behavior of the planners on these
domains without heuristics.

In order to compare prodigy with these planners,
we must point out an assumption made by Barrett and
Weld that does not hold for prodigy: that partially
ordering operators is synonymous with delaying com-
mitment to operator ordering. These two capabilities
occur together in their planners, since pocl has both
and tocl and topi have neither. prodigy, however,
is able to delay commitment to ordering without using
a partial order for operators. When it expands sub-
goals it makes no commitment to the order of the op-
erators used to achieve them, making decisions about
the total ordering of these operators when more infor-
mation is available.

Like topi, prodigy adds operators to the beginning
of the total order when it commits to the ordering of
an operator. However it also uses causal links similar
to those of pocl and tocl in a backtracking strategy
that signi�cantly reduces the search space.

Barrett and Weld show experimentally that pocl
can perform exponentially better than tocl and topi

in some domains and attribute this success to pocl's
use of a partial order. Our results show that it may, in
fact, have more to do with the ability to delay ordering
commitment.

Conclusion

We have examined the performance of three search
heuristics on a set of arti�cial domains. The results
show that none of the heuristics leads to better perfor-
mance in all the domains: no heuristic dominates the
others. It is our belief that no simple search heuris-
tic will provide good performance in every domain for
a domain-independent planner. Rather than being a
negative view, this leads us to continue looking for a
better understanding of the mapping between domains
and heuristics and for learning methods that can de-
termine and make use of this mapping.
For example, features such as the ones discussed

to explain the di�erent performance of the heuristics
could be measured relatively cheaply. Future domain-
independent planners should therefore be able to make
intelligent choices about which commitment strategy
to use based on the domain. Learning will be necessary
in part because the correct search technique may de-
pend as much on the distribution of problems in the do-
main as on its structure. In any case, this paper estab-
lishes the clear need for di�erent domain-independent
search heuristics in general purpose planners.

References

Barrett, A., and Weld, D. S. 1993. Characterizing
subgoal interactions for planning. In Proceedings of
IJCAI-93, 1388{1393.

Barrett, A., and Weld, D. S. 1994. Partial-order
planning:Evaluating possible e�ciency gains. Arti�-
cial Intelligence 67(1).

Carbonell, J. G.; Knoblock, C. A.; and Minton, S.
1990. Prodigy: An integrated architecture for plan-
ning and learning. In VanLehn, K., ed., Architectures
for Intelligence. Hillsdale, NJ: Erlbaum. Also Tech-
nical Report CMU-CS-89-189.

Ginsberg, M. L., and Geddis, D. F. 1991. Is there
any need for domain-dependent control information?
In Proceedings of the Ninth National Conference on
Arti�cial Intelligence.

Minton, S. 1993. Integrating heuristics for constraint
satisfaction problems: A case study. In Proceedings
of the Eleventh National Conference on Arti�cial In-
telligence, 120{126.

