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Abstract
To operate in human-robot coexisting environ-
ments, intelligent robots need to simultaneously
reason with commonsense knowledge and plan un-
der uncertainty. Markov decision processes (MDPs)
and partially observable MDPs (POMDPs), are good
at planning under uncertainty toward maximiz-
ing long-term rewards; P-LOG, a declarative pro-
gramming language under Answer Set semantics,
is strong in commonsense reasoning. In this pa-
per, we present a novel algorithm called DCPARP
to dynamically represent, reason about, and con-
struct (PO)MDPs using P-LOG. DCPARP success-
fully shields exogenous domain attributes from
(PO)MDPs so as to limit computational complex-
ity, but still enables (PO)MDPs to adapt to the value
changes these attributes produce. We conduct a
large number of experimental trials using two ex-
ample problems in simulation and demonstrate DC-
PARP on a real robot. Results show significant im-
provements compared to competitive baselines.

1 Introduction
In order to be fully robust and responsive in real-world envi-
ronments where frequently humans and robots coexist, intel-
ligent robots need a variety of simultaneous reasoning modal-
ities that were separately developed in the past. In this pa-
per, we focus on robots’ needs for: i) commonsense reason-
ing (both logical and probabilistic), ii) modeling quantitative
uncertainties from nondeterministic action outcomes and lo-
cal, unreliable observations, and iii) planning under such un-
certainties toward maximizing long-term rewards. This work,
for the first time, uses (logical and probabilistic) common-
sense reasoning techniques to dynamically construct proba-
bilistic graphical models (such as MDPs and POMDPs). While
traditional hand-coded models implicitly assume the acting
agent is the only one that can make changes to the world,
we introduce DCPARP, standing for Dynamically Constructed
(PO)MDPs for Adaptive Robot Planning, that enables proba-
bilistic planning to be adaptive to exogenous world changes.

An MDP describes a probabilistic transition system un-
der the assumption of full observability. A POMDP extends
an MDP by assuming partial observability of underlying

states [Kaelbling et al., 1998], and hence models the quan-
titative uncertainties from robot observations and action out-
comes well. (PO)MDP algorithms, e.g., value iteration [Sut-
ton and Barto, 1998], Monte Carlo tree search [Kocsis and
Szepesvári, 2006] and SARSOP [Kurniawati et al., 2008], help
compute a policy that enables planning toward maximizing
long-term rewards. MDPs and POMDPs have been used in a
variety of robot applications such as [Khandelwal et al., 2015]
and [Young et al., 2013], where each (PO)MDP corresponds
to a pair of probabilistic transition and reward systems that
individually model the nondeterministic action outcomes and
planning goal. However, (PO)MDP models are not designed
to reason about commonsense knowledge, e.g., office doors
are normally closed on holidays.

Existing work has investigated modeling exogenous
events, e.g., sunlight reduces success rate of a robot navigat-
ing through an area (due to the limitations of range-finder
sensors), within decision-theoretic models [Boutilier et al.,
1999]. However, it is often difficult to predict how an exoge-
nous change will affect the system state, and what the dis-
tribution for the occurrence of these exogenous events will
be. Doing so also presents a trade-off between model cor-
rectness and computational tractability (as more domain vari-
ables are modeled). Although it is possible to implement
domain-specific planners to efficiently handle the exogenous
events, we argue that using commonsense reasoning to shield
exogenous domain attributes from (PO)MDPs is relatively a
much more applicable approach than directly manipulating
(PO)MDPs’ graphical representations.

Answer set programming (ASP) is a logic programming
language that is good at representing and reasoning with
logical commonsense knowledge [Baral, 2003; Gelfond and
Kahl, 2014] and has been used in robot applications [Chen
et al., 2012; Erdem et al., 2015]. Probabilistic extensions of
ASP including P-LOG [Baral et al., 2009] and LPMLN [Lee
and Wang, 2015] further enable reasoning with probabilis-
tic commonsense knowledge. As a result, ASP’s probabilistic
extensions can easily represent facts such as office doors are
normally closed on holidays and probabilistic models such
as a robot has a lower success rate of navigating through an
area under sunlight. It should be noted that ASP and its ex-
tensions do not support probabilistic planning toward max-
imizing long-term rewards. For instance, techniques in the
ASP family are not suitable for the robot navigation problem



(§ 3.2), while (PO)MDPs are good at such problems. Learning
knowledge from the web or through human-robot interaction
has been studied in existing research [Samadi et al., 2012;
Perera et al., 2015; Myagmarjav and Sridharan, 2015], and is
beyond the scope of this paper.

Contemporaneously with ASP, another family of program-
ming languages for probabilistic reasoning are built under
First-order logic (FOL) semantics, including BLOG [Milch et
al., 2007] and MLNs [Richardson and Domingos, 2006], but
the FOL-based ones are not good at representing or reasoning
with commonsense knowledge that is normally true but not
always (more detailed comparisons in [Baral et al., 2009]).

Different methods have been developed to combine com-
monsense reasoning and probabilistic planning. In [Zhang et
al., 2015], ASP and POMDPs are integrated for mobile robots,
where the reasoning resulting (answer sets) were used for
generating prior beliefs for POMDPs (but not for making
changes to the POMDP once the robot has started to work
on the task). Hanheide et al. used a switching planner for
deterministic and probabilistic planning and used common-
sense knowledge for diagnostic tasks and generating expla-
nations [Hanheide et al., 2015]. In these algorithms, bridging
the gap between logical knowledge and probabilistic beliefs
requires considerable domain-dependent heuristics. The use
of P-LOG and POMDPs in this work enables a principled al-
gorithm that simultaneously allows (both logical and proba-
bilistic) commonsense reasoning and probabilistic planning.

The work closest to DCPARP is an algorithm called CORPP
that unifies the strengths of POMDPs and P-LOG by reasoning
with P-LOG to specify the state space of and compute infor-
mative priors for POMDP-based planning [Zhang and Stone,
2015]. However, a significant limitation of CORPP is that the
reward system and actuating capabilities have to be hand-
coded, making it incapable of adapting to exogenous world
changes. This paper addresses this limitation by introduc-
ing DCPARP that dynamically constructs (PO)MDPs using P-
LOG, and, for the first time, shields exogenous attributes from
(PO)MDPs while still enabling probabilistic planning to adapt
to the exogenous events. To evaluate DCPARP’s performance,
we have conducted a large number of trials in simulation and
demonstrated its effectiveness on a real robot using tasks in
an office domain. We observed significant improvements in
both efficiency and accuracy compared to CORPP.

2 Background
This work builds on the existing techniques of P-LOG [Baral
et al., 2009] and POMDPs [Kaelbling et al., 1998]. A POMDP
generalizes an MDP by assuming partial observability of the
underlying state and maintains a belief distribution over the
set of possible states. Since POMDPs are currently more com-
mon in the literature and due to space constraints, we do not
discuss the general POMDP framework, but focus on introduc-
ing P-LOG, the other key technique this work builds on.

A P-LOG program typically includes both logical and prob-
abilistic rules, where the syntax and semantics of the logical
rules are inherited from ASP and the probabilistic reasoning
algorithm is based on a causal Bayesian network. An ASP pro-
gram consists of a set of logical rules, separated by the sym-
bol “←” (as shown below). The left side is called the head

and the right is called the body. A rule is read as “head is true
if body is true”, and specifically, a rule with an empty body is
referred to as a fact.

l0 or · · · or lk ← lk+1, · · · ,lm, not lm+1, · · · , not ln.
The l’s in ASP rules are literals, i.e., an expression of p or
¬p, where p is an object constant or a variable. Symbol not
is a logical connective called default negation; not l is read
as “it is not believed that l is true”, which does not imply
l is believed to be false, e.g., not prof(alice) means it is
unknown that alice is a professor. Using default negation,
ASP can represent default knowledge with exceptions.

Traditionally, ASP does not explicitly quantify degrees of
uncertainty: a literal is either true, false or unknown. P-LOG
is an extension to ASP that allows random functions, saying
that if B, a collection of extended literals (i.e., l or not l)
holds, the value of a(t̄) is selected randomly from the set
{X : q(X)}∩range(a), unless this value is fixed elsewhere,
where q is a predicate:

random(a(t̄) : {X : q(X)})← B.

Finally, a probability atom (or pr-atom) states that, if B
holds, the probability of a(t̄) = y is θ :

pr(a(t̄) = y|B) = θ ,where, θ ∈ [0,1].

As a result, we can easily use P-LOG’s default negation
for logical commonsense reasoning such as office doors are
normally closed on holidays and use its probability atom
for probabilistic commonsense reasoning such as sunlight re-
duces the success rate of a robot navigating through an area.
Although P-LOG is good at commonsense reasoning, it does
not support planning under uncertainty toward maximizing
long-term rewards, which motivates the use of P-LOG for dy-
namically constructing (PO)MDPs in this work.

3 Algorithm
A global state space SG can be specified using a set of en-
dogenous attributes Ven (whose values can be changed by
robot actions) and a set of exogenous attributes Vex (whose
values are changed by external factors).

SG : ven
1 ×·· ·×ven

n ×vex
1 ×·· ·×vex

m

where ven’s and vex’s are endogenous and exogenous at-
tributes respectively: ven∈ Ven and vex∈ Vex.

In principle, all of these domain attributes, both endoge-
nous and exogenous, can be modeled within a (PO)MDP.
However, in practice there are often too many exogenous
events to model all of them. Therefore, we take defaults
and facts as the input to reason about all domain attributes
in SG, and then compute a much lower-dimensional state
space S for a (PO)MDP that focuses on a specific task, S :
ven

1 ×·· ·×ven
n . In case of POMDPs, reasoning with probabilis-

tic commonsense rules associates a probability to each state
s ∈ S and the probabilities together form a prior belief dis-
tribution, so the POMDP-based planning starts with this infor-
mative prior when interacting with the environment (similar
to CORPP [Zhang and Stone, 2015]). We focus on construct-
ing other components of (PO)MDPs in this paper, especially
the state transition system T : S×A×S→ [0,1] and reward
systemR:S×A→R (§ 3.1), which were both treated as static
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Figure 1: Overview of DCPARP

by CORPP. We use example problems to present the whole
process of constructing (PO)MDPs (§ 3.2).

3.1 Algorithm Description
The main idea of DCPARP is to dynamically construct proba-
bilistic graphical models, e.g., (PO)MDPs, using a declarative
language that is strong in both logical and probabilistic com-
monsense reasoning, e.g., P-LOG, and compute policies that
are adaptive to exogenous domain changes at runtime. Fig-
ure 1 shows a pictorial overview, where this section focuses
on the commonsense reasoner and the action descriptor.

Commonsense reasoner (CR) CR includes both logical and
probabilistic reasoning rules in P-LOG, and models both ex-
ogenous and endogenous domain attributes. Informally, the
aim of CR is to understand the parts of the world that may
have effects on the robot working on the current task.

Since real-world domains are dynamically changing all
the time and robots’ observations are partial and unreliable,
robots frequently need to reason with incomplete domain
knowledge1. ASP, on which P-LOG is based, well supports
CR to take a set of defaults as input and smoothly revise
their values using observed “facts” when available, and hence
supports reasoning with incomplete domain knowledge well.
As an example, a robot using an MDP for indoor navigation
may have default knowledge: “area A is under sunlight in the
mornings”. A fact of “no sunlight is observed in area A” can
smoothly defeat the default. The set of possible worlds,W , is
described by a set of n endogenous attributes and their values.

To represent state transitions, we define two identical state
spaces using predicates curr s and next s in P-LOG:

curr s(V1, · · · ,Vn)← v1 = V1, · · · ,vn = Vn.

next s(V1, · · · ,Vn)← v′1 = V1, · · · ,v′n = Vn.

where curr s and next s specify the current and next states
and the v’s and V’s are endogenous attributes and their vari-
ables respectively.

If there is at least one endogenous attribute whose value is
not directly observable to the robot, the corresponding task
needs to be modeled as a POMDP (otherwise, an MDP).

Action descriptor (AD) We introduce sort action and ex-
plicitly list a set of i actions, A, as a set of objects in P-LOG.
Random function curr a maps to one of the actions.

action= {a0,a1, · · · ,ai}. curr a : action. random(curr a).

The probabilistic state transitions, T (s,a,s′), can be de-
scribed using a set of pr-atoms in P-LOG. For instance, the

1When we solve an MDP problem, we simply assume the endoge-
nous attributes are fully observable. Robots face a partially observ-
able world in general.

Algorithm 1 Algorithm DCPARP

Require: a set of defaults D; (PO)MDP and P-LOG solvers
1: collect facts Fex for exogenous attributes Vex

2: repeat
3: add Fex and D into commonsense reasoner, CR
4: calculate possible worlds W (each corresponds to a state s)
5: if ∃ven ∈ Ven, whose value is not directly observable then
6: calculate a prior belief distribution b over W
7: end if
8: generate T and R by reasoning with W in AD
9: compute policy π for the (PO)MDP specified by T and R

10: while s is not term and Fex is consistent with W do
11: make an observation z about endogenous attributes Ven

12: update state s (or belief state b) using z
13: select action a with π , execute a, and update Fex

14: end while
15: until s is term

rule below states that the probability of action A changing the
value of attribute v from V1 to V2 is 0.9.

pr(v′ = V2 | v= V1, curr a= A) = 0.9.

For MDPs, the values of endogenous attributes are fully ob-
servable to the robot, whereas POMDPs need to model a set of
observations, Z, for estimating the underlying state. We de-
fine obser as a sort, and curr o as a random function that
maps to an observation object o.

obser={o0,o1, · · · ,oj}. curr o : obser. random(curr o).

The observation function, O, defines the probability of ob-
serving O given the current state being s and current action
being a. For instance, the rule below states that, if attribute
v’s current value is V, the probability of observing O after tak-
ing action A is 0.8.

pr(curr o= O | curr a= A, v= V) = 0.8.

The reward function R maps a state-action pair to a numeric
value. For instance, this rule states that taking action A given
attribute v’s value being V yields a reward of 10.0.

reward(10.0,A,V1, · · · ,Vn)← curr a= A, curr s(V1, · · · ,Vn).
Algorithm 1 completely specifies the DCPARP algorithm.

The robot first makes observations to collect facts F ex for ex-
ogenous attributes Vex. In Steps 3-4, CR takes defaults D and
facts F ex as input and computes a set of possible worldsW ,
where each w ∈ W is described by a set of endogenous at-
tributes (and their values). In Steps 5-7, we compute a prior
belief b overW for POMDPs. AD takesW as input and com-
putes transition probabilities T and reward function R. The
planner can compute a policy π : s→ a using algorithms such
as SARSOP (for POMDPs) and value iteration or Monte Carlo
tree search (for MDPs). Finally, the action executor uses π for
interacting with the environment by making observations and
taking actions, until a terminal state is reached or exogenous
facts lead to inconsistency. In case of inconsistency, we return
to Step 3 to recompute the possible worlds.

As an example of exogenous facts causing inconsistency,
consider a robot that plans to avoid the area under sunlight
(which blinds the sensors) when it was started. An exogenous
fact of “current weather not being sunny” causes inconsis-
tency with all possible worlds, so the robot reactivates CR
(Step 3) to recompute the MDP state space (and recompute
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Figure 2: (a) Simulation environment used in experiments, where the red arrows indicate the delivery routes from the shop to individual
rooms; (b) A human walker blocking the way of the robot; and (c) An ontology of available items used in the “shopping” task (Task 1).

the acting policy). Therefore, DCPARP enables the robot’s be-
havior to adapt to the fact of a weather change.

3.2 Algorithm Instantiations on a Mobile Robot
In § 3.1, we describe the transition and reward systems by
enumerating all the probabilities and rewards, which can be
very inefficient. In practice, we use domain-dependent at-
tributes for much more efficient representations. To demon-
strate such representations and evaluate DCPARP ’s perfor-
mance, we apply DCPARP to two tasks: shopping request
identification and robot navigation. Both task domains have
exogenous changes at runtime. Figure 2(a) shows our simula-
tion environment that is constructed using GAZEBO [Koenig
and Howard, 2004] and shared by the two tasks.

Task 1: shopping request identification
This task was first introduced in [Zhang and Stone, 2015].
We add more details including distances between rooms and
ontology of items (Figure 2) and use this task to evaluate
how DCPARP enables the robot to adapt to exogenous domain
changes and fine-tune its behaviors. This domain has the fol-
lowing sorts, Θ, and each sort has a set of objects.

time= {morning,noon,afternoon,evening}
room= {r0,r1,r2,shop}.
person= {alice,bob,carol,dan}.
item= {regular,decaf,coke,pepsi,burger,cookie}.
class= {item,drink,food,coffee,soda}.

We then define predicate set P :{request,subcls}, where
request(I,R,P) specifies a shopping request of delivering
item I to room R for person P, and subcls(C1,C2) claims class
C1 to be a subclass of class C2. Figure 2(c) shows the cate-
gorical tree that can be represented using the following rules,
where C1,C2, and C3 are variables of classes.

subcls(C1,C3) ← subcls(C1,C2), subcls(C2,C3).
is(I,C1) ← is(I,C2), subcls(C2,C1).

A set of random functions describes the possible values of
random variables: curr time, req item(P), req room(P), and
req person. E.g., the two rules below state that if the delivery
is for person P, the value of req item is randomly selected
from the range of item, unless fixed elsewhere:

random(req item(P)). req item : person→ item.

We can then use a pr-atom to specify a probability. For in-
stance, the rule below states that the probability of delivering
coffee in the morning is 0.8.

pr(req item(P) = coffee|curr time= morning) = 0.8.

Such random functions and pr-atoms allow us to represent
and reason with probabilistic commonsense knowledge. Fi-
nally, the current state (a shopping request) is specified as

follows: curr s(I,R,P,term)← request(I,R,P), term., where
predicate term identifies the terminal state. The action set is
explicitly defined as below.
action= {ask i,ask r,ask p,conf i0,conf i1 · · · ,conf r0,

conf r1, · · · ,conf p0,conf p1 · · · ,del i0 r0 p0, · · ·}
where, ask ’s are general questions (e.g., ask r corresponds
to “which room to deliver?”), conf ’s are confirming ques-
tions (e.g., conf r0 corresponds to “is this delivery to
room0?”), and del ’s are actions of deliveries.

For delivery actions, the reward function R maps a state-
action pair to a real number, and is defined as:

R(adel ,s) =

{
R+, if ai� si and ap� sp and ar� sr(
1−λi(ai,si) ·λp(ap,sp) ·λr(ar,sr)

)
R−, otherwise

where operator� returns true if the action on the left matches
the state on the right in the given dimension (subscript). λ in
the range of (0, 1] measures the closeness between actual de-
livery (action) and underlying request (state) in item, person,
and room, respectively. R+ and R− are the reward and penalty
that a robot can get in extreme cases (completely correct or
completely incorrect deliveries).

We compute the closeness of two items, λ (I1, I2) by post-
processing the resulting answer set. Specifically, the heuristic
closeness function of two items is defined as:

λi(I1, I2) = 1−
max

(
dep(LCA, I1),dep(LCA, I2)

)
−1

max
(
dep(root, I1),dep(root, I2)

) (1)

where LCA is the lowest common ancestor of I1 and I2 and
dep(C,I) is the number of nodes (inclusive) between C and I.

Informally, the closeness of room R1 to room R2 is in-
versely proportional to the effort needed to recover from a
delivery to R1 given the request being to R2. In Figure 2(a),
for instance, a wrong delivery to r0 given the request being
to r1 requires the robot to go back to shop, learn the deliv-
ery room being r1, and then move to room r1. Therefore, the
asymmetric room closeness function is defined as below:

λr(R1,R2) =
dis(shop,R2)

2 ·dis(shop,R1)+dis(shop,R2)
(2)

We simply set λp to 1. The costs of question-asking actions
are stationary:R(aask,s)=-1, andR(acon f ,s)=-2.

Task 2: robot navigation
In this task, the state is fully observable (MDP is used). The
robot navigates in a domain shown in Figure 2(a), where mov-
ing people can (probabilistically) block its way—Figure 2(b),
and sunlight can (probabilistically) blind the robot’s laser
range-finder, making the robot unrecoverably lost. Planning
is done by mapping the domain to a grid, which is defined us-
ing the sorts of row and col, and the predicates belowof and
leftof. We then introduce predicates near row and near col



used for specifying if two grid cells are next to each other,
where R’s (C’s) are variables of row (column).

near row(RW1,RW2)← belowof(RW1,RW2).
near row(RW1,RW2)← near row(RW2,RW1).
near col(CL1,CL2)← leftof(CL1,CL2).
near col(CL1,CL2)← near col(CL2,CL1).

To model the nondeterministic action outcomes, we define
random functions curr row and next row that map to the cur-
rent and next rows, and curr col and next col that map to
the current and next columns.
random(next row : {R : near row(R ,RW)})← curr row= RW.
random(next col : {C : near col(C ,CL)})← curr col= CL.

We use predicates near window and sunny to define the
cells that are near to window and the cells that are actually
under sunlight. The rule below is a default stating that: in the
mornings, a cell near window is believed to be under sunlight,
unless defeated elsewhere.
sunny(RW,CL)← near window(RW,CL), not ¬sunny(RW,CL),

curr time= morning.

While navigating in areas under sunlight, there is a large
probability of becoming lost (0.9), which deterministically
leads to the end of an episode.

pr(next term= true | curr row= RW, curr col= CL,
sunny(RW,CL)) = 0.9.

pr(next term= true | curr term= true) = 1.0.

The robot can take actions to move to a grid cell next to its
current one: action = {left,right,up,down}. For instance,
given action up, the probability of successfully moving to the
above grid cell is 0.9, given no obstacle in the above cell.
pr(next row= RW2 | curr row= RW1, curr col= CL1,

belowof(RW1,RW2), ¬sunny(RW2,CL1),
¬blocked(RW2,CL1), curr a= up) = 0.9.

Finally, the current state is specified by endogenous at-
tributes curr row, curr col, and curr term:
curr state(RW,CL,TM) ← curr row= RW, curr col= CL,

curr term= TM.

The goal of visiting room (r0,c3) can be defined as below,
where an early termination has a penalty of −100.0.
pr(next term= true | curr row= r0,curr col= c3) = 1.0.
reward(50.0,A,r0,c3,true) ← curr state(r0,c3,true).
reward(−100.0,A,RW,CL,true) ← curr state(RW,CL,true),

RW<> r0.
reward(−100.0,A,RW,CL,true) ← curr state(RW,CL,true),

CL<> c3.

Informally, DCPARP decomposes a (PO)MDP problem into
two subproblems, commonsense reasoning and probabilistic
planning, that respectively focus on “curse of dimensional-
ity” and “curse of history” (elaborated in [Kurniawati et al.,
2010]), aiming at significantly reducing the complexity of
(PO)MDP planning compared to its one-shot solution.

4 Experimental Results
DCPARP has been implemented in simulation and on real
robots. Experiments in simulation focus on statistical analysis
and robot experiments are mostly for demonstrating the effec-
tiveness on specific test cases. We evaluate two hypotheses
that DCPARP enables the robot to: (I) fine-tune its behavior;

rgl coke pps ckieM
is
t
a
k
e
s
in

it
e
m

0

1k

2k

3k

r0 r1 r2M
is
t
a
k
e
s
in

r
o
o
m

0

2k

4k

Baseline: CORPP Proposed: DCPARP

Figure 3: DCPARP enables the robot to fine-tune its behavior in de-
livering different items to different rooms. The x-axis and y-axis
correspond to the incorrect deliveries and the number of mistakes
(over 100k trials). For instance, the r0 in the right bars represents
the numbers of deliveries to r0 given r1 or r2 being requested.

and (II) adapt to exogenous domain changes. We take CORPP
as the baseline algorithm unless specified otherwise.

Experiments in simulation were conducted using
GAZEBO [Koenig and Howard, 2004] on a desktop ma-
chine with 16G memory and Intel Core i7 CPU at 3.40GHz.
We used a solver introduced in [Zhu, 2012] for P-LOG
programs (except that reasoning about reward was manually
conducted), the APPL solver for POMDPs [Kurniawati et al.,
2008], and value iteration for MDPs [Sutton and Barto, 1998].

Hypothesis-I (Task 1) We use Task 1 with four items, three
rooms and two persons for comparing DCPARP to CORPP
(the baseline). The hidden shopping request was randomly
selected in each trial. Speech recognition errors are modeled,
e.g., 0.8 accuracy in recognizing answers of confirming ques-
tions and a lower accuracy for general questions (depending
on the number of that sort’s objects). The value of [R+,R−]
is [20,−20]. Since CORPP gives full penalties to partially cor-
rect deliveries whereas DCPARP does not, we adjust the value
of R− for DCPARP to make the overall reward of delivery ac-
tions, ∑s∈S ∑a∈AdelR(a,s), comparable to each other.

Figure 3 shows the numbers of mistakes made by the robot.
We can see CORPP makes no difference in either item (Left)
or room (Right), because it does not reason about the re-
ward system—incorrect deliveries are not differentiated and
all receive the same penalty. In contrast, DCPARP enables the
robot to behave in such a way that the robot makes the fewest
mistakes in cookie (Left) and room r2 (Right). Such behav-
iors match our expectations: cookie is “very different” from
the other three items and r2 has the greatest distance from
the shop, so the robot should make effort to avoid delivering
cookie (or delivering to r2) when that is not requested. The
results support Hypothesis-I that using DCPARP the robot is
able to fine-tune its behavior.

To better understand the robot’s behavior (specifically, the
Right of Figure 3), we manually remove the uncertainties in
item and person in the initial belief, and visualize which ac-
tion the POMDP policy suggests given different initial beliefs
in room. In the Right of Figure 4, we see the robot is relatively
more cautious in delivering to r1 and r2 (the green and yel-
low areas in the top and left corners are smaller than the red
one in the right). It is very difficult to achieve such fine-tuned
behaviors from hand-coded models.
Hypothesis-II (Task 1) Figure 5 shows the results of the
“shopping” task when exogenous changes are added: items
can be temporarily unavailable. Since CORPP cannot adapt
to such exogenous changes, it has to model all items all the
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Figure 5: DCPARP performs increasingly better in accuracy and
overall reward in the shopping task when more items are known to
be unavailable: CORPP corresponds to the left ends of the two curves
(CORPP uses a static model so it has to include all items).

time. In contrast, DCPARP dynamically constructs POMDPs:
when items are known to be unavailable, states of these items
being requested and actions of delivering these items are re-
moved from the POMDP. For instance, when three items are
unavailable, the numbers of states and actions are reduced
from (37,50) to (18,29). As a result, DCPARP performs in-
creasingly better in both accuracy and overall reward (y-axes
in Figure 5) when more items are known to be unavailable
(x-axes in Figure 5). In contrast, CORPP has to use a static
POMDP that includes all items (assuming no item unavail-
able), so its performance corresponds to the left ends of the
two curves. Results shown in Figure 5 supports the hypothesis
that DCPARP enables the robot to adapt to dynamic changes.
Hypothesis-II (Task 2) We further evaluate Hypothesis-II
using the “navigation” task: the testing environment and the
robot are shown in Figure 2(a) and 2(b). We limit the number
of random walkers to be 1 and its speed to be one fifth of
the robot’s. A goal room is randomly selected from the four
flag rooms. Reasoning happens only after the current episode
is terminated (goal room is reached). The walker’s position
is the only exogenous domain change (by temporarily setting
the time to be “evening”). We cached policies for both CORPP
(4 policies) and our approach (56 policies) at runtime.

Figure 6(a) shows the robot’s traveling time given start-
goal pairs: once the robot arrives at its current goal, the next
one is randomly selected. The walker moves slowly near the
door of room r1. Without adaptive planning developed in this
work, the robot follows the “optimal” path and keeps trying
to bypass the walker for a fixed length of time. If the low-
level motion planner does not find a way to bypass the walker
within the time, the robot will take the other way to navigate
to the other side of the walker and continues executing the
“optimal” plan generated by the outdated model. We can see
when the robot navigates between loc0 and loc2, DCPARP re-
duces the traveling time from about 250 seconds to about 110
seconds, producing a significant improvement.

Results over 8.5 hours of experiments are shown in Fig-
ure 6(b): 224 trials using DCPARP and 112 trials using CORPP.
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Figure 6: (a) Average time consumed in navigating between lo-
cation pairs when a walker moves near the door of room r1 (error
bars represent standard deviations); (b) DCPARP enables the robot to
adapt to exogenous domain changes (the walker’s position). Results
are processed in batches (each has 50 trials, when available).

Without caching, we find the time consumed by DCPARP
(over 54 trials) is distributed over P-LOG reasoning (Tr, 28%),
MDP planning (Tp, <1%), and execution (Te, 72%). Com-
pared to CORPP, DCPARP enables the robot to spend much
less time in execution (Te) in all phases. At the beginning
phase, DCPARP requires more reasoning time for dynamically
constructing MDPs, which together with the less execution
time makes the overall time comparable to CORPP (left ends
of Figure 6(b)). Eventually, the low execution time (Te) dom-
inates the long-term performance (right ends of Figure 6(b)),
supporting the hypothesis that DCPARP enables the robot to
adapt to exogenous domain changes.

Hypothesis-II (Task 2 on a robot) To test the robot’s be-
havior adapting to sunlight change, we placed a Segway-
based robot (Right of Figure 7) at the start position shown
in the Left of Figure 7, and left the robot two routes that
lead to the goal, with Route 2 being shorter. DCPARP enables
the robot to select the safer route (Route 1), even though it
is longer. Demo videos of simulated and real-robot trials are
available (anonymously) at: goo.gl/n6apCt
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Figure 7: Floor map and the Segway-based robot used in experi-
ments. DCPARP enables the robot to select “Route 1”, successfully
avoiding the “sunlight” area along “Route 2”.

5 Conclusions
This paper introduces a novel algorithm called DCPARP
that uses commonsense reasoning to dynamically construct
(PO)MDPs for adaptive robot planning. We use declarative
language P-LOG, a probabilistic extension of answer set pro-
gramming, for reasoning with logical and probabilistic com-
monsense knowledge, and use probabilistic graphical models,
such as (PO)MDPs, for probabilistic planning. This paper, for
the first time, enables robot behaviors to adapt to exogenous
domain changes without including these exogenous attributes
in probabilistic planning models. DCPARP has been evaluated
both in simulation and on a real robot. We observed signif-
icant improvements comparing to competitive baselines (in-
cluding CORPP), based on experiments on two tasks in an of-
fice environment.
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