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t. In agent-based markets, adapting to the behavior of otheragents is often ne
essary for su

ess. When it is not possible to dire
tlymodel individual 
ompetitors, an agent may instead model and adapt tothe market 
onditions that result from 
ompetitor behavior. Su
h an agent
ould still bene�t from reasoning about spe
i�
 
ompetitor strategies by
onsidering how various 
ombinations of these strategies would impa
t the
onditions being modeled. We present an appli
ation of su
h an approa
hto a spe
i�
 predi
tion problem fa
ed by the agent Ta
Tex-06 in the Trad-ing Agent Competition's Supply Chain Management s
enario (TAC SCM).1 Introdu
tionIn this paper, we present an adaptive approa
h used in the TAC SCM 
ompetitionthat is based on learning from simulations of various agent 
ombinations. Wedes
ribe a spe
i�
 predi
tion problem fa
ed by Ta
Tex-06 (winner of the 2006
ompetition), present the learning approa
h taken, and evaluate the e�e
tivenessof this approa
h through analysis of the 
ompetition results. We then exploremethods of improving predi
tions through 
ombining multiple sour
es of datare
e
ting various 
ompetitor behaviors. Although this paper only des
ribes theappli
ation of these methods to the TAC SCM domain, the methods depend onlyon a need for some form of predi
tion and the ability to simulate a variety ofpotential opponent strategies, neither of whi
h is un
ommon in the real world.The work des
ribed here represents the main improvements over our 2005 agent,des
ribed fully in [6℄.2 Learning and Adaptation in Agent-Based MarketsIn 
ompetitive multiagent systems, the ability to adapt to the behavior of otheragents 
an be the di�eren
e between su

ess and failure. Often, this adaptationtakes the form of opponent modeling [1℄ [2℄, in whi
h a model is learned for ea
h
ompeting agent that 
an be used to predi
t the a
tion the agent will take inany situation. In some systems, however, modeling agents dire
tly may not beappropriate, or even possible. Market s
enarios often �t this des
ription for anumber of reasons. For instan
e, an online seller might not intera
t with the same
ustomer repeatedly, removing the in
entive to model the individual 
ustomer'sbehavior. In large systems su
h as sto
k markets, the a
tions of a single agent maynot be signi�
ant enough to have a noti
eable e�e
t on the system. Finally, in amarket with limited transparen
y, su
h as one in whi
h transa
tions are 
ondu
tedthrough sealed-bid au
tions, it may be impossible to dire
tly observe the a
tionsof other agents. In these situations, it may be ne
essary for an agent to observe



and learn about the aggregate e�e
t of all agents on the e
onomy, rather thanthe behavior of spe
i�
 agents. Learning is redu
ed to making predi
tions aboutproperties of the e
onomy, su
h as what a parti
ular pri
e will be. In e�e
t, the
ompeting agents be
ome part of the agent's environment.An agent using su
h an approa
h may still be able to bene�t from reason-ing about the types of behavior that might be exhibited by 
ompeting agents.In 
hoosing an approa
h to adapting in the marketpla
e, an agent should takeinto 
onsideration the range of strategies that other agents might use and howthese strategies might a�e
t the properties of interest. In general, an agent should
onsider the following questions:{ For whi
h properties of the e
onomy do predi
tions need to be made?{ Whi
h of these properties are dependent on 
ompetitor strategies, and whi
htend to remain the same regardless of 
ompetitors?{ What predi
tive models should be used when starting out in a new marketabout whi
h little information is available (i.e., what predi
tive models givethe best expe
ted performan
e a
ross a variety of 
ompetitor behaviors)?{ As more information be
omes available, what form of adaptation should beused to improve predi
tions?One method of answering these questions, and the method that will be em-ployed in this paper, is to implement a number of potential 
ompetitor strategiesand run simulated markets using various 
ombinations of these strategies. Usingthe results, it is possible to observe how market 
onditions vary based on the mixof 
ompetitors and to identify adaptive strategies that are e�e
tive a
ross a rangeof possible s
enarios. In the next two se
tions, we introdu
e the spe
i�
 predi
tionproblem to whi
h we will apply this method.3 The TAC Supply Chain Management S
enarioSupply 
hains have traditionally been 
reated through the intera
tions of humanrepresentatives of the various 
ompanies involved. However, re
ent advan
es inautonomous agent te
hnologies have sparked an interest in automating the pro
essthrough the use of agents [3℄ [4℄. The Trading Agent Competition Supply ChainManagement (TAC SCM) s
enario provides a unique testbed for studying andprototyping su
h agents. Though purely a simulated environment, TAC SCM isdesigned to 
apture a broad range of issues that 
ome up in real-world supply
hains, in
luding limited supplies and manufa
turing resour
es, 
ompetition forpro
urement leading to 
ompli
ated pri
e stru
tures, 
ompetition for 
ustomerorders, storage 
osts, et
. A parti
ularly appealing feature of TAC is that, unlikein real supply 
hains, strategies 
an be tested without risking large amounts ofmoney, yet unlike in many simulation environments, the other bidders are realpro�t-maximizing agents with in
entive to perform well, rather than strawmanben
hmarks.In a TAC SCM game, six agents a
t as 
omputer manufa
turers in a simulatede
onomy managed by a game server. The length of a game is 220 simulated days,



Fig. 1. The TAC SCM S
enario [2℄

with ea
h day lasting 15se
onds of real time. Thegame 
an be divided intothree parts: i) pro
uring
omponents from suppli-ers, ii) selling 
omputersto 
ustomers, and iii) pro-du
tion and delivery, asillustrated in Figure 1.We des
ribe here only thesales task that is the fo-
us of this paper, but fulldetails are available in theoÆ
ial spe
i�
ation do
u-ment [5℄.Customers wishing to buy 
omputers send the agents requests for quotes(RFQs) 
onsisting of the type and quantity of 
omputer desired, the due date,a reserve pri
e indi
ating the maximum amount the 
ustomer is willing to payper 
omputer, and a penalty that must be paid for ea
h day the delivery is late.Agents respond to the RFQs by bidding in a �rst-pri
e pro
urement au
tion: theagent o�ering the lowest pri
e on ea
h RFQ wins the order. Agents are unableto see the pri
es o�ered by other agents or even the winning pri
es, but they dore
eive a report ea
h day indi
ating the highest and lowest pri
e at whi
h ea
htype of 
omputer sold on the previous day.The number of RFQs sent by 
ustomers ea
h day depends on the level of
ustomer demand, whi
h 
u
tuates throughout the game. Demand is broken intothree segments, ea
h 
ontaining about one third of the 16 
omputer types: high,mid, and low range. Ea
h range has its own level of demand. The total number ofRFQs per day ranges between roughly 80 and 320, all of whi
h 
an be bid uponby all six agents. It is possible for demand levels to 
hange rapidly, limiting theability of agents to plan for the future with 
on�den
e.4 Ta
Tex-06 and the Computer Pri
e Predi
tion ProblemWe now give a brief overview of Ta
Tex-06, and then introdu
e the problemaddressed in this paper: predi
ting the pri
e at whi
h ea
h type of 
omputer willsell in the future. More information on the design of the agent is available in [6℄.4.1 Agent OverviewIn Ta
Tex-06, tasks are divided between a Supply Manager module and a DemandManager module. The Supply Manager handles all planning related to 
omponentinventories and pur
hases, and requires no information about 
omputer produ
-tion ex
ept for a proje
tion of future 
omponent use, whi
h is provided by theDemand Manager. The Demand Manager, in turn, handles all planning related to
omputer sales and produ
tion. The only information about 
omponents required



by the Demand Manager is a proje
tion of the 
urrent inventory and future 
om-ponent deliveries, along with an estimated repla
ement 
ost for ea
h 
omponentused. This information is provided by the Supply Manager.The goal of the Demand Manager is to maximize the pro�ts from 
omputersales subje
t to the information provided by the Supply Manager. To a

omplishthis, the Demand Manager needs to be able to make predi
tions about the re-sults of its a
tions and the future of the e
onomy. Two predi
tive models areused to make these predi
tions: a Demand Model that predi
ts future 
ustomerdemand levels, and an O�er A

eptan
e Predi
tor that predi
ts the probabilityof a parti
ular o�er winning an order from a 
ustomer, as des
ribed below.4.2 O�er A

eptan
e Predi
torIn order to bid on 
ustomer RFQs, the Demand Manager needs to be able topredi
t the orders that will result from the o�ers it makes. A simple method ofpredi
tion would be to estimate the winning pri
e for ea
h RFQ, and assume thatany bid below this pri
e would result in an order. Alternatively, for ea
h RFQ theprobability of winning the order 
ould be estimated as a fun
tion of the 
urrentbid. This latter approa
h is the one implemented by the O�er A

eptan
e Predi
-tor. For ea
h 
ustomer RFQ re
eived, the O�er A

eptan
e Predi
tor generatesa fun
tion mapping the possible bid pri
es to the probability of a

eptan
e. (Thefun
tion 
an thus be viewed as a 
umulative distribution fun
tion.) This approa
hinvolves two main 
omponents: a parti
le �lter used to generate initial predi
tions,and a learned predi
tor that predi
ts how the pri
es of 
omputers will 
hange inthe future.A visual inspe
tion of ea
h day's winning pri
es for ea
h type of 
omputerin a typi
al 
ompleted game suggests that these pri
es tend to follow a normaldistribution. To estimate these distributions during a game, the O�er A

eptan
ePredi
tor makes use of a separate parti
le �lter for ea
h 
omputer type. Ea
h ofthe 100 parti
les used per �lter represents a normal distribution (indi
ating theprobability that a given pri
e will be the winning pri
e on the 
omputer) with aparti
ular mean and varian
e. The distribution of winning pri
es predi
ted by theparti
le �lter is simply the weighted sum of the individual parti
les' distributions,and from this distribution the fun
tion mapping ea
h possible bid pri
e to aprobability of a

eptan
e 
an be determined. Ea
h �lter is updated daily basedon the information made available about 
omputer pri
es: the high and low pri
esreported for the previous day and the o�ers re
eived from 
ustomers.In order to maximize revenue from the 
omputers sold, the Demand Managerneeds to 
onsider not only the pri
es it will o�er in response to the 
urrent day'sRFQs, but also what 
omputers it will wish to sell on future days. In fa
t, theDemand Manager plans ahead for several days and 
onsiders future RFQs (pre-di
ted by the Demand Model) as well as 
urrent RFQs when making o�ers. It istherefore important for the O�er A

eptan
e Predi
tor to be able to predi
t future
hanges in 
omputer pri
es. To illustrate why this is important, Figure 2 showsthe pri
es at whi
h one type of 
omputer sold during a single game of the 2006
ompetition. For ea
h day, points representing one standard deviation above andbelow the average pri
e are plotted. On most days, there is 
learly little varian
e



between the winning pri
es, but pri
es often 
hange drasti
ally over the 
ourse ofa few days. This fa
t suggests that it may be even more valuable to be able topredi
t future 
hanges in pri
e than to predi
t the distribution of winning pri
eson a single day. By simply selling a 
omputer a few days earlier or later, it mightbe possible for the Demand Manager to signi�
antly in
rease the pri
e it obtains.In the remainder of this paper, we des
ribe the use of ma
hine learning meth-ods to predi
t the amount by whi
h the average sales pri
e of ea
h type of 
om-puter will 
hange in ten days. On
e the O�er A

eptan
e Predi
tor has learned topredi
t this quantity, it 
an predi
t the 
hange in average pri
e for any day betweenzero and ten days in the future through linear interpolation. No e�ort is made
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Fig. 2. Average pri
es at whi
h one type of 
omputersold during one game of the 2006 �nals. One standarddeviation above and below the average are shown.

to predi
t 
hanges in theshape of the distribution,i.e., the varian
e. Thus, togenerate an o�er a

ep-tan
e fun
tion for a pre-di
ted future RFQ, theO�er A

eptan
e Predi
-tor simply shifts the pre-di
ted distribution overwinning pri
es up or downdepending on the pre-di
ted 
hange in averagepri
e, and bases the a
-
eptan
e fun
tion on thismodi�ed distribution.4.3 Learning Pri
e Change Predi
tionsThe problem explored in this paper is thus that of learning to predi
t 
hangesin sales pri
es of 
omputers. As dis
ussed in Se
tion 2, making an a

urate pre-di
tion might depend on adapting to the behavior of the �ve 
ompeting agents.The stru
ture of the TAC SCM 
ompetition en
ourages su
h adaptation: aftera seeding round in whi
h agents play games against random opponents, agentsare divided into bra
kets of six and play a number of games against the same setof opponents, with the top three agents moving on to the next round. In addi-tion, after ea
h game a log is provided that details the 
omplete events of thegame, providing mu
h information that was not available to the agent during thegame. No human-made 
hanges are allowed during a round, but agents are freeto automati
ally adapt based on previous games during a round.Although it is possible in prin
iple to dire
tly model the bidding behavior ofspe
i�
 opponents using data from games in the 
urrent round or previous rounds,we use the alternative approa
h mentioned in Se
tion 2 of modeling the e
onomyitself, treating opponents as part of the environment. We do so for two reasons.First, the information available during a game about opponents is extremely lim-ited. An opponent's behavior is likely to be heavily dependent on information that
annot be observed, su
h as the opponent's inventory. Se
ond, the behavior of an



Rank Agent Average Pro�t1 Ta
Tex-05 $14.89M2 GoBlueOval $12.60M3 FreeAgent $12.06M4 CMieux $10.35M5 Deep Maize $10.23M6 Botti
elli $10.11M7 SouthamptonSCM $10.05M8 PhantAgent $9.87M9 MinneTAC $9.86M10 Merta
or $9.30M11 Maxon $8.76M12 Cro
odileAgent $8.48MTable 1. Top 12 agents in the 2005 seed-ing round. Agents in bold advan
ed tothe �nal round.Rank Agent Average Pro�t1 Ta
Tex-05 $4.71M2 SouthamptonSCM $1.60M3 Merta
or $0.55M4 Deep Maize -$0.22M5 MinneTAC -$0.31M6 Maxon -$1.99MTable 2. Results of the 2005 �nal round

agent may be dependent on the mix ofopponents in a game and the market
onditions resulting from this mix. Wewere able to observe this fa
t 
learlyfrom the results of the 2005 
ompeti-tion. Table 1 shows the s
ores of thetop 12 (out of 25) agents in the seed-ing round. Those agents in bold even-tually advan
ed to the �nal round, theresults of whi
h are shown in Table 2.From these tables we 
an observe thats
ores de
reased signi�
antly from theseeding round to the �nal round asthe 
ompetition in
reased, and in fa
t,some agents that were pro�table in theseeding round lost money in the �nalround. Also, several of the top agentsin the seeding round failed to advan
eto the �nal round. These observations
on�rm that, as is 
ommon in manymarket s
enarios, TAC agents 
an be-have and perform di�erently depend-ing on market 
onditions, and that di-re
tly predi
ting an opponent's behavior may be diÆ
ult when the opponent isfa
ed with unfamiliar market 
onditions. In fa
t, it might be better to base pre-di
tions on games with similar 
onditions but di�erent agents than games withthe same agents but di�erent 
onditions.The O�er A

eptan
e Predi
tor therefore attempts to predi
t 
hanges in 
om-puter pri
es as a fun
tion of observable market 
onditions. As des
ribed in Se
-tion 4.2, the spe
i�
 predi
tion made is the amount by whi
h the average salespri
e of ea
h type of 
omputer will 
hange in ten days. To make these predi
-tions, the O�er A

eptan
e Predi
tor performs ma
hine learning on data frompast games. Ea
h training instan
e 
onsists of 31 features representing data avail-able to the agent during the game, su
h as the date, estimated levels of 
ustomerdemand, and 
urrent and re
ent pri
es of a given type of 
omputer. The label forea
h instan
e is the amount by whi
h the average pri
e of that 
omputer 
hangesin ten days. The question addressed in the rest of the paper is how to best makeuse of all available data when generating predi
tors. In the next se
tion, we explainhow this question was answered for the 2006 
ompetition.5 The 2006 TAC SCM CompetitionWe now address how Ta
Tex-06 performed predi
tion in the 2006 
ompetition.First we des
ribe the 
hoi
e of opposing agents used in simulations and of a learn-ing approa
h, and then we present the results of the �nal round of 
ompetitionand additional experiments.



5.1 Agent ImplementationsIn order to develop a strategy for learning to make predi
tions, we ran a number ofgames using a variety of 
ompeting agents taken from the TAC Agent Repository,1a 
olle
tion of agent binaries provided by the teams involved in the 
ompetition.2At the time we designed our agent, only agents from the 2005 
ompetition wereavailable; however, in the experiments of this se
tion, we make use of additionalagents that have be
ome available sin
e then, in
luding some of the agents thatparti
ipated in the 2006 
ompetition, as this allows us to present experimentsinvolving a wider variety of agents.We 
hose four di�erent agent groupings, and ran 50 games with ea
h group.The groups are shown in Table 3. The �rst three groups 
ontain Ta
Tex-06 and �f-teen additional agents. The fourth group in
ludes what appear to be the strongestagents from the �rst three groups: Ta
Tex-06, the 2005 version of Ta
Tex, andthe four other agents from the 2006 �nal round for whi
h binaries are available.We in
luded Ta
Tex-06 in ea
h group be
ause we are only interested in makingpredi
tions for games in whi
h our agent plays, and we therefore would like to
apture the e�e
t of Ta
Tex-06 on the e
onomy in the predi
tive models learned.It is important to note that the 
hoi
e of predi
tors 
an impa
t the behaviorof Ta
Tex-06 and thus the property of the e
onomy (
omputer pri
es) we aretrying to model. For the games played in this se
tion, Ta
Tex-06 used the samepredi
tors that it used in the 2006 
ompetition, so that the behavior of the agentis the same for all games (in or out of 
ompetition) dis
ussed in this paper. Weultimately view 
onsideration of this issue to be the responsibility of the agent,and not the learning pro
ess { an agent should be able to a

ount for the fa
t thatby behaving as its predi
tor suggests it should, it may be a�e
ting the e
onomyin a way that makes its predi
tions in
orre
t. As the fo
us of this paper is thelearning pro
ess, we omit further dis
ussion of this issue.Group Agents1 Ta
Tex-06, GeminiJK-05, Merta
or-05, MinneTAC-06, PhantAgent-06, RationalAgent-052 Ta
Tex-06, Ta
Tex-05, Botti
elli-05, Cro
odileAgent-05, DeepMaize-05, GoBlueOval-053 Ta
Tex-06, DeepMaize-06, Foreseer-05, Maxon-06, MinneTAC-05, PhantAgent-05,4 Ta
Tex-06, Ta
Tex-05, DeepMaize-06, Maxon-06, MinneTAC-06, PhantAgent-06Table 3. The agent groups used in the experiments5.2 Learning AlgorithmsWhen determining the learning approa
h to be used by Ta
Tex-06, the �rst taskwas to identify a suitable ma
hine learning algorithm. After limited experimenta-tion (using default parameters and a limited amount of data) with the availableregression algorithms from the WEKA ma
hine learning pa
kage [7℄, we deter-mined that the most promising 
andidates were M5 regression trees and additiveregression with de
ision stumps (an iterative method in whi
h a de
ision stump1 http://www.si
s.se/ta
/showagents.php2 The binaries of 
ompeting agents would admittedly not be available in a real s
enario,but the approa
h des
ribed here 
ould still be implemented by repla
ing these binarieswith our own agents designed to exhibit a variety of behaviors.



is repeatedly �t to the residual from the previous step).3 The results for Group 2are shown in Figure 3, and are representative of the results for the other groupsand in our experiments prior to the 2006 
ompetition. For this and all other ex-periments in this paper ex
ept those involving data from the a
tual 
ompetition(for whi
h a limited number of games are available), results are presented for fourruns of �ve-fold 
ross validation (thus for ea
h fold, 10 games are held out as thetest set while a 
ertain sized subset of the remainder is used for training). Rootmean squared error is used as the measure of a

ura
y, and the values reportedare fra
tions of the base pri
e (a referen
e pri
e based on maximum 
omponent
osts) for ea
h 
omputer. For referen
e, we also determined the results of usinga heuristi
 that performs linear regression on what Ta
Tex-06 believes to be theaverage pri
e of ea
h 
omputer over the past 10 days and predi
ts that the ob-served trend will 
ontinue: an average error of 0.1220 on Group 2, and similarlyhigh error on other groups.From these results, we 
an see that both learning algorithms greatly outper-formed the heuristi
, illustrating the diÆ
ulty of the predi
tion task. Additive re-gression outperformed M5 trees when suÆ
iently many games were available (andthis result was statisti
ally signi�
ant with at least 95% 
on�den
e a

ording topaired t-tests when eight or more games were used). When only one or two gameswere available, M5 trees produ
ed lower errors, but this result was not statisti
ally
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Fig. 3. Results of the two learning algo-rithms using games from Group 2
signi�
ant, suggesting that the op-timal 
hoi
e of learning algorithmis un
lear in this 
ase and thatfurther exploration of the issuemay be needed. Nevertheless, ad-ditive regression was the only ma-
hine learning algorithm used byTa
Tex-06 in the 2006 
ompeti-tion, and it is the algorithm thatwill be used for the remainder ofthe paper.5.3 Comparing Results for Di�erent Groups of AgentsFrom Figure 3, it appears that about 30 games are needed for training beforepredi
tion error rea
hes its minimum level, and about eight games before theerror 
omes somewhat 
lose to this level. Sin
e a typi
al round of the TAC SCM
ompetition involves 16 games, these results are somewhat 
on
erning, as it mightnot be possible to learn suÆ
iently a

urate predi
tors in time for them to beuseful if only data from the 
urrent round is used.We now 
onsider the possibility of training predi
tors on games involving adi�erent group (or groups) of agents. For ea
h of the four groups of agents, wegenerated predi
tors by training on 40 games from that group and using four runs3 For the parameters of these two algorithms, we determined a minimum leaf size of 10and the 
hoi
e of a regression tree (not model tree) to be best for M5 trees, and ashrinkage rate of 0.7 and 200 iterations to best for additive regression.



of �ve-fold 
ross-validation as before, but ea
h predi
tor generated was also evalu-ated on one fold of ea
h other group, allowing the results to be dire
tly 
omparedfor ea
h fold as part of a paired t-test. In addition, for ea
h group a predi
tor wastrained on all games from the other three groups 
ombined and evaluated for ea
hfold of that group. Figure 4 shows the average results of evaluating ea
h modelon ea
h group.The most important observation from these results is that while the predi
tivemodels that give the best results for ea
h group are those trained on that group(and this is statisti
ally signi�
ant in ea
h 
ase with 99% 
on�den
e a

ording topaired t-tests), the di�eren
e is fairly small. It appears that the di�eren
es betweenthe agents in ea
h group do not have a large impa
t on the nature of 
omputerpri
e traje
tories. While predi
tion appears to be more diÆ
ult for Group 2, thisdiÆ
ulty seems to a�e
t all models to a similar degree. Also, generalization fromother groups to Group 4 does not appear to su�er from the fa
t that this grouprepresents the most 
ompetitive e
onomy. Finally, for ea
h group the predi
tortrained on all games from the other three groups does about as well as the bestof the three predi
tors trained on only one of these groups, if not better, suggest-ing that training a predi
tor on games from all available groups is an e�e
tivestrategy when it is not known whi
h group will give the best results. In fa
t,Test DataModel 1 2 3 4heuristi
 0.1173 0.1220 0.1074 0.11071 0.0606 0.0740 0.0657 0.06472 0.0636 0.0711 0.0676 0.06563 0.0641 0.0763 0.0615 0.06344 0.0640 0.0766 0.0637 0.0597other 3 0.0620 0.0743 0.0641 0.0632Table 4. RMS error when predi
tivemodels are learned using games from onegroup and tested on games from anothergroup

after making this observation duringour experimentation prior to the 
om-petition, we 
hose to use this strat-egy to learn the predi
tor that Ta
Tex-06 used throughout the 
ompetition.Be
ause there appeared to be littlevariation between the results for dif-ferent agents, we learned a single pre-di
tor before the start of the 
ompeti-tion and did not adapt this predi
torduring the 
ompetition. The predi
torwas trained on all games that we ranbetween di�erent groups of agent bina-ries available at the start of the 2006
ompetition.5.4 Results of the 2006 Final RoundThe results of the 2006 �nal round (
onsisting of 16 games) are shown in Table 5.Although it is diÆ
ult to assign 
redit for an agent's performan
e to parti
ular
omponents, an analysis of the game logs shows that Ta
Tex-06 generally sold
omputers at higher pri
es than other agents, whi
h would suggest that the at-tempt to predi
t 
hanges in 
omputer pri
es paid o�. In fa
t, during the �rst thirdof ea
h game, Ta
Tex-06 had a higher average sales pri
e than any opponent forevery type of 
omputer.Figure 4 shows a 
omparison between the results of using a �xed predi
tivemodel (here we used the model from Se
tion 5.3 that was trained on all gamesfrom Groups 1, 2, and 3, as Group 4 is very similar to the a
tual agents 
ompeting



Rank Agent Average Pro�t1 Ta
Tex-06 $5.85M2 PhantAgent $4.15M3 Deep Maize $3.58M4 Maxon $1.75M5 Botti
elli $0.48M6 MinneTAC -$2.70MTable 5. Results of the 2006 �-nal round
in the �nals) and the results that would havebeen obtained by learning only from 
ompletedgames. To determine the latter for N 
om-pleted games, we averaged the results of 20runs in whi
h we randomly 
hose N games fortraining and used the remaining 16�N gamesas the test set, ex
ept in the 
ases ofN = 1 andN = 15, for whi
h we performed 15 runs by us-ing ea
h game on
e as the training (N = 1) ortesting (N = 15) set. Although we 
ould have simply trained on the �rst N gamesto give the a
tual results that would have been obtained during the 
ompetition,we felt that this would give results that were too noisy. Generating the results aswe did also requires the assumption that game order is insigni�
ant (i.e., no trendof 
hanges as agents adapt over time), whi
h appeared to be the 
ase. The resultsshow that the �xed predi
tor performed as well as or better than the alternativefor at least the �rst 8 games, and somewhat worse afterwards.5.5 Additional Experiments
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Fig. 4. Comparison between the �xed pre-di
tor and learning from games
In order to better measure the ef-fe
t of learning to predi
t 
hangesin 
omputer pri
es on the perfor-man
e of Ta
Tex-06, we performedtwo additional experiments usingvariations of Ta
Tex-06 in whi
hthis ability was weakened or re-moved. In ea
h experiment, 30games were run using the agentsof Group 4 (as this group 
ontainsthe four opponents from the 2006 �nals for whi
h binaries are available), ex
eptthat Ta
Tex-05 was repla
ed with an altered version of Ta
Tex-06. In Experiment1, the altered version predi
ted no 
hanges in 
omputer pri
es, and in Experiment2, the altered version used the heuristi
 from Se
tion 5.2 in pla
e of the learnedpredi
tor. Table 6 shows the di�eren
es between the s
ores and revenues of thenormal and altered versions. Di�eren
es are statisti
ally signi�
ant with 99% 
on-�den
e a

ording to paired t-tests. The di�eren
e between s
ores in ea
h 
ase islarger than Ta
Tex-06's margin of vi
tory, and the di�eren
e is largely a

ountedfor by the loss in revenue. From these results we 
on
lude that learning to predi
tthe 
hanges in 
omputer pri
es had a signi�
ant impa
t on the performan
e ofTa
Tex-06 in the 2006 
ompetition.6 Additional Learning Approa
hesIn the previous se
tion, we 
hose between using a �xed predi
tor trained on a vari-ety of games from our own simulations and the alternative of learning a predi
torusing only the games from the 
urrent round of 
ompetition. In this se
tion, weexplore the use of more sophisti
ated learning approa
hes that make use of bothsour
es of data.



Exp. # Des
ription S
ore Revenue1 no pri
e 
hange predi
tion -4.27M -3.05M2 heuristi
 pri
e 
hange predi
tion -1.79M -1.21MTable 6. Experiments 
omparing the performan
e of one altered version of Ta
Tex-06 and one unaltered version. Numbers represent the di�eren
e between the two.One way to make use of all available game data is to train on some 
ombinationof data from the 
urrent round (whi
h we will 
all \new data") and other sour
es(whi
h we will 
all \old data" and 
ould in
lude games from past rounds orthe simulated 
ompetition of the previous se
tion). This type of approa
h haspreviously been applied to the TAC Travel s
enario (a separate 
ompetition) [8℄.The primary diÆ
ulty with this approa
h is de
iding what the ratio of new datato old data should be. When only a few games have been played, it may be betterto pla
e more weight on old data, but as more games are played, it likely makessense to de
rease the weight of the old data until at some point only new data isused. This hypothesis is supported by Figure 4.We address this issue by using leave-one-out 
ross validation to 
hoose thefra
tion of old data to be added to the 
omplete set of new data. To test a par-ti
ular 
hoi
e of fra
tion when N games are available from the 
urrent round, weuse ea
h game on
e as the testing set while training a predi
tor on the 
ombina-tion of that fra
tion of old data and the remaining N � 1 games. The fra
tionthat produ
es the highest average a

ura
y over all N trials is then 
hosen, andthe predi
tor to be used is trained on all N games plus that fra
tion of the olddata. When only one game is available, we simply set the fra
tion to 1 and useall available old data. It is important to note that when taking a fra
tion of theold data, we are taking that fra
tion from all games, and not all data from thatfra
tion of the games. We note that this approa
h may 
ause a larger fra
tion ofold data to be used than is optimal be
ause evaluations are made using predi
torstrained on N � 1 games instead of the full N games.In the experiments of this se
tion, we apply this approa
h of mixing data tothe 2006 �nal round using all games from Groups 1, 2, and 3 of the previousse
tion as the old data. To 
hoose the fra
tion of old data to use at ea
h step, wetest ea
h of 0, 1, 2, 3, 4, and 5 per
ent as des
ribed and 
hoose the best. Fra
tionsover �ve per
ent do not appear to be needed. As the old data 
onsists of 150games, ea
h per
ent is 1.5 games worth of data. (The use of a more advan
edapproa
h to sear
hing for the best fra
tion might improve a

ura
y somewhat atthe 
ost of more time spent training predi
tors.) Results are shown in Figure 5.The fra
tion of old data determined to be best de
reased from 5% when two gameswere available to 1% when 15 games were available.Instead of 
ombining the old and new data, another possible approa
h is to
ombine the predi
tors themselves into an ensemble. We present here a methodthat is somewhat analogous to the data 
ombination approa
h { instead of �ndingweights for the old and new data, we �nd weights to be used in 
ombining an \oldpredi
tor" and a \new predi
tor" through weighted averaging of their predi
tions.Given two predi
tors and a set of training data, we determine the weights of ea
hpredi
tor by evaluating both predi
tors on ea
h training instan
e and performinglinear regression to �nd the weights that best 
ombine these outputs to mat
h



the 
orre
t labels. It is interesting to note that the weights may not sum to 1 { asum below 1 might indi
ate that the 
hanges in 
omputer pri
es for a parti
ulargroup of agents are less pronoun
ed than for the groups on whi
h the predi
torswere trained. Negative weights are also possible.As with the experiments on 
ombining training data, we apply this approa
hto the 2006 �nal round using predi
tors trained on games from Groups 1, 2, and 3of the previous se
tion as the old predi
tors. To determine the 
orre
t weights, weagain use a form of leave-one-out 
ross validation. As des
ribed above, we performlinear regression on the outputs of both the old and new predi
tors on data fromall available games; however, to determine the outputs of the new predi
tor for aspe
i�
 game, we use a predi
tor trained on all games but that one. This use of
ross-validation is needed to prevent over�tting: if the weight of the new predi
toris determined by performing the regression step on the full new predi
tor itself,the new predi
tor will likely re
eive nearly all of the weight be
ause it was trainedspe
i�
ally on the same data being used to learn the weights. On
e the weightsare determined, the full new predi
tor is trained on all available games and usedalong with the old predi
tor in the ensemble. When only one game is available,the old predi
tor is used by itself.We are now left with the question of whi
h predi
tor to use as the old predi
tor.Rather than using a single predi
tor, we will in fa
t use all of them: the predi
torstrained on ea
h of the three groups alone along with the predi
tor trained on allthree. The regression step des
ribed above 
an be performed using any numberof predi
tors, and so we 
hoose to perform linear regression on �ve variables: aweight for ea
h of the four old predi
tors and a weight for the new predi
tor.For 
omparison, we also present the results of performing regression using onlythe four old predi
tors without learning a new predi
tor. The results of bothapproa
hes are shown in Figure 5.We 
an see from the results that none of the approa
hes des
ribed in thisse
tion signi�
antly outperform the �xed model for the �rst four games, but thatboth the method of 
ombining data and the method of 
ombining new and oldpredi
tors outperform the �xed and learned predi
tors when six or more games areavailable for training. The method of 
ombining new and old predi
tors resultsin the lowest error, and this result is statisti
ally signi�
ant with at least 95%
on�den
e after at least six games have been played.It should be noted that in the a
tual TAC SCM 
ompetition, the long trainingtimes of the learning approa
hes des
ribed in this se
tion would be an issue, asthere is only limited time between games in whi
h to perform learning. Still, theresults of this se
tion suggest that signi�
ant improvement over the methods ofthe previous se
tion should be possible.7 Related WorkA number of agent des
riptions for TAC SCM have been published presenting awide variety of approa
hes to the tasks fa
ed by an agent.4 For instan
e, agents4 See http://ta
.ee
s.umi
h.edu/resear
hreport.html for a 
omplete 
olle
tion ofpapers on TAC agents.
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Fig. 5. Predi
tor a

ura
yhave addressed the problem of bidding on 
ustomer RFQs that is des
ribed in thispaper by using solutions ranging from game-theoreti
 analysis of the e
onomy [9℄to fuzzy reasoning [10℄.The learning approa
h in whi
h we 
ombine previously trained predi
tors is anexample of an online learningmethod designed to make use of a number of experts,a 
lass of methods that has re
eived mu
h attention and in
ludes the weightedmajority algorithm for binary 
lassi�
ation problems [11℄. Rettinger et al. [12℄take a somewhat similar approa
h to modeling opponents in a roboti
 so

ertask. Given a number of existing opponent models, they qui
kly learn a model fora new opponent by using an extension of AdaBoost in whi
h the existing modelsare in
luded among the weak learners used in the boosting pro
ess. In general, themethods des
ribed in Se
tion 6 
an be 
onsidered instan
es of indu
tive transferor transfer learning, in whi
h experien
e with one task or set of tasks is used toimprove learning on another task [13℄.8 Con
lusions and Future WorkIn this paper we des
ribed a number of approa
hes to learning to predi
t 
omputersales pri
es in the TAC SCM domain. The use of this predi
tion was shown tobe an important part of the winning performan
e of Ta
Tex-06 in the 2006 
om-petition. One reason this predi
tion problem is diÆ
ult is that while trends in
omputer pri
es depend on opponent behavior, this behavior is diÆ
ult to modeldire
tly be
ause little information is provided about the a
tions of opponents. Wepresented methods that addressed this diÆ
ulty by modeling the e
onomy itselfand by making use of game simulations involving a variety of opponent strategiesto determine how patterns in 
omputer pri
es vary for di�erent groups of agents.There are many ways in whi
h this work 
ould be extended. The e�e
ts ofa wider variety of opponent behavior 
ould be explored by designing our ownagents to behave in parti
ular ways. Many ensemble methods other than weightedaveraging of predi
tors 
ould be tried. It is not 
lear how adaptation would bea�e
ted if other agents are themselves adapting in ways that impa
t the e
onomi
properties being modeled.



A
knowledgmentsWe would like to thank the SICS team for developing the TAC SCM game serverand all teams that have 
ontributed to the agent repository. This resear
h wassupported in part by NSF CAREER award IIS-0237699 and NSF grant EIA-0303609.Referen
es1. Carmel, D., Markovit
h, S.: Opponent modeling in multi{agent systems. In Wei�,G., Sen, S., eds.: Adaptation and Learning in Multi{Agent Systems. Springer-Verlag:Heidelberg, Germany (1996) 40{522. Hu, J., Wellman, M.P.: Online learning about other agents in a dynami
 multiagentsystem. In Sy
ara, K.P., Wooldridge, M., eds.: Pro
eedings of the 2nd InternationalConferen
e on Autonomous Agents, New York, ACM Press (1998) 239{2463. Sadeh, N., Hildum, D., Kjenstad, D., Tseng, A.: Mas
ot: an agent-based ar
hite
turefor 
oordinated mixed-initiative supply 
hain planning and s
heduling. In Workshopon Agent-Based De
ision Support in Managing the Internet-Enabled Supply-Chain,at Agents '99 (1999)4. Chen, Y., Peng, Y., Finin, T., Labrou, Y., Cost, S.: A negotiation-based multi-agent system for supply 
hain management. In Workshop on Agent-Based De
isionSupport in Managing the Internet-Enabled Supply-Chain, at Agents '99 (1999)5. Collins, J., Aruna
halam, R., Sadeh, N., Eriksson, J., Finne, N., Janson, S.: Thesupply 
hain management game for the 2006 trading agent 
ompetition. Te
hni
alreport (2005) Available from http://www.si
s.se/ta
/ta
06s
mspe
 v16.pdf.6. Pardoe, D., Stone, P.: Ta
Tex-2005: A 
hampion supply 
hain management agent.In: Pro
eedings of the Twenty-First National Conferen
e on Arti�
ial Intelligen
e.(2006) 1489{947. Witten, I.H., Frank, E.: Data Mining: Pra
ti
al Ma
hine Learning Tools and Te
h-niques with Java Implementations. Morgan Kaufmann (1999)8. Stone, P., S
hapire, R.E., Littman, M.L., Csirik, J.A., M
Allester, D.: De
ision-theoreti
 bidding based on learned density models in simultaneous, intera
ting au
-tions. Journal of Arti�
ial Intelligen
e Resear
h 19 (2003) 209{2429. Kiekintveld, C., Wellman, M., Singh, S., Estelle, J., Vorobey
hik, Y., Soni, V.,Rudary, M.: Distributed feedba
k 
ontrol for de
ision making on supply 
hains.In: Fourteenth International Conferen
e on Automated Planning and S
heduling.(2004)10. He, M., Rogers, A., Luo, X., Jennings, N.R.: Designing a su

essful trading agent forsupply 
hain management. In: AAMAS '06: Pro
eedings of the Fifth InternationalJoint Conferen
e on Autonomous Agents and Multiagent Systems, New York, NY,USA, ACM Press (2006) 1159{116611. Littlestone, N., Warmuth, M.: The weighted majority algorithm. Information andComputation 108 (1994) 212{26112. Rettinger, A., Zinkevi
h, M., Bowling, M.: Boosting expert ensembles for rapid
on
ept re
all. In: Pro
eedings of the Twenty-First National Conferen
e on Arti�
ialIntelligen
e. (2006)13. Thrun, S., Pratt, L., eds.: Learning To Learn. Kluwer A
ademi
 Publishers (1997)


