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Abstract— While classical autonomous navigation systems
can typically move robots from one point to another safely
and in a collision-free manner, these systems may fail or
produce suboptimal behavior in certain scenarios. The cur-
rent practice in such scenarios is to manually re-tune the
system’s parameters, e.g. max speed, sampling rate, inflation
radius, to optimize performance. This practice requires expert
knowledge and may jeopardize performance in the originally
good scenarios. Meanwhile, it is relatively easy for a human
to identify those failure or suboptimal cases and provide a
teleoperated intervention to correct the failure or suboptimal
behavior. In this work, we seek to learn from those human
interventions to improve navigation performance. In partic-
ular, we propose Adaptive Planner Parameter Learning from
Interventions (APPLI), in which multiple sets of navigation
parameters are learned during training and applied based on a
confidence measure to the underlying navigation system during
deployment. In our physical experiments, the robot achieves
better performance compared to the planner with static default
parameters, and even dynamic parameters learned from a full
human demonstration. We also show APPLI’s generalizability in
another unseen physical test course, and a suite of 300 simulated
navigation environments.

I. INTRODUCTION

Decades of research has been devoted to developing
mobile robot navigation systems that are capable of mov-
ing a robot safely from one point to another in obstacle-
occupied spaces without collisions. Classical navigation sys-
tems, such as Elastic-Bands [1] or Dynamic Window Ap-
proach (DWA) [2], have been robustly deployed on mobile
robots with verifiable guarantees of safety and explainability
and are able to achieve optimal navigation in most cases.

However, in some situations, those classical navigation
systems fail or suffer from suboptimal behaviors (Fig. 1).
For example, the robot may not be able to find a feasible
action in highly-constrained spaces [3], [4], or may drive
unnecessarily slowly in open spaces [5]. The current solution
to these problems is to manually re-tune the parameters of the
underlying navigation system (e.g. max speed, sampling rate,
inflation radius) to correct the failure cases or suboptimal
behaviors in those places. This re-tuning process not only
requires expert knowledge onsite during deployment, but also
runs the risk of the re-tuned parameters targeted at the failed
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Fig. 1. While classical navigation systems perform well in most places
(green), they may fail (red) or suffer from suboptimal behavior (yellow)
in others. APPLI utilizes human interventions in these two scenarios (we
name them Type A and Type B interventions, respectively) to learn adaptive
planner parameters and, based on a confidence measure, uses them during
deployment.

or suboptimal comprising performance in the originally good
scenarios.

Meanwhile, even a non-expert user (i.e., one who is not
familiar with the inner workings of the underlying navigation
system) can easily identify the situations where the robot
fails or performs suboptimally by watching, and then can
intervene by teleoperating the vehicle. In this work, we uti-
lize those human interventions to improve future autonomous
navigation in those troublesome places, while maintaining
good performance in others.

In particular, we introduce Adaptive Planner Parameter
Learning from Interventions (APPLI). With a set of teleop-
erated human interventions, APPLI learns a set of navigation
parameters, which are selected dynamically to eliminate
failures or suboptimal behaviors during deployment. To
assure the learned parameters will not jeopardize navigation
performance in other places, the robot only uses the learned
parameters when it is confident that they will benefit the
current navigation. In our experiments, APPLI learns from in-
terventions in a real-world navigation task. We test APPLI in
the same training and another unseen physical environment.
More than twenty thousands simulation trials are conducted
in unseen environments to test APPLI’s generalizability. Our
results show APPLI can improve upon default navigation
performance and can generalize well to unseen environments,
indicating that interventions are a uniquely valuable form of
human interaction for building navigation systems.

II. RELATED WORK

In this section, we review existing work on adaptive plan-
ner parameters, learning from intervention, and uncertainty
measurement in deep learning.



A. Adaptive Parameters for Classical Navigation

Classical navigation methods enjoy safety, explainability,
and stable generalization to new environments. However,
when facing new environments, they still need a great deal of
tuning, which often requires expert robotics knowledge [6],
[7]. Prior work has considered automated parameter tuning,
e.g., finding trajectory optimization weights [8] for the DWA
planner [2], or designing novel systems that can leverage
gradient descent to match expert demonstrations [9]. Specif-
ically, Xiao et al [10] adopted black-box optimization to
automatically map a robot’s local observation to the optimal
planner parameters via learning from human demonstration.
While this technique can be applied to any parameter-based
planner, it is not expected to generalize well in environments
not seen in the demonstration. In contrast, APPLI only
requires a few, short, local interventions when classical nav-
igation does not perform well, instead of a demonstration of
the full trajectory. APPLI also includes confidence estimation
over candidate planner parameters during deployment in
unseen environments. Notably, in the worst case our method
reduces to the planner with default parameters, rather than
a poorly chosen parameter set, and therefore enjoys better
generalization.

B. Learning from Intervention

Due to the cost of providing full demonstrations, human
intervention is a popular approach to providing minimal
guidance for learning. It has been widely used in reinforce-
ment learning [11], [12] and imitation learning [13]–[17].
Learning from intervention essentially focuses the agent on
learning from its mistakes, thus improving the data efficiency
and reducing the demonstration cost. In this work, we
leverage the benefits of learning from intervention to enable
robust robot navigation, and further categorize interventions
based on the expert’s estimation of the necessity of such
interventions.

C. Measuring Uncertainty in Deep Learning

Recent advances in deep learning have provided a family
of tools for measuring the uncertainty in a deep model’s
prediction. There are mainly three types of approaches. (1)
Bayesian Neural Networks (BNN) represent distributions
over network weights and the prediction uncertainty is
indirectly inferred via weight uncertainty [18]; (2) Deep
Ensemble (DE) uses the outputs from multiple networks,
each trained with partial data, as a Monte-Carlo estimator
for uncertainty [19]. A specific example is Dropout learning
[20]; (3) Other methods train a single network with stationary
weights but directly model the predictions in terms of a
distribution. Evidential Deep Learning (EDL) [21] is one
particular method that models a discrete class of predictions
with a Dirichlet distribution. We incorporate EDL into APPLI
due to its simplicity and efficiency in terms of both time and
space complexity, compared to methods from the other two
approaches, which is essential for robot learning.

III. APPROACH

In this section, we introduce our method, APPLI, which
has two novel features: (1) compared with Learning from
Demonstration that requires demonstration of the whole
task, APPLI only needs a few interventions in challenging
scenarios where the default navigation system does not
work well; (2) with a confidence measure on candidate
parameters learned from interventions, our method knows
when to switch back to the default parameters. This confi-
dence measure enables APPLI to generalize well to unseen
environments.

A. Problem Definition

We denote a classical parameterized navigation system as
G : X × Θ → A, where X is the state space of the robot
(e.g. goal, sensor observations), Θ is the parameter space for
G (e.g. max speed, sampling rate, inflation radius), and A is
the action space (e.g. linear and angular velocities). During
deployment, the navigation system repeatedly estimates state
x and takes action a calculated as a = G(x; θ̄). Typically, the
default parameter set θ̄ is tuned by a human designer trying to
achieve good performance in most environments. However,
being good at everything often means being great at nothing:
θ̄ usually exhibits suboptimal performance in some situations
and may even fail (is unable to find feasible motions, or
crashes into obstacles) in particularly challenging ones.

To mitigate this problem, a human can supervise the
navigation system’s performance at state x by observing its
action a and judging whether (s)he should intervene. Here,
we consider two types of interventions. A type A intervention
is one in which the system performs so poorly that the
human must intervene (e.g. imminent collision or a signal
for help). A type B intervention is one in which a human
might intervene in order to improve otherwise suboptimal
performance (e.g., driving too slowly in an open space).
For the ith intervention, we assume that the human resets
the robot to the position where the failure or suboptimal
behavior first occurred and then gives a short teleoperated
intervention Ii = {xt, at}Ti

t=1 of length Ti, where x1:Ti
is the

trajectory starting from the reset state induced by intervention
actions a1:Ti

. As this short demonstration shows a cohesive
navigation behavior in a specific segment of the environment
(open space, narrow corridor, etc), we refer to the segment as
a context ci and denote the space of contexts as C. Given N
interventions I1:N , APPLI finds (1) a mapping M : C → Θ
that determines the parameter set θi for each intervention
context ci, and (2) a parameterized predictor Bφ : X → C
that determines to which context (if any) the current state x
belongs.

B. Parameter Learning

After collecting a set of N interventions I1:N , for each
Ii, we learn a set of navigation parameters θi that can best
imitate the demonstrated correction. To find such parameters,
we use the same training procedure as in the approach by
Xiao et al [10], i.e., we use Behavior Cloning to minimize
the difference between the actions from the human and those



generated by the navigation system with new parameters θi.
To be specific,

θi = arg min
θ

∑
(x,a)∈Ii

‖a−G(x; θ)‖λ, (1)

where ‖d‖λ =
∑
λid

2
i is the norm of the action difference

with λ weighting the different action dimensions (in our case,
linear and angular velocity, v and ω). The loss in Eqn. (1)
is minimized with a black-box optimizer, such as CMA-
ES [22]. After identifying parameters in each context, the
mapping M is simply M(i) = θi.

C. Confidence-Based Context Prediction

So far, we have described how to learn multiple parameter
sets θ1:N from human interventions I1:N in contexts c1:N .
In order to select the correct parameters at deployment time,
we must also determine if the current state xt falls into
any one of the collected intervention contexts ci. If such
a determination can be made, then we direct the robot to
use the parameter set θi to avoid making the same mistake
as before. If it cannot be determined that xt belongs to
a particular intervention context, then we direct the robot
to use the default parameters θ̄, as they are optimized for
most cases and are expected to generalize better than any
parameter set learned for a specific scenario. In our system,
the determination above is made using a predictor, Bφ. To
train this predictor, we first use the collected interventions to
build a dataset, {{xt, ci}Ti

t=1}Ni=1, and train an intermediate
classifier fφ(x) with parameter set φ using the Evidential
Deep Learning method (EDL) [21]. A feature of EDL is that
it supplies both a predicted label prediction and a confidence
in that prediction ui ∈ (0, 1], i.e.,

fφ(xi) = (ci, ui). (2)

After training fφ and during deployment, we can build a
confidence-based classifier gφ as

gφ(xi) = ci1(ui ≥ εu), (3)

where εu is the threshold on confidence and 1 is the indicator
function. For state xi, gφ determine its context from N + 1
contexts (N intervention contexts and 1 default context).
If ui ≥ εu, it suggests the classifier fφ is confident and
gφ predicts ci. Otherwise, when fφ is unsure about its
prediction, ci1{ui ≥ εu} = 0. In this case, gφ believes the
current state xi is not similar to any intervention context and
instead classifies xi as the default context. For this default
context labeled as ci = 0, navigation utilizes the default
navigation parameters θ̄ (i.e., we set M(0) = θ̄).

Then we define our context predictor Bφ as:

Bφ(xt) = mode({gφ(xi)}ti=t−w+1). (4)

To avoid a context estimation ct that changes frequently (e.g.
caused by gφ’s wrong classifications), Bφ acts as a mode
filter with window length w and chooses the context ct that
the majority of classifications agree with over the past w
time steps.

D. APPLI

Putting together all the components presented above, the
entire APPLI pipeline is summarized in Alg. 1. In the training
stage, it collects N interventions from a human supervisor
(line 1), and then learns corresponding navigation parameters
θ1:N i.e., the mapping M (lines 2-3) and a context predictor
Bφ (lines 5-6). During deployment, we use M(Bφ(xt)) to
select the parameters for the navigation system at time t
(lines 8-10).

Algorithm 1: APPLI

1 Training
Input: human interventions I1:N = {{xt, at}Ti

t=1}Ni=1,
navigation system G, parameter space Θ.

2 for i = 1, . . . , N do
3 find parameter θi for context i using Eqn. (1).
4 end
5 train the context classifier fφ on {{xt, ci}Ti

t=1}Ni=1.
6 build mapping M(i) = θi and context predictor

Bφ(x).
7 Deployment

Input: navigation system G, parameter mapping M ,
context predictor Bφ(x), confidence threshold
εu, fallback parameters θ̄.

8 for t = 1, . . . do
9 identify the current context ct = Bφ(xt) with

confidence threshold εu.
10 navigate with G(xt,M(ct)).
11 end

IV. EXPERIMENTS
In our experiments, we aim to show that APPLI can

improve navigation performance by learning from only a
few interventions and, with the confidence measurement,
that the overall system can generalize well to unseen en-
vironments. We apply APPLI on a ClearPath Jackal ground
robot in a physical obstacle course. Navigation performance
learned through APPLI is then tested both in the same
training environment, and also in another unseen physical
test course. Furthermore, to investigate generalizability, we
test the learned systems on a benchmark suite of 300 unseen
simulated navigation environments.

A. APPLI Implementation

Our Jackal is a differential-drive robot equipped with a
Velodyne LiDAR that we use to compute a 720-dimensional
planar laser scan with a 270◦ field of view. The robot uses
the Robot Operating System move base navigation stack
with Dijkstra’s global planner and the default DWA local
planner, which works in most situations, but fails or behaves
suboptimally in others (see Fig. 1).

During data collection, one of the authors (the intervener)
follows the robot through the test course and intervenes when
necessary, reporting if the intervention is to drive the robot
out of a failure case (Type A) or to correct a suboptimal
behavior (Type B). The four interventions are shown in Fig.
1: before the two Type A interventions (shown in red), the



default system (DWA with θ̄) fails to plan feasible motions
and starts recovery behaviors (rotates in place and moves
backward); before the two Type B interventions (shown in
yellow), the robot drives unnecessarily slowly in a relatively
open space and enters the narrow corridor with unsmooth
motions. For every intervention, the intervener stops the
robot, drives it back to where they deem the failure or sub-
optimal behavior to have begun, and then provides recorded
teleoperation I that avoids the problematic behavior. To
compare the performance learned from interventions and
learned from a full demonstration, we also collect extra
demonstrations for those places where the default planner
already works very well (denoted in green in Fig. 1).

This set of interventions comprises the input I1:N =
{{xt, at}Tt=1}Ni=1 to Alg. 1, where xt is all the sensory data
fed into the move base stack, G, and at is the linear and
angular velocity (v and ω) from teleoperation. The default
and learned parameters are shown in Tab. I, including those
learned from Type A and B interventions (A1, A2 and B1,
B2), and the extra demonstrations (D1, D2).

TABLE I
Default and Learned Planner Parameters:

max vel x (v), max vel theta (w), vx samples (s), vtheta samples (t),
occdist scale (o), pdist scale (p), gdist scale (g), inflation radius (i)

v w s t o p g i

DEF. 0.50 1.57 6 20 0.10 0.75 1.00 0.30

A1 0.26 2.00 13 44 0.57 0.76 0.94 0.02
A2 0.22 0.87 13 31 0.30 0.36 0.71 0.30

B1 1.91 1.70 10 47 0.08 0.71 0.35 0.23
B1 0.72 0.73 19 59 0.62 1.00 0.32 0.24

D1 0.37 1.33 9 6 0.95 0.83 0.93 0.01
D2 0.31 1.05 17 20 0.45 0.61 0.22 0.23

B. Physical Experiments

After the training in Alg. 1 with the collected inter-
ventions, we deploy the learned mapping M and context
predictor Bφ on the move base navigation stack G. We
use a confidence threshold εu = 0.8.

We first deploy APPLI in the same training physical
environment (Fig. 1). We compare the performance of the
DWA planner with default parameters, APPLI learned only
with Type A interventions, APPLI learned with Type A
and Type B interventions, and APPLI learned with a full
demonstration (which is basically the APPLD framework [10]
enhanced by the confidence measure). The motivation for the
variation of APPLI learned only with Type A interventions is
to study the effect of an unfocused or inexperienced human
intervener. In this case, the human would still conduct all
Type A interventions, as those mistakes are severe and easy
to identify—some robots may even actively ask for help
(e.g. by starting recovery behaviors). However, the human
may fail to conduct Type B interventions as (s)he is not
paying attention, or isn’t equipped with the knowledge to

TABLE II
Traversal Time in Training Environment

Default Type A Type A+B Full Demo

134.0±60.6s 77.4±2.8s 70.6±3.2s 78.0±2.7s

Fig. 2. APPLI Running in an Unseen Physical Environment

identify suboptimal behaviors. For all methods, we run five
trials each and report the mean and standard deviation of the
traversal time in Tab. II. If the robot gets stuck, we introduce
a penalty value of 200 seconds. We also deploy the same sets
of variants in an unseen physical environments (Fig. 2) and
report the results in Tab. III.

For both training and unseen environments, Type A inter-
ventions alone significantly improve upon the default param-
eters, by correcting all recovery behaviors such as rotating
in place or driving backwards, and eliminating all failure
cases. Adding Type B interventions further reduces traversal
time, since the robot learns to speed up in relatively open
spaces and to execute smooth motion when the tightness
of the surrounding obstacles changes. All the interventions
are able to improve navigation in both training and unseen
environments, suggesting APPLI’s generalizability. Surpris-
ingly, in both environments, APPLI learned from only Type
A and Type B interventions can even outperform APPLI
learned from an entire demonstration. One possible reason
for this better performance from fewer human interactions
is the additional human demonstrations may be subopti-
mal, especially since they are collected in places where
the default navigation system was already deemed to have
performed well. For example, in the full demonstration, we
find the human intervener is more conservative than the
default navigation system and drives slowly in some places.
Hence, learning from these suboptimal behaviors introduces
suboptimal parameters and consequently worse performance
in contexts similar to that intervention.

TABLE III
Traversal Time in Unseen Environment

Default Type A Type A+B Full Demo

109.2±50.8s 71.0±0.7s 59.0±0.7s 62.0±2.0s



TABLE IV
Percentage of Simulation Environments that Method 1 is Significantly Worse than Method 2 in Terms of Traversal Time

(Methods are listed in order of increasing performances. Results mentioned in experiment analysis are bold for better identification)

Method 2
APPLI (A) DWA APPLI (A+c) APPLI (A+B+D+c) APPLI (A+B+D) APPLI (A+B+c) APPLI (A+B)

Method
1

APPLI (A) 0 50 53 62 63 68 66
DWA 10 0 6 33 40 44 47
APPLI (A+c) 6 4 0 31 37 45 45
APPLI (A+B+D+c) 5 7 11 0 25 31 33
APPLI (A+B+D) 5 7 7 10 0 21 21
APPLI (A+B+c) 3 3 4 3 5 0 9
APPLI (A+B) 2 5 5 6 4 6 0

Fig. 3. Navigation Trials in Example Environments with Low, Medium,
and High Difficulty Levels

Fig. 4. Average Performance in 300 Simulation Environments under 12
Different Runs

C. Simulated Experiments

To further test APPLI’s generalizability to unseen envi-
ronments, we test our method with multiple variations and
compare them with DWA on the Benchmark for Autonomous
Robot Navigation (BARN) dataset [23]. The benchmark
dataset consists of 300 simulated navigation environments
generated using Cellular Automata, ranging from easy ones
with a lot of open spaces to challenging ones where the
robot needs to get through dense obstacles. Navigation trials
in three example environments with low, medium, and high
difficulty levels are shown in Fig. 3. Using the same training
data collected from the physical environment shown in Fig. 1,
we test the following seven variants:

• APPLI learned from Type A and B inventions with
confidence measure, denoted as APPLI (A+B+c).

• APPLI learned from Type A and B inventions without
confidence measure, i.e., APPLI (A+B).

• APPLI learned from only Type A interventions with
confidence measure, i.e., APPLI (A+c).

• APPLI learned from only Type A interventions without
confidence measure, i.e., APPLI (A).

• APPLI learned from full demonstration with confidence
measure, i.e., APPLI (A+B+D+c).

• APPLI learned from full demonstration without confi-
dence measure, i.e., APPLI (A+B+D).

• the DWA planner with default parameters.

Testing these variations aims at studying the effect of
learning from different modes of interventions caused by
different degrees of human attention and experience levels,
i.e. imperative interventions (A), optional interventions (A
+ B), and a full demonstration (A + B + D). They also
provide an ablation study for the confidence measure in
the EDL context classifier fφ: when deployed without the
confidence measure, the robot has to choose among the
parameters learned from interventions and never uses the
default parameters.

For each method in each simulation environment, we
measure the traversal time for 12 different runs (the run
is terminated after 50s if the robot gets stuck), resulting in
25200 total navigation trials. The average traversal time for
each method in all simulation environments are shown in
order of increasing performance in Fig. 4. We then conduct
a pair-wise t-test for all methods in order to compute the
percentage of environments in which one method (denoted
as Method 1) is significantly worse (p < 0.05) than another
(denoted as Method 2). For better illustration, we also reorder
the method by their performance and show the pairwise
comparison in Tab. IV.

APPLI (A+B+c) and APPLI (A+B+D+c) outperform DWA:
they are significantly better in 44% and 33% of environ-
ments respectively and significantly worse in only 3% and
7% of environments than DWA. However, APPLI (A+c) is
only significantly better than DWA 6% of the time, which
suggests that even though type B inventions only correct
suboptimal performances, they are crucial for performance
improvement. In detail, as the robot learns to go through
narrow passages from Type A interventions, the first Type
B intervention further teaches the robot to drive fast in
safe open spaces, significantly reducing the traversal time
for simulation environments whose beginnings and ends



are relatively open. Meanwhile, from the second Type B
intervention, the robot learns how to take sharp turns despite
constrained surroundings.

In terms of the effect of confidence, APPLI (A) only selects
parameters learned from 2 Type A inventions and never uses
the default parameters even when they are more appropriate.
Removing confidence greatly harms its performance, making
it significantly worse than APPLI (A+c) in 53% of environ-
ments. However, APPLI (A+B+c) and APPLI (A+B+D+c),
which use more interventions or even the full demonstration
to train the parameter mapping M and context predictor Bφ
are more confident about their predictions most of the time.
As a result, removing confidence in the context predictor
doesn’t result in a significant difference.

Lastly, a conterintuitive, but similar result as in the phys-
ical experiments is that compared with APPLI (A+B+D+c)
which uses the full demonstration, APPLI (A+B+c) learned
from only Type A and B interventions achieves supe-
rior performance by being significantly better than APPLI
(A+B+D+c) and APPLI (A+B+D) in 31% and 21% of the en-
vironments, respectively. However, similar to the discussions
about physical experiments, unnecessary human demonstra-
tions are most likely suboptimal. In this sense, APPLI not
only reduces the required human interactions from a full
demonstration to only a few interventions, but also reduces
the chance of performance degradation caused by suboptimal
demonstrations.

V. CONCLUSIONS

In this work, we introduce APPLI, Adaptive Planner Pa-
rameter Learning from Interventions. In contrast to most
existing end-to-end machine learning for navigation ap-
proaches, APPLI utilizes existing classical navigation sys-
tems and inherits all their benefits, such as safety and
explainability. Furthermore, instead of requiring a full expert
demonstration or random exploration based on trial-and-
error, APPLI only needs a few interventions, where the default
underlying navigation system fails or exhibit poor behavior.
It also introduces a confidence measure to assure generaliz-
ability in unseen environments. We show APPLI’s improved
performance in training and unseen physical environments.
We further test APPLI’s generalizability with 25200 simulated
navigation trials in 300 unseen environments. While we allow
the intervener to start interventions by rewinding the robot
navigation to a state before the failure or suboptimal behavior
occurs, an interesting direction for future work is to further
investigate interventions without “rewinding”, i.e. where the
intervener takes over from where the robot fails and drives
it forward to a good state.
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