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AD HOC TEAMWORK & ITS CHALLENGES
Ad Hoc Teamwork

• Create an adaptive agent (learner) that can collaborate with others with-
out prior coordination mechanisms

• Train learner policy (π∗,i) with training set of teammate policies (Πtrain)

• Given a holdout set of teammate policies, Πeval, evaluate the expected
returns of π∗,i defined below:
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Challenges

• Πeval is unknown when training the learner

• Cannot train with the infinite set of all teammate policies (Π)

• Πtrain not necessarily representative of Πeval

EXPERIMENT RESULTS

Generalization Experiments
(Baselines) Teammate policy generation

methods maximizing adversarial
diversity

(Experiment Protocol) With Πtrain gen-
erated by each compared method,
train the learner and evaluate its re-
turns when dealing with holdout
policies in Πeval
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Analysis of Generated Policies

π(A) π(B) π(C)
1 1 0 0
2 0 1 0
3 0 0 1

(a) Repeated Matrix Game

 

(b) (Weighted)
Coop Reaching

 

(c) LBF

• L-BRDiv facilitates the discovery of Πtrain having
more members with different BR policies

• The BR policies of Πtrain encompass all members of
the MCS

Lagrange Multiplier Analysis

• Lagrange multipliers keep increas-
ing while constraints are violated

• Eventually, the Lagrange multipli-
ers converge to zero once con-
straints are fulfilled
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IDEAL TEAMMATE POLICY GENERATION METHOD

Set of Teammate
Policies ( )

MCS(E)

(a) MCS

Sample Teammate
Policies

(b) MCS-based Policy
Generation Method

AHT Training

AHT Agent Emulates

Interaction

(c) An Ideal AHT Learner

1. Find the minimum coverage set (MCS).

2. For each πi ∈ MCS, sample π−i that
has πi as its best-response (BR) policy
and include as part of Πtrain.

Goal:

• Enable learner to emulate BR policy to
any π−i ∈ Π.

LAGRANGIAN BEST RESPONSE DIVERSITY (L-BRDIV)

Generate Πtrain = {π−i}Ki=1 and their set of BR poli-
cies {πi}Ki=1 by optimizing the following objective:

max
{πi}K

i=1
⊆Π,

{π−i}K
i=1

⊆Π

∑

i∈{1,2,...,K}

Es∼p0
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with the following constraints that must be fulfilled
for all i, j ∈ {1, 2, . . . ,K} and i ̸= j:

Es∼p0
[Rj,−i(Ht)] + τ ≤ Es∼p0

[Ri,−i(Ht)] , (3)
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[Ri,−i(Ht)] . (4)

Self-play interaction 

Cross-play interaction 

Self-play return estimates 

Cross-play return estimates 
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Maximize objective via MAPPO

Maximize objective via MAPPO

Minimize
objective via

gradient
descent

SUMMARY & FUTURE WORK

Our Contributions

• Important concept (i.e. minimum coverage sets) for
generating Πtrain that enable training robust AHT agents

• A Lagrangian multiplier-based teammate generation
method (i.e. L-BRDiv) that outperforms existing state-
of-the-art baselines

Future Work

• Extend agent generation method to general-sum games

• Generalizing to N-Player games
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