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APPLD: Adaptive Planner Parameter
Learning from Demonstration

Xuesu Xiao1∗, Bo Liu1∗, Garrett Warnell2, Jonathan Fink2, and Peter Stone1

Abstract—Existing autonomous robot navigation systems allow
robots to move from one point to another in a collision-free
manner. However, when facing new environments, these systems
generally require re-tuning by expert roboticists with a good
understanding of the inner workings of the navigation system.
In contrast, even users who are unversed in the details of
robot navigation algorithms can generate desirable navigation
behavior in new environments via teleoperation. In this paper,
we introduce APPLD, Adaptive Planner Parameter Learning from
Demonstration, that allows existing navigation systems to be
successfully applied to new complex environments, given only
a human-teleoperated demonstration of desirable navigation.
APPLD is verified on two robots running different navigation
systems in different environments. Experimental results show
that APPLD can outperform navigation systems with the default
and expert-tuned parameters, and even the human demonstrator
themselves.

Index Terms—Learning from Demonstration; Autonomous
Vehicle Navigation; Imitation Learning

I. INTRODUCTION

DESIGNING autonomous robot navigation systems has
been a topic of interest to the research community

for decades. Indeed, several widely-used systems have been
developed and deployed that allow a robot to move from one
point to another [1], [2], often with verifiable guarantees that
the robot will not collide with obstacles while moving.

However, while current navigation systems indeed allow
robots to autonomously navigate in known environments, they
often still require a great deal of tuning before they can be
successfully deployed in new environments. Adjusting the
high-level parameters, or hyper-parameters, of the navigation
systems can produce completely different navigation behav-
iors. For example, wide open spaces and densely populated
areas may require completely different sets of parameters
such as inflation radius, sampling rate, planner optimization
coefficients, etc. Re-tuning these parameters requires an expert
who has a good understanding of the inner workings of the
navigation system. Even Zheng’s widely-used full-stack navi-
gation tuning guide [3] asserts that fine-tuning such systems is
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Fig. 1. Overview of APPLD: human demonstration is segmented into different
contexts, for each of which, a set of parameters θ∗k is learned via Behavior
Cloning. During deployment, proper parameters are selected by an online
context predictor.

not as simple as it looks for users who are “sophomoric” about
the concepts and reasoning of the system. Moreover, tuning a
single set of parameters assumes the same set will work well
on average in different regions of a complex environment,
which is often not the case.

In contrast, it is relatively easy for humans—even those
with little to no knowledge of navigation systems—to gen-
erate desirable navigation behavior in new environments via
teleoperation, e.g., by using a steering wheel or joystick. It
is also intuitive for them to adapt their specific navigation
strategy to different environmental characteristics, e.g., going
fast in straight lines while slowing down for turns.

In this paper, we investigate methods for achieving au-
tonomous robot navigation that are adaptive to complex en-
vironments without the need for a human with expert-level
knowledge in robotics. In particular, we hypothesize that
existing autonomous navigation systems can be successfully
applied to complex environments given (1) access to a human
teleoperated demonstration of competent navigation, and (2)
an appropriate high-level control strategy that dynamically
adjusts the existing system’s parameters.

To this end, we introduce a novel technique called Adaptive
Planner Parameter Learning from Demonstration (APPLD) and
hypothesize that it can outperform default or even expert-
tuned navigation systems on multiple robots across a range
of environments. Specifically, we evaluate it on two different
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robots, each in a different environment, and each using a
different underlying navigation system. Provided with as little
as a single teleoperated demonstration of the robot navigating
competently in its environment, APPLD segments the demon-
stration into contexts based on sensor data and demonstrator
behavior and uses machine learning both to find appropriate
system parameters for each context and to recognize particular
contexts from sensor data alone (Fig. 1). During deployment,
APPLD provides a simple control scheme for autonomously
recognizing context and dynamically switching the underly-
ing navigation system’s parameters accordingly. Experimental
results confirm our hypothesis: APPLD can outperform the
underlying system using default parameters and parameters
tuned by human experts, and even the performance of the
demonstrator.

II. RELATED WORK

This section summarizes related work on parameter tuning,
machine learning for robot navigation, and task demonstration
segmentation, also known as changepoint detection.

A. Parameter Tuning

Broadly speaking, APPLD seeks to tune the high-level pa-
rameters of existing robot navigation systems. For this task,
Zheng’s guide [3] describes the current common practice of
manual parameter tuning, which involves robotics experts
using intuition, experience, or trial-and-error to arrive at a rea-
sonable set of parameters. As a result, some researchers have
considered the problem of automated parameter tuning for
navigation systems, e.g., dynamically finding trajectory opti-
mization weights [4] for a Dynamic Window Approach (DWA)
planner [1], optimizing two different sets of DWA parameters
for straight-line and U-turn scenarios [5], or designing novel
systems that can leverage gradient descent to match expert
demonstrations [6]. While such approaches do successfully
perform automatic navigation tuning, they are thus far tightly
coupled to the specific system or scenario for which they
are designed and typically require hand-engineered features.
In contrast, the proposed automatic parameter tuning work is
more broadly applicable: APPLD treats the navigation system
as a black box, and it does not require hand-engineering of
features.

B. Machine Learning for Navigation

Researchers have also considered using machine learn-
ing, especially Learning from Demonstration [7] or Imitation
Learning [8], more generally in robot navigation, i.e., beyond
tuning the parameters of existing systems. One such approach
is that of using inverse reinforcement learning to estimate costs
over driving styles [9], social awareness [10]–[12], and seman-
tic terrain labels [13] from human demonstrations, which can
then be used to drive classical planning systems. Other work
has taken a more end-to-end approach, performing navigation
by learning functions that map directly from sensory inputs
to robot actions [14], [15]. In particular, recent work in
this space from Kahn et al. [16] used a neural network to

directly assign costs to sampled action sequences using camera
images. Because these types of approaches seek to replace
more classical approaches to navigation, they also forgo the
robustness, reliability, and generality of those systems. For
example, Kahn et al. reported the possibility of catastrophic
failure (e.g., flipping over) during training. In contrast, the
work we present here builds upon traditional robot navigation
approaches and uses machine learning to improve them only
through parameter tuning, which preserves critical system
properties such as safety.

C. Temporal Segmentation of Demonstrations

APPLD leverages potentially lengthy human demonstrations
of robotic navigation. In order to effectively process such
demonstrations, it is necessary to first segment these demon-
strations into smaller, cohesive components. This problem
is referred to as changepoint detection [17], and several
researchers concerned with processing task demonstrations
have proposed their own solutions [18]–[22]. Our work lever-
ages these solutions in the context of learning from human
demonstrations of navigation behavior. Moreover, unlike [20],
we use the discovered segments to then train a robot for—and
deploy it in—a target environment.

III. APPROACH

To improve upon existing navigation systems, the problem
considered here is that of determining a parameter-selection
strategy that allows a robot to move quickly and smoothly to
its goal.

We approach this problem as one of learning from human
demonstration. Namely, we assume that a human can provide
a teleoperated demonstration of desirable navigation behavior
in the deployment environment and we seek to find a set of
planner parameters that can provide a good approximation of
this behavior. As we will show in Section IV, when faced
with a complex environment, a human demonstrator naturally
drives differently in each regions of the environment such that
no single set of planner parameters can closely approximate
the demonstration in all states. To overcome this problem,
the human demonstration is divided into pieces that include
consistent sensory observations and navigation commands.
By segmenting the demonstration in this way, each piece—
which we call a context—corresponds to a relatively cohesive
navigation behavior. Therefore, it becomes more feasible to
find a single set of planner parameters that imitates the
demonstration well for each context.

A. Problem Definition

We assume we are given a robot with an existing navigation
planner G : X × Θ → A. Here, X is the state space
of the planner (e.g., current robot position, sensory inputs,
navigation goal, etc.), Θ is the space of free parameters for G
(e.g., sampling density, maximum velocity, etc.), and A is the
planner’s action space (e.g., linear and angular velocity). Using
G and a particular set of parameters θ, the robot performs
navigation by repeatedly estimating its state x and applying
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action a = G(x; θ) = Gθ(x). Importantly, we treat G as a
black-box, e.g., we do not assume that it is differentiable, and
we need not even understand what each component of θ does.
In addition, a human demonstration of successful navigation
is recorded as time series data D = {xDi , aDi , tDi }Ni=1, where
N is the length of the series, and xDi and aDi represent the
robot state and demonstrated action at time tDi . Given G and
D, the particular problem we consider is that of finding two
functions: (1) a mapping M : C → Θ that determines planner
parameters for a given context c, and (2) a parameterized
context predictor Bφ : X → C that predicts the context given
the current state. Given M and Bφ, our system then performs
navigation by selecting actions according to G(x;M(Bφ(x))).
Note that since the formulation presented here involves only
changing the parameters of G, the learned navigation strategy
will still possess the benefits that many existing navigation
systems can provide, such as assurance of safety.

B. Demonstration Segmentation

Provided with a demonstration, the first step of the proposed
approach is to segment the demonstration into pieces—each
of which corresponds to a single context only—so that further
learning can be applied for each specific context. This general
segmentation problem can be, in principle, solved by any
changepoint detection method [17]. Given D, a changepoint
detection algorithm Asegment is applied to automatically detect
how many changepoints exist and where those changepoints
are within the demonstration. Denote the number of change-
points found by Asegment as K − 1 and the changepoints
as τ1, τ2, . . . , τK−1 with τ0 = 0 and τK = N + 1, the
demonstration D is then segmented into K pieces {Dk =
{xDi , aDi , tDi | τk−1 ≤ i < τk}}Kk=1.

C. Parameter Learning

Following demonstration segmentation, we then seek to
learn a suitable set of parameters θ∗k for each segment Dk =
{xDi , aDi , tDi | τk−1 ≤ i < τk}. To find this θ∗k, we employ
behavioral cloning (BC) [23], i.e., we seek to minimize the
difference between the demonstrated actions and the actions
that Gθk would produce on {xDi }. More specifically,

θ∗k = argmin
θ

∑
(x,a)∈Dk

||a−Gθ(x))||H , (1)

where ||v||H = vTHv is the induced norm by a diagonal
matrix H with positive real entries, which is used for weight-
ing each dimension of the action. A black-box optimization
method Ablack-box is then applied to solve Equation 1. Having
found each θ∗k, the mapping M is simply M(k) = θ∗k.

D. Online Context Prediction

At this point, we have a library of learned parameters and
the mapping M that is responsible for mapping a specific
context to its corresponding parameters. All that remains is
a scheme to dynamically infer which context the robot is
in during execution. To do so, we form a supervised dataset
{xDi , ci}Ni=1, where ci = k if xDi ∈ Dk. Then, a parameterized

Algorithm 1 APPLD

1: // Training
2: Input: the demonstration D = {xDi , aDi , tDi }Ni=1, space of

possible parameters Θ, and the navigation stack G.
3: Call Asegment on D to detect changepoints τ1, . . . , τK−1 with
τ0 = 0 and τK = N + 1.

4: Segment D into {Dk = {xDi , aDi , tDi | τk−1 ≤ i < τk}}Kk=1.
5: Train a classifier fφ on {xDi , ci}Ni=1, where ci = k if xDi ∈ Dk.
6: for k = 1 : K do
7: Call Ablack-box with objective defined in Equation 1 on Dk to

find parameters θ∗k for context k.
8: end for
9: Form the map M(k) = θ∗k, ∀1 ≤ k ≤ K.

10:
11: // Deployment
12: Input: the navigation stack G, the mapping M from context to

parameters, and the context predictor Bφ.
13: for t = 1 : T do
14: Identify the context ct = Bφ(xt) according to Equation 3.
15: Navigate with G(xt;M(ct)).
16: end for

function fφ(x) is learned via supervised learning to classify
which segment xDi comes from, i.e.,

φ∗ = argmax
φ

N∑
i=1

log
exp

(
fφ(xDi )[ci]

)∑K
c=1 exp

(
fφ(xDi )[c]

) . (2)

Given fφ, we define our context predictor B according to

Bφ(xt) = mode
{

argmax
c

fφ(xi)[c], t− p < i ≤ t
}
. (3)

In other words, Bφ acts as a mode filter on the context
predicted by fφ over a sliding window of length p.

Taken together, the above steps constitute our proposed
APPLD approach. During training, the above three stages are
applied sequentially to learn a library of parameters {θ∗k}Kk=1

(hence the mapping M ) and a context predictor Bφ. During
execution, Equation 3 is applied online to pick the right set of
parameters for navigation. Algorithm 1 summarizes the entire
pipeline from offline training to online execution.

IV. EXPERIMENTS

In this section, APPLD is implemented to experimentally
validate our hypothesis that existing autonomous navigation
systems can be successfully applied to complex environments
given (1) access to a human demonstration from teleopera-
tion, and (2) an appropriate high-level control strategy that
dynamically adjusts the existing system’s parameters based
on context. To perform this validation, APPLD is applied
on two different robots—a Jackal and a BWIBot—that each
operate in a different environment with different underlying
navigation methods. The results of APPLD are compared with
those obtained by the underlying navigation system using (a)
its default parameters (DEFAULT) from the robot platform
manufacturer, and (b) parameters we found using behavior
cloning but without context (APPLD (NO CONTEXT)). We also
compare to the navigation system as tuned by robotics experts
in the second experiment. In all cases, we find that APPLD
outperforms the alternatives.
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Fig. 2. Jackal Trajectory in Environment Shown in Fig. 1: heatmap visualization of the LiDAR inputs over time is displayed at the top and used for segmentation
by CHAMP. For each region divided by CHAMP changepoints, CMA-ES finds a set of parameters that best imitates the human demonstration. Velocity and
angular velocity profiles from DEFAULT (red), APPLD (NO CONTEXT) (orange), and APPLD (green) parameters, along with the human demonstration (black),
are displayed with respect to time. Plots are scaled to best demonstrate performance differences between different parameters.

A. Jackal Maze Navigation

In the first experiment, a four-wheeled, differential-drive,
unmanned ground vehicle—specifically a Clearpath Jackal—
is tasked to move through a custom-built maze (Fig. 1). The
Jackal is a small and agile platform with a top speed of
2.0m/s. To leverage this agility, the complex maze consists
of four qualitatively different areas: (i) a pathway with curvy
walls (curve), (ii) an obstacle field (obstacle), (iii) a narrow
corridor (corridor), and (iv) an open space (open) (Fig. 1).
A Velodyne LiDAR provides 3D point cloud data, which is
transformed into 2D laser scan for 2D navigation. The Jackal
runs Robot Operating System (ROS) onboard, and APPLD is
applied to the local planner, DWA [1], in the commonly-used
move_base navigation stack. Other parts of the navigation
stack, e.g. global planning with Dijkstra’s algorithm, remain
intact.

Teleoperation commands are captured via an Xbox con-
troller from one of the authors with previous experience with
video games, who is unfamiliar with the inner workings of
the DWA planner and attempts to operate the platform to
quickly traverse the maze in a safe manner. The teleoperator
follows the robot and controls the robot from a third person
view. This viewpoint, different from the robot’s first person
view, may provide the human demonstrator with different
contextual information, but our experiments will show that
the robot’s limited onboard LiDAR input suffices for online
context identification. The 52s demonstration is recorded using
rosbag configured to record all joystick commands and all
inputs to the move_base node.

For changepoint detection (Algorithm 1, line 3), we use
CHAMP as Asegment, a state-of-the-art Bayesian segmentation
algorithm [18]. The recorded LiDAR range data statistics

(mean and standard deviation) from XD
i and the recorded

demonstrated actions aDi = (vDi , w
D
i ) are provided as in-

put to CHAMP. CHAMP outputs a sequence of changepoints
τ1, τ2, . . . , τK−1 that segment the demonstration into K seg-
ments, each with uniform context (line 4). As expected,
CHAMP determines K = 4 segments in the demonstration,
each corresponding to a different context (line 5). fφ trained
for online context prediction (line 14) is modeled as a two-
layer neural network with ReLU activation functions.

For the purpose of finding θ∗k for each context, the recorded
input is played to a ROS move_base node using DWA as
the local planner with query parameters θ and the resulting
output navigation commands are compared to the demonstra-
tor’s actions. Ideally, the DWA output and the demonstrator
commands would be aligned in time, but for practical reasons
(e.g., computational delay), this is generally not the case—
the output frequency of move_base is much lower than the
frequency of recorded joystick commands. To address this
discrepancy, we match each aDi with the most recent queried
output of Gθ within the past ε seconds (default execution time
per command, 0.25s for Jackal), and use it as the augmented
navigation at time tDi . If no such output exists, augmented
navigation is set to zero since the default behavior of Jackal is
to halt if no command has been received in the past ε seconds
(Fig. 3). This condition may occur due to insufficient onboard
computation to perform sampling at the requested density. For
the metric in Equation 1, we use mean-squared error, i.e. H
is the identity matrix.

Following the action-matching procedure, we find each θ∗k
using CMA-ES [24] as our black-box optimizer (Algorithm 1,
line 7). The optimization runs on a single Dell XPS laptop (In-
tel Core i9-9980HK) using 16 parallel threads. The elements of
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Fig. 3. Action-Matching and Loss Metric

θ in our experiments are: DWA’s max vel x (v), max vel theta
(w), vx samples (s), vtheta samples (t), occdist scale (o),
pdist scale (p), gdist scale (g) and costmap’s inflation radius
(i). We intentionally select parameters here that directly impact
navigation behavior and exclude parameters which are robot-
model-specific, e.g. physical acceleration limit (acc lim x and
acc lim theta), or unrelated to the behaviors being studied,
e.g. goal tolerance (xy goal tolerance). Note that max vel x
and max vel theta are not the physical velocity limit of the
robot, but rather the maximum velocity commands that are
allowed to be executed. They interact with the sampling den-
sity parameters, vx samples and vtheta samples, in a way that
affects whether finding a reasonable motion command through
sampling can be performed in real time. The parameters
occdist scale, pdist scale, and gdist scale, are optimization
weights for distance to obstacle, distance to path, and distance
to goal, respectively. The inflation radius, inflation radius,
specifies the physical safety margin to be used around ob-
stacles. All parameters are initialized at the midpoint between
their lower- and upper-bound. The fully parallelizable opti-
mization takes approximately eight hours, but this time could
be significantly reduced with more computational resources
and engineering effort.

The action profiles of using the parameters discovered by
DEFAULT, APPLD (NO CONTEXT), and APPLD are plotted in
Fig. 2, along with the single-shot demonstration segmented
into four chunks by CHAMP. Being trained separately based
on the segments discovered by CHAMP, the APPLD parameters
(green) perform most closely to the human demonstration
(black), whereas the performance of both DEFAULT (red) and
APPLD (NO CONTEXT) (orange) significantly differs from the
demonstration in most cases (Fig. 2).

TABLE I
PARAMETERS OF JACKAL EXPERIMENTS (DWA):

max vel x (v), max vel theta (w), vx samples (s), vtheta samples (t),
occdist scale (o), pdist scale (p), gdist scale (g), inflation radius (i)

v w s t o p g i

DEF. 0.50 1.57 6 20 0.10 0.75 1.00 0.30
NO CTX. 1.55 0.98 10 3 0.01 0.87 0.99 0.46

Curve 0.80 0.73 6 42 0.04 0.98 0.94 0.19
Obstacle 0.71 0.91 16 53 0.55 0.54 0.91 0.39
Corridor 0.25 1.34 8 59 0.43 0.65 0.98 0.40
Open 1.59 0.89 18 18 0.40 0.46 0.27 0.42

The specific parameter values learned by each technique
are given in Tab. I, where we show in the bottom rows the
individual parameters learned by APPLD for each context. The
learned parameters relative to the default values are intuitive

in many ways. For example, APPLD found that Curve requires
a larger value for the parameters p and g and a lower value
for the parameter i, i.e., the platform needs to place a high
priority on sticking to the straight global path so that it
can avoid extraneous motion due to the proximity of the
curvy walls. It is similarly intuitive that APPLD found that
Obstacle Field requires higher sampling rates (s and t) and
more consideration given to obstacle avoidance (higher o) in
order to find feasible motion through the irregular obstacle
course. Corridor is extremely tight, and, accordingly, APPLD
found that a smaller linear velocity (v) was necessary in order
to compensate for the larger computational load associated
with the necessary higher angular velocity sampling rate (t)
required to find feasible paths. In Open, APPLD appropriately
learned that the maximum velocity (v) should be increased in
order to match the demonstrator’s behavior. In addition to these
intuitive properties, APPLD was also able to capture other,
more subtle, parameter interactions that are more difficult to
describe. At run time, APPLD’s trained context classifier selects
in which mode the navigation stack is to operate and adjusts
the parameters accordingly (Fig. 1).

Tab. II shows the results of evaluating the overall navigation
system using the different parameter-selection schemes along
with the demonstrator’s performance as a point of reference.
We report both the time it takes for each system navigate a pre-
specified route and also the BC loss (Equation 1) compared
to the demonstrator. We choose to study traversal time since
most suboptimal navigation behavior will cause stop-and-go
motions, induce recovery behaviors, cause the robot to get
stuck, or collide with obstacles (termination) – each of which
will result in a higher traversal time.

TABLE II
LOSS AND TIME COMPARISON OF JACKAL EXPERIMENTS (DWA)

Context BC Loss Real-world Time (s)

(a) Curve
Demonstration N/A 12.10
DEFAULT 0.1755±0.0212 30.20±3.87
APP. (NO CTX.) 0.1856±0.0030 *55.14±13.84
APPLD 0.0780±0.0002 9.39±0.73

(b) Obstacle Field
Demonstration N/A 9.00
DEFAULT 0.2061±0.0540 12.32±0.59
APP. (NO CTX.) 0.2537±0.0083 *60.00±0.00
APPLD 0.1586±0.0216 7.69±0.35

(c) Narrow Corridor
Demonstration N/A 24.06
DEFAULT 0.0953±0.0916 *49.52±19.88
APP. (NO CTX.) 0.0566±0.0419 *60.00±0.00
APPLD 0.0198±0.0010 19.11±0.82

(d) Open Space
Demonstration N/A 7.28
DEFAULT 0.8597±0.0013 15.07±0.61
APP. (NO CTX.) 0.2094±0.0013 15.08±7.42
APPLD 0.2071±0.0021 7.19±0.42

For each metric, lower is better, and we compute mean and
standard deviation over 10 independent trials. For trials that
end in failure (e.g., the robot gets stuck), we add an asterisk
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Fig. 4. BWIBot Navigates in GDC Hallway

(*) to the reported results and use penalty time value of 60s.
The results show that, for every context, APPLD achieves the
lowest BC loss and fastest real-world traverse time, compared
to DEFAULT and APPLD (NO CONTEXT). In fact, while APPLD
is able to successfully navigate in every trial, DEFAULT fails
in 8/10 trials in the narrow corridor due to collisions in
recovery_behaviors after getting stuck, and APPLD (NO
CONTEXT) fails in 9/10, 10/10, and 10/10 trials in curve,
obstacle field, and narrow corridor, respectively. In open space,
APPLD (NO CONTEXT) is able to navigate quickly at first, but
is not able to precisely and quickly reach the goal due to low
angular sample density (vtheta samples). Surprisingly, in all
contexts, the navigation stack with APPLD parameters even
outperforms the human demonstration in terms of time, and
leads to qualitatively smoother motion than the demonstration.
Average overall traversal time from start to goal, 43s, is also
faster than the demonstrated 52s. The superior performance
achieved by APPLD compared to DEFAULT and even the
demonstrator validates our hypothesis that given access to a
teleoperated demonstration, tuning DWA navigation parameters
is possible without a roboticist. We notice that, in some
challenging situations, even the human demonstrator suffered
from suboptimal navigation, e.g. stop-and-go, overshoot, etc.
Even in these cases, APPLD can produce smooth, stable,
and sometimes even faster navigation due to the benefit
of a properly-parameterized autonomous planner. The fact
that APPLD outperforms APPLD (NO CONTEXT) indicates the
necessity of the high-level context switch strategy.

B. BWIBot Hallway Navigation

Whereas we designed the Jackal experiments to specifi-
cally test all aspects of APPLD, in this section, we evaluate
APPLD’s generality to another robot in another environment
running another underlying navigation system. Specifically,
we evaluate our approach using a BWIBot (Fig. 4 left)—
a custom-built robot that navigates the GDC building at
The University of Texas at Austin every day as part of the
Building Wide Intelligence (BWI) project [25]. The BWIBot
is a nonholonomic platform built on top of a Segway RMP
mobile base, and is equipped with a Hokuyo LiDAR. A Dell
Inspiron computer performs all computation onboard. Similar
to the Jackal, the BWIBot uses the ROS architecture and

TABLE III
PARAMETERS AND RESULTS OF BWIBOT EXPERIMENTS (E-BAND):

max vel lin (v), max vel th (w), eband internal force gain (i),
eband external force gain (e), costmap weight (c)

v w i e c loss

DEF. 0.75 1.0 1 2 10 0.1730±0.0025
EXP. 0.5 0.5 3 2 15 0.0940±0.0095

APP. 0.65 0.35 0.52 0.04 15.36 0.0669±0.0071

the move_base navigation framework. However, unlike the
Jackal, the BWIBot uses a local planner based on the elastic
bands technique (E-BAND) [2] instead of DWA.

As in the Jackal experiments, teleoperation is performed
using an Xbox controller from a third person view by the
same author who is unfamiliar with the inner workings of
the E-BAND planner. The demonstration lasts 17s and con-
sists of navigating the robot through a hallway, where the
demonstrator seeks to move the robot in smooth, straight lines
at a speed appropriate for an office environment. Unlike the
Jackal demonstration, quick traversal is not the goal of the
demonstration.

In this setting, the APPLD training procedure is identical
to that described for the Jackal experiments. In this case,
however, CHAMP did not detect any changepoints based on
the LiDAR inputs and demonstration (Fig. 4 right), indicating
the hallway environment is relatively uniform and hence one
set of parameters is sufficient.

The BC phase takes about two hours with 16 threads
on the same laptop used for the Jackal experiments.
The parameters learned for the E-BAND planner are
max vel lin (v), max vel th (w), eband internal force gain
(i), eband external force gain (e), and costmap weight (c).
The results are shown in Tab. III.

The first row of Tab. III shows the parameters of the BWI-
Bot planner used in the DEFAULT system. Because CHAMP
does not discover more than a single context, APPLD and
APPLD (NO CONTEXT) are equivalent for this experiment.
Therefore, we instead compare to a set of expert-tuned
(EXPERT) parameters that is used on the robot during everyday
deployment, shown in the second row of the table. These
parameters took a group of roboticists several days to tune by
trial-and-error to make the robot navigate in relatively straight
lines. Finally, the parameters discovered by APPLD are shown
in the third row. The last column of the table shows the BC
loss induced by DEFAULT, EXPERT, and APPLD parameters
(again averaged over 10 runs). Real-world time is not reported
since a quick traversal is not the purpose of the demonstration
in the indoor office space. The action profiles from these three
sets of parameters (queried on the demonstration trajectory
{xDi }Ni=1) are compared with the demonstration and plotted
in Fig. 4 lower right, where the learned trajectories are the
closest to the demonstration. When tested on the real robot, the
APPLD parameters achieve qualitatively superior performance,
despite the fact that the experts were also trying to make the
robot navigate in a straight line (Fig. 4 left).

The BWIBot experiments further validate our hypothesis
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that parameter tuning for existing navigation systems is pos-
sible based on a teleoperated demonstration instead of expert
roboticist effort. More importantly, the success on the E-BAND
planner without any modifications from the methodology
developed for DWA supports APPLDs generality.

V. SUMMARY AND FUTURE WORK

This paper presents APPLD, a novel learning from demon-
stration framework that can autonomously learn suitable plan-
ner parameters and adaptively switch them during execution
in complex environments. The first contribution of this work
is to grant non-roboticists the ability to tune navigation pa-
rameters in new environments by simply providing a single
teleoperated demonstration. Secondly, this work allows mobile
robots to utilize existing navigation systems, but adapt them
to different contexts in complex environments by adjusting
their navigation parameters on the fly. APPLD is validated on
two robots in different environments with different navigation
algorithms. We observe superior performance of APPLD’s
parameters compared with all tested alternatives, both on the
Jackal and the BWIBot. An interesting direction for future
work is to investigate methods for speeding up learning by
clustering similar contexts together. It may also be possible to
perform parameter learning and changepoint detection jointly
for better performance.
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