
AI Technical Report AI-TR-07-339, University of Texas at Austin, 2007. 1

Adaptive Tile Coding for Value Function Approximation

Shimon Whiteson, Matthew E. Taylor, and Peter Stone
Department of Computer Sciences

University of Texas at Austin
1 University Station, C0500

Austin, TX 78712-0233
{shimon,mtaylor,pstone}@cs.utexas.edu

Abstract

Reinforcement learning problems are commonly tackled by
estimating the optimal value function. In many real-world
problems, learning this value function requires a function ap-
proximator, which maps states to values via a parameterized
function. In practice, the success of function approximators
depends on the ability of the human designer to select an ap-
propriate representation for the value function. This paper
presents adaptive tile coding, a novel method that automates
this design process for tile coding, a popular function approx-
imator, by beginning with a simple representation with few
tiles and refining it during learning by splitting existing tiles
into smaller ones. In addition to automatically discovering ef-
fective representations, this approach provides a natural way
to reduce the function approximator’s level of generalization
over time. Empirical results in multiple domains compare
two different criteria for deciding which tiles to split and ver-
ify that adaptive tile coding can automatically discover effec-
tive representations and that its speed of learning is competi-
tive with the best fixed representations.

Introduction

In reinforcement learning (RL) problems, an agent must
learn a policy for solving a sequential decision task. The
agent never sees examples of correct behavior but instead
receives positive or negative rewards for the actions it tries.
From this feedback it must find a policy that maximizes re-
ward over the long term. RL tasks are most commonly tack-
led with methods, such as dynamic programming (Bellman
1957), that learn value functions.

Value functions indicate, for some policy, the long-term
expected value of a given state. The agent strives to learn the
optimal value function, from which it can deduce an optimal
policy. For small problems, the value function can be stored
in a table. However, many real-world problems have large or
continuous state spaces, rendering this approach infeasible.
Such tasks usually require function approximators, which
represent value estimates with parameterized functions.

However, using function approximators requires making
crucial representational decisions (e.g. the number of hidden
nodes in a neural network or the resolution of a state space
discretization). Poor design choices can result in estimates
that diverge from the optimal value function (Baird 1995)

and agents that perform poorly. Even for reinforcement
learning algorithms with guaranteed convergence (Baird &
Moore 1999; Lagoudakis & Parr 2003), achieving high per-
formance in practice requires finding an appropriate repre-
sentation for the function approximator. Nonetheless, repre-
sentational choices are typically made manually, based only
on the designer’s intuition.

The goal of our research is to automate this process by
enabling an RL agent to autonomously find a good rep-
resentation for its function approximator. Adaptive meth-
ods already exist for neural network function approxima-
tors (Whiteson & Stone 2006) and piecewise-linear repre-
sentations based on kd-trees (Munos & Moore 2002). We
contribute an adaptive method for tile coding (Albus 1981),
a simple, computationally efficient function approximator
that has enjoyed broad empirical success (Sutton 1996;
Stone, Sutton, & Kuhlmann 2005). Tile coding, which forms
a piecewise-constant approximation of the value function,
requires a human designer to choose the size of each tile in
each dimension of the state space.

This paper introduces adaptive tile coding, which auto-
mates this process by starting with large tiles and mak-
ing them smaller during learning by splitting existing tiles
in two. Beginning with simple representations and refin-
ing them over time is a strategy that has proven effective
for other function approximators (Chow & Tsitsiklis 1991;
Munos & Moore 2002; Whiteson & Stone 2006). In addi-
tion to automatically finding good representations, this ap-
proach gradually reduces the function approximator’s level
of generalization over time, a factor known to critically af-
fect performance in tile coding (Sherstov & Stone 2005).

To succeed, adaptive tile coding must make smart deci-
sions about which tiles to split and along which dimension.
This paper compares two different criteria for prioritizing
potential splits. The value criterion estimates how much the
value function will change if a particular split occurs. By
contrast, the policy criterion estimates how much the policy
will change if a given split occurs.

Empirical results in two benchmark reinforcement learn-
ing tasks demonstrate that the policy criterion is more ef-
fective than the value criterion. The results also verify that
adaptive tile coding can automatically discover representa-

AI Technical Report AI-TR-07-339, University of Texas at Austin, 2007. 2

tions that yield approximately optimal policies and that the
adaptive approach’s speed of learning is competitive with
the best fixed tile-coding representations.

Background

This section reviews the reinforcement learning formalism
and briefly describes tile coding representations and how
they are used to approximate value functions.

Markov Decision Processes

An RL task is defined by a Markov decision process (MDP).
For simplicity, this paper focuses on MDPs that are contin-
uous but deterministic, though in principle the methods pre-
sented could be extended to stochastic domains. An MDP
consists of a four-tuple 〈S,A, T,R〉 containing an infinite
set of states S, a finite set of actions A, a transition function
T : S ×A→ S and a reward function R : S ×A→ ℜ. An
agent in state s ∈ S that takes action a ∈ A will transition
to state T (s, a) and receive reward R(s, a).

The agent’s goal is to learn an optimal policy π∗ : S →
A that maximizes the long-term discounted reward accrued.
As in previous work on function approximation (Chow &
Tsitsiklis 1991; Gordon 1995; Munos & Moore 2002), we
assume the agent has a model of its environment (i.e. T and
R are known). Given a model, the agent need only learn the
optimal value function V ∗ : S → ℜ, where V ∗(s) is the
long-term discounted reward the agent will receive starting
in state s if it follows π∗ thereafter. Once V ∗ is known, π∗

is easily determined:

π∗(s) = argmaxa[R(s, a) + γV ∗(T (s, a))]

where γ ∈ [0, 1] is a discount factor. To make func-
tion approximation feasible, we assume S is factored such
that each state s ∈ S is a vector of state variables: s =
〈x1, x2, . . . , xk〉 where xi ∈ ℜ.

Tile Coding

In tile coding (Albus 1981), a piecewise-constant approxi-
mation of the optimal value function is represented by a set
of exhaustive partitions of the state space called tilings. Typ-
ically, the tilings are all partitioned in the same way but are
slightly offset from each other. Each element of a tiling,
called a tile, is a binary feature activated if and only if the
given state falls in the region delineated by that tile. Figure 1
illustrates a tile-coding scheme with two tilings.

The value function that the tile coding represents is deter-
mined by a set of weights, one for each tile, such that

V (s) =
n

∑

i=1

bi(s)wi

where n is the total number of tiles, bi(s) is the value (1
or 0) of the ith tile given state s, and wi is the weight of
that tile. In practice, it is not necessary to sum over all n
tiles since only one tile in each tiling is activated for a given
state. Given m tilings, we can simply compute the indices
of the m active tiles and sum their associated weights.

Figure 1: An example of tile coding with two tilings. Thicker
lines indicate which tiles are activated for the given state s.

Given a model of the MDP as described above, we can
update the value estimate of a given state s by computing
∆V (s) using dynamic programming:

∆V (s) = maxa[R(s, a) + γV (T (s, a))]− V (s)

and adjusting each weight so as to reduce ∆V (s):

wi ← wi +
α

m
bi(s)∆V (s)

where α is a learning rate parameter. As before, it is not
necessary to update all n weights, only the m weights asso-
ciated with tiles activated by state s. Algorithm 1 shows a
simple way to learn an approximation of the optimal value
function using tile coding. The function ACTIVE-TILE re-
turns the tile in the given tiling activated by the given state.
If only one tiling is used, then there is a trade-off between
speed and precision of learning. Smaller tiles yield more
precise value estimates but take longer to learn since those
estimates generalize less broadly. Multiple tilings can avoid
this trade-off, since more tilings improve resolution without
reducing capacity for generalization.

Algorithm 1 TILE-CODING(S,A, T,R, α, γ,m, n)

1: for i← 1 to m do
2: Initialize tiling i with n/m tiles
3: for j ← 1 to n/m do
4: Initialize tile j with zero weight
5: repeat
6: s← random state from S
7: ∆V (s)← maxa[R(s, a) + γV (T (s, a))]− V (s)
8: for i← 1 to m do
9: w ← weight of ACTIVE-TILE(s)

10: w ← w + α

m
∆V (s)

11: until time expires

Method

Tile coding is a simple, computationally efficient method
for approximating value functions that has proven effec-
tive (Sutton 1996; Stone, Sutton, & Kuhlmann 2005). How-
ever, it has two important limitations.

AI Technical Report AI-TR-07-339, University of Texas at Austin, 2007. 3

The first limitation is that it requires a human designer
to correctly select the width of each tile in each dimension.
While in principle tiles can be of any size and shape, they
are typically axis-aligned rectangles whose widths are uni-
form within a given dimension. Selecting these widths ap-
propriately can mean the difference between fast, effective
learning and catastrophically poor performance. If the tiles
are too large, value updates will generalize across regions in
S with disparate values, resulting in poor approximations.
If the tiles are too small, value updates will generalize very
little and learning may be infeasibly slow.

The second limitation is that the degree of generalization
is fixed throughout the learning process. Use of multiple
tilings makes it possible to increase resolution without com-
promising generalization, but the degree of generalization
never changes. This limitation is important because recent
research demonstrates that the best performance is possible
only if generalization is gradually reduced over time (Sher-
stov & Stone 2005). Intuitively, broad generalization at the
beginning allows the agent to rapidly learn a rough approx-
imation; less generalization at the end allows the agent to
learn a more nuanced approximation.

This section presents adaptive tile coding, a novel func-
tion approximation method that addresses both of these lim-
itations. The method begins with simple representations
and refines them over time, a strategy that has proven ef-
fective for other function approximators, such as neural net-
works (Whiteson & Stone 2006), piecewise-linear represen-
tations based on kd-trees (Munos & Moore 2002), and uni-
form grid discretizations (Chow & Tsitsiklis 1991). Adap-
tive tile coding begins with a few large tiles, and gradually
adds tiles during learning by splitting existing tiles. While
there are infinitely many ways to split a given tile, for the
sake of computational feasibility, our method considers only
splits that divide tiles in half evenly. Figure 2 depicts this
process for a domain with two state features.

Figure 2: An example of how tiles might be split over time using
adaptive tile coding.

By analyzing the current value function and policy, the
agent can make smart choices about when and where to split
tiles, as detailed below. In so doing, it can automatically
discover an effective representation that devotes more res-
olution to critical regions of S, without the aid of a human
designer. Furthermore, learning with a coarse representation
first provides a natural and automatic way to reduce general-
ization over time. As a result, multiple tilings are no longer
necessary: a single, adaptive tiling can provide the broad
generalization needed early in learning and the high resolu-
tion needed later on. The remainder of this section addresses
two critical issues: when and where to split tiles.

When to Split

Correctly deciding when to split a tile can be critical to per-
formance. Splitting a tile too soon will slow learning since
generalization will be prematurely reduced. Splitting a tile
too late will also slow learning, as updates will be wasted on
a representation with insufficient resolution to further im-
prove value estimates. Intuitively, the agent should learn as
much as possible with a given representation before refining
it. Hence, it needs a way to determine when learning has
plateaued.

One way to do so is by tracking Bellman error (i.e. ∆V).
As long as V is improving, |∆V | will tend to decrease over
time. However, this quantity is extremely noisy, since up-
dates to different tiles may differ greatly in magnitude and
updates to different states within a single tile can move the
value estimates in different directions. Hence, a good rule
for deciding when to split should consider Bellman error but
be robust to its short-term fluctuations.

In this paper, we use the following heuristic. For each
tile, the agent tracks the lowest |∆V | occurring in updates
to that tile. It also maintains a global counter u, the num-
ber of updates occurring since the updated tile had a new
lowest |∆V | (each update either increments u or resets it to
0). When u exceeds a threshold parameter p, the agent de-
cides that learning has plateaued and selects a tile to split.
In other words, a split occurs after p consecutive updates
fail to produce a new tile-specific lowest |∆V |.1 Hence, the
agent makes a global decision about when learning has fin-
ished, since |∆V | may temporarily plateau in a given tile
simply because the effects of updates to other tiles have not
yet propagated back to it.

Where to Split

Once the agent decides that learning has plateaued, it must
decide which tile to split and along which dimension.2 This
section presents two different approaches, one based on ex-
pected changes to the value function and the other on ex-
pected changes to the policy. Both require the agent to main-
tain sub-tiles, which estimate, for each potential split, what
weights the resulting tiles would have. Since each state is
described by k state features, each tile has 2k sub-tiles.

When a new tile is created, its sub-tile weights are initial-
ized to zero. When the agent updates state s, it also updates
the k sub-tiles that are activated by s, using the same rule as
for regular weights, except that the update is computed by
subtracting the relevant sub-tile weight (rather than the old
value estimate) from the target value:

∆wd(s) = maxa[R(s, a) + γV (T (s, a))]− wd(s)

1There are many other ways to determine when learning has
plateaued. For example, in informal experiments, we applied lin-
ear regression to a window of recent |∆V | values. Learning was
deemed plateaued when the slope of the resulting line dropped be-
low a small threshold. However, this approach proved inferior in
practice to the one described above, primarily because performance
was highly sensitive to the size of the window.

2The agent splits only one tile at a time. It could split multiple
tiles but doing so would be similar to simply reducing p.

AI Technical Report AI-TR-07-339, University of Texas at Austin, 2007. 4

where wd(s) is the weight of the sub-tile resulting from a
split along dimension d activated by state s. Algorithm 2 de-
scribes the resulting method, with regular weight updates in
lines 8–9 and sub-tile weight updates in lines 10–13. On line
19, the agent selects a split according to one of the criteria
detailed in the remainder of this section.

Algorithm 2 ADAPTIVE-TILE-CODING(S,A, T,R, k, α, γ, n, p)

1: u← 0
2: Initialize one tiling with n tiles
3: for i← 1 to n do
4: Initialize ith tile and 2k sub-tile weights to zero
5: repeat
6: s← random state from S
7: ∆V (s)← maxa[R(s, a) + γV (T (s, a))]− V (s)
8: w ← weight of tile activated by s
9: w ← w + α∆V (s)

10: for d← 1 to k do
11: wd ← weight of sub-tile w.r.t split along d activated by s
12: ∆wd = maxa[R(s, a) + γV (T (s, a))]− wd

13: wd ← wd + α∆wd

14: if |∆V | < lowest Bellman error on tile activated by s then
15: u← 0
16: else
17: u← u + 1
18: if u > p then
19: Perform split that maximizes value or policy criterion
20: u← 0
21: until time expires

Value Criterion Sub-tile weights estimate what values the
tiles resulting from a potential split would have. Thus, the
difference in sub-tile weights indicates how drastically V
will change as a result of a given split. Consequently, the
agent can maximally improve V by performing the split that
maximizes, over all tiles, the value of |wd,u − wd,l|, where
wd,u and wd,l are, respectively, the weights of the upper and
lower sub-tiles of a potential split d. Using this value crite-
rion for selecting splits will cause the agent to devote more
resolution to regions of S where V changes rapidly (where
generalization will fail) and less resolution to regions where
it is relatively constant (where generalization is helpful).

Policy Criterion The value criterion will split tiles so as
to minimize error in V. However, doing so will not neces-
sarily yield maximal improvement in π. For example, there
may be regions of S where V ∗ changes significantly but π∗

is constant. Hence, the most desirable splits are those that
enable the agent to improve π, regardless of the effect on V.
To this end, the agent can estimate, for each potential split,
how much π would change if that split occurred.

When updating a state s, the agent iterates over the |A|
possible successor states to compute a new target value. For
each dimension d along which each successor state s′ could
be split, the agent estimates whether π(s) would change if
the tile activated by s′ were split along d, by computing the
expected change in V (s′) that split would cause:

∆Vd(s
′) = wd(s

′)− V (s′)

If changing V (s′) by ∆Vd(s
′) would alter π(s), then the

agent increments a counter cd, which tracks changeable ac-
tions for potential split d in the tile activated by s′ (see Fig-
ure 3). Hence, the agent can maximize improvement to π by
performing the split that maximizes the value of cd over all
tiles. Using this policy criterion, the agent will focus splits
on regions where more resolution will yield a refined policy.

s’
1s

11.7

19.2

13.416.1
s’

2

17.6

a

a

1

2

14.2

Figure 3: An agent updates state s, from which each action ai

leads to successor state s′i. The figure shows the tiles, includ-
ing weights, that these successor states fall in and shows sub-tile
weights for the middle tile. Though π(s) = 2, a horizontal split
to the middle tile would make π(s) = 1 (since 19.2 > 17.6),
incrementing cd for that split.

Testbed Domains

This section describes mountain car and puddle world, two
benchmark reinforcement learning domains that we use as
testbeds for evaluating the performance of adaptive tile cod-
ing. Both domains have continuous state features and hence
require value function approximation.

Mountain Car

In the mountain car task (Boyan & Moore 1995), depicted
in Figure 4, an agent must drive a car to the top of a steep
mountain. The car cannot simply accelerate forward be-
cause its engine is not powerful enough to overcome gravity.
Instead, the agent must learn to drive backwards up the hill
behind it, thus building up sufficient inertia to ascend to the
goal before running out of speed.

Figure 4: The mountain car and puddle world domains. These
figures were taken from Sutton and Barto (1998) and Sutton (1996).

The agent’s state consists of its current position −1.2 ≤
x ≤ 0.5 and velocity −0.07 ≤ v ≤ 0.07. The agent begins

AI Technical Report AI-TR-07-339, University of Texas at Austin, 2007. 5

each episode in a state chosen randomly from these ranges.
It receives a reward of -1 at each time step until reaching
the goal. The agent’s three available actions correspond to
positive, negative, and zero throttle.

Puddle World

In the puddle world task (Sutton 1996), also depicted in Fig-
ure 4, a robot placed randomly in a two-dimensional terrain
must navigate to a goal area in the upper right corner while
avoiding the two puddles.

The agent’s state consists of its x and y positions. It
receives a reward of -1 at each time step until reaching
the goal, plus additional penalties for being inside a pud-
dle, equal to 400 times the distance inside the puddle. The
agent’s four available actions allow it to move up, down, left
and right by 0.05, plus a small amount of Gaussian noise.3

Results and Discussion

To evaluate adaptive tile coding, we tested its performance in
the mountain car and puddle world domains. The value and
policy criteria were tested separately, with 25 independent
trials for each method in each domain. In each trial, the
method was evaluated during learning by using its current
policy to control the agent in test episodes. The agent took
one action for each update that occurred (i.e. one iteration of
the repeat loop in Algorithms 1 and 2). Note that since the
agent learns from a model, these test episodes do not affect
learning; their sole purpose is to evaluate performance. The
following parameter settings were used in all trials: α = 0.1,
γ = 0.999, n = 4 (2x2 initial tilings), and p = 50.

Next, we tested 18 different fixed tile-coding represen-
tations, selected by choosing three plausible values for the
number of tilings m ∈ {1, 5, 10} and six plausible values
for the number of tiles n such that the tiles per feature
k

√

n/m∈{5, 10, 25, 50, 100, 250}, where k = 2 is the num-
ber of state features in each domain. We tested each combi-
nation of these two parameters with α = 0.1 and γ = 0.999
as before. We conducted 5 trials at each of the 18 parameter
settings and found that only six in mountain car and seven in
puddle world were able to learn good policies (i.e. average
reward per episode > −100) in the time allotted.

Finally, we selected the three best performing fixed set-
tings and conducted an additional 25 trials. Figure 5 shows
the results of these experiments by plotting, for each domain,
the uniform moving average reward accrued over the last
500 episodes for each adaptive approach and the best fixed
approaches, averaged over all 25 trials for each method.

The variation in performance among the best fixed rep-
resentations demonstrates that the choice of representation
is a crucial factor in both the speed and quality of learning.
Without a priori knowledge about what representations are
effective in each task, both versions of the adaptive method
consistently learn good policies, while only a minority of

3The presence of this noise means puddle world does not
strictly satisfy our assumption that the environment is a determin-
istic MDP. However, the algorithms presented in this paper excel at
this task anyway, as the results in the next section demonstrate.

the fixed representations do so. Furthermore, when the pol-
icy criterion was used, the adaptive method learned approx-
imately optimal policies in both domains, at speeds that are
competitive with the best fixed representations.

While there are fixed representations that learn good poli-
cies as fast or faster than the adaptive approach (10x10 with
10 tilings in mountain car and 10x10 with 1 tiling in pud-
dle world), those representations do not go on to learn ap-
proximately optimal policies as the adaptive approach does.
Similarly, there are fixed representations that learn approx-
imately optimal policies faster than the adaptive approach
(50x50 with 10 tilings in mountain car and 25x25 with 1
tiling in puddle world), but those representations take sig-
nificantly longer to learn good policies.

Furthermore, the fixed representations that learn good
policies fastest are not the same as those that learn approxi-
mately optimal policies and are different in the two domains.
By contrast, the adaptive method, with a single parame-
ter setting, rapidly learns approximately optimal policies in
both domains. Overall, these results confirm the efficacy of
the adaptive method and suggest it is a promising approach
for improving function approximation when good represen-
tations are not known a priori.

To better understand why the adaptive method works, we
took the best representations learned with the policy crite-
rion, reset all the weights to zero, and restarted learning
with splitting turned off. The restarted agents learned much
more slowly than the adaptive agents that began with coarse
representations and bootstrapped their way to good solu-
tions. This result suggests that the adaptive approach learns
well, not just because it finds good representations, but also
because it gradually reduces generalization, confirming the
conclusions of Sherstov and Stone (2005).

The results also demonstrate that the policy criterion ul-
timately learns better policies than the value criterion. To
understand why, we examined the structure of the final rep-
resentations learned with each approach, as depicted in Fig-
ure 6. Lack of space prevents us from also depicting V and
π. However, manual inspection of V confirms that in both
domains the value criterion devotes more resolution to re-
gions where V changes most rapidly. In mountain car, this
region spirals outward from the center, as the agent oscil-
lates back and forth to build momentum. In puddle world,
this region covers the puddles, where reward penalties give
V a sharp slope, and the area adjacent to the goal. However,
those regions do not require fine resolution to represent ap-
proximately optimal policies. On the contrary, manual in-
spection reveals that π is relatively uniform in those regions.

By contrast, the policy criterion devotes more resolution
to regions where the policy is not uniform. In mountain car,
the smallest tiles occur in the center and near each corner,
where π is less consistent. In puddle world, it devotes the
least resolution to the puddle, where the policy is mostly uni-
form, and more resolution to the right side, where the “up”
and “right” actions are intermingled. Hence, by striving to
refine the agent’s policy instead of just its value function, the
policy criterion makes smarter choices about which tiles to
split and consequently learns better policies.

AI Technical Report AI-TR-07-339, University of Texas at Austin, 2007. 6

Figure 5: Average reward per episode in both mountain car and puddle world of the adaptive approach with value or policy criterion,
compared to the best-performing fixed representations.

Figure 6: Examples of final tile coding representations learned by the adaptive methods. From left to right: value and policy criterion
respectively in mountain car, and value and policy criterion respectively in puddle world.

Related and Future Work

A substantial body of previous work aims to automate the
design of RL function approximators. Perhaps most related
is the work of Munos and Moore (2002) on variable resolu-
tion function approximators. The primary difference is the
use of piecewise-linear representations instead of tile cod-
ing. As a result, computing V (s) once the right tile is located
takes order of k ln k time instead of constant time. They pro-
pose a splitting rule that is similar to the value criterion used
in this paper. They also propose examining the policy to
determine where to split though their approach, unlike the
policy criterion presented here, does not reason about sub-
tile weights and works well only in conjunction with a crite-
rion based on the value function. In addition, their method,
by running dynamic programming to convergence between
each split, may be computationally inefficient. Their empiri-
cal evaluations measure final performance at each resolution

but do not consider, as we do, the speed of learning as mea-
sured in number of updates.

Sherstov and Stone (2005) demonstrate that reducing gen-
eralization during learning is key to good tile coding perfor-
mance; they also present a method for automatically adjust-
ing generalization, though their approach looks only at error
in the value function without directly considering the pol-
icy. Chow and Tsitsiklis (1991) show how to compute the
tile width of a uniform tiling necessary to learn an approxi-
mately optimal policy, though they make strong assumptions
(e.g. that the transition probabilities are Lipschitz continu-
ous). Lanzi et al. (2006) extend learning classifiers systems
to use tile coding: evolutionary methods optimize a popu-
lation of tile-coding function approximators, each of which
covers a different region of the state space. The Parti-game
algorithm (Moore & Atkeson 1995) automatically partitions
state spaces but applies only to tasks with known goal re-

AI Technical Report AI-TR-07-339, University of Texas at Austin, 2007. 7

gions and assumes the existence of a greedy local controller.
Utile Suffix Memory (McCallum 1995) automatically learns
a tree-based state representation, though the goal is coping
with non-Markovian state, rather than efficient value func-
tion approximation. Other work on adaptive representations
for function approximation includes evolving neural net-
works (Whiteson & Stone 2006), using cascade-correlation
networks (Rivest & Precup 2003), or analyzing state space
topologies to find basis functions for linear function approx-
imators (Mahadevan 2005).

Natural extensions to this work include testing it in
higher-dimensional spaces, developing extensions that work
with model-free RL, and using ideas from prioritized sweep-
ing (Moore & Atkeson 1993) to speed learning by focusing
updates on tiles affected by recent splits.

References

Albus, J. S. 1981. Brains, Behavior, and Robotics. Peter-
borough, NH: Byte Books.

Baird, L., and Moore, A. 1999. Gradient descent for gen-
eral reinforcement learning. In Advances in Neural Infor-
mation Processing Systems 11. MIT Press.

Baird, L. 1995. Residual algorithms: Reinforcement learn-
ing with function approximation. In Proceedings of the
Twelfth International Conference on Machine Learning,
30–37. Morgan Kaufmann.

Bellman, R. E. 1957. Dynamic Programming. Princeton,
NJ.: Princeton University Press.

Boyan, J. A., and Moore, A. W. 1995. Generalization
in reinforcement learning: Safely approximating the value
function. In Advances in Neural Information Processing
Systems 7.

Chow, C.-S., and Tsitsiklis, J. N. 1991. An optimal one-
way multigrid algorithm for discrete-time stochastic con-
trol. IEEE Transactions on Automatic Control 36(8):898–
914.

Gordon, G. J. 1995. Stable function approximation in dy-
namic programming. In Proceedings of the Twelfth Inter-
national Conference on Machine Learning, 261–268.

Lagoudakis, M. G., and Parr, R. 2003. Least-squares
policy iteration. Journal of Machine Learning Research
4(2003):1107–1149.

Lanzi, P. L.; Loiacono, D.; Wilson, S. W.; and Goldberg,
D. E. 2006. Classifier prediction based on tile coding. In
Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation, 1497–1504.

Mahadevan, S. 2005. Samuel meets Amarel: Automating
value function approximation using global state space anal-
ysis. In Proceedings of the Twentieth National Conference
on Artificial Intelligence.

McCallum, A. R. 1995. Instance-based utile distinctions
for reinforcement learning. In Proceedings of the Twelfth
International Machine Learning Conference, 387–395.

Moore, A., and Atkeson, C. 1993. Prioritized sweeping:
Reinforcement learning with less data and less real time.
Machine Learning 13:103–130.

Moore, A. W., and Atkeson, C. G. 1995. The parti-game
algorithm for variable resolution reinforcement learning
in multidimensional state-spaces. Machine Learning
21(3):199–233.

Munos, R., and Moore, A. 2002. Variable resolution dis-
cretization in optimal control. Machine Learning 49:291–
323.

Rivest, F., and Precup, D. 2003. Combining TD-learning
with cascade-correlation networks. In Proceedings of the
Twentieth International Conference on Machine Learning,
632–639. AAAI Press.

Sherstov, A. A., and Stone, P. 2005. Function approxi-
mation via tile coding: Automating parameter choice. In
Proceedings of the Symposium on Abstraction, Reformula-
tion, and Approximation, 194–205.

Stone, P.; Sutton, R.; and Kuhlmann, G. 2005. Reinforce-
ment learning in robocup-soccer keepaway. Adaptive Be-
havior 13(3):165–188.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, Massachussets: MIT
Press.

Sutton, R. 1996. Generalization in reinforcement learning:
Successful examples using sparse coarse coding. In Ad-
vances in Neural Information Processing Systems 8, 1038–
1044.

Whiteson, S., and Stone, P. 2006. Evolutionary function
approximation for reinforcement learning. Journal of Ma-
chine Learning Research 7(May):877–917.

