
In most modern cities, traffic congestion is one of

the most salient societal challenges. Past research has

shown that inserting a limited number of autonomous

vehicles (AVs) within the traffic flow, with driv-

ing policies learned specifically for the purpose of

reducing congestion, can significantly improve traf-

fic conditions. However, to date these AV policies

have generally been evaluated under the same lim-

ited conditions under which they were trained. On the

other hand, to be considered for practical deployment,

they must be robust to a wide variety of traffic con-

ditions. This article establishes for the first time that

a multiagent driving policy can be trained in such

a way that it generalizes to different traffic flows,

AV penetration, and road geometries, including on

multi-lane roads. Inspired by our successful results

in a high-fidelity microsimulation, this article further

contributes a novel extension of the well-known Cell

Transmission Model (CTM) that, unlike past CTMs,

is suitable for modeling congestion in traffic networks,

and is thus suitable for studying congestion-reduction

policies such as those considered in this article.
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1 Introduction

According to Texas A&M’s 2021 Urban Mobility

Report, traffic congestion in 2020 in the U.S. was

responsible for excess fuel consumption of about 1.7

billion gallons, an annual delay of 4.3 billion hours,

and a total cost of $100B [1]. A common form of

traffic congestion on highways is stop-and-go waves,

which have been shown in field experiments to emerge

when vehicle density exceeds a critical value [2]. Past

research has shown that in human-driven traffic, a

small fraction of automated or autonomous vehicles

(AVs) executing a controlled multiagent driving policy

can mitigate stop-and-go waves in simulated and real-

world scenarios, roughly double the traffic speed, and

increase throughput by about 16% [3]. Frequently, the

highest-performing policies are those learned by deep

reinforcement learning (DRL) algorithms, rather than

hand-coded or model-based driving policies.

Any congestion reduction policy executed in the

real world will need to perform robustly under a wide

variety of traffic conditions such as traffic flow, AV

penetration (percentage of AVs in traffic, referred to



Learning a Robust Multiagent Driving Policy for Traffic Congestion Reduction 3

1,600 1,650 1,700 1,750 1,800 1,850 1,900 1,950 2,000
1,500

1,550

1,600

1,650

1,700

1,750

1,800

Evaluated Main Inflow

O
u
tfl

ow

even-1650-200-30:∗-30
human-baseline

(a)

1,600 1,650 1,700 1,750 1,800 1,850 1,900 1,950 2,000

6

8

10

12

14

16

18

20

Evaluated Main Inflow

S
p

ee
d

even-1650-200-30:∗-30
human-baseline

(b)

(c)

Fig. 1: Increasing incoming vehicle flow (the
demanded inflow) degrades performance of a policy
trained with inflow of 1650 veh/hour, with respect
to both throughput (a) and speed (b). A visual repre-
sentation (c) is given that shows what this decreased
efficiency looks like. The red curve shows the perfor-
mance of a human baseline with no AVs (AVP=0),
and the blue curve shows the performance of a trained
policy with 30% AVs (AVP=30).

here as “AVP”), AV placement in traffic, and road

geometry. However, existing driving policies have

generally been tested in the same conditions they were

trained on, and have not been thoroughly tested for

robustness to different traffic conditions. Indeed, their

performance can degrade considerably when evalu-

ated outside of the training conditions (Figure 1).

Therefore, it remains unclear how to create a robust

DRL congestion-reduction driving policy that is prac-

tical for real-world deployment.

In this article, we establish for the first time the

existence of a robust DRL congestion-reduction driv-

ing policy that performs well across a wide variety

of traffic flows, AVP, AV placement in traffic, and

several road geometries. Moreover, we investigate the

question of how to come up with such a policy and

what degree of robustness it can achieve. We create

a testbed with a diverse, pre-defined collection of test

traffic conditions of real-world interest including the

single-lane merge scenario shown in Figure 1c. Such

merge scenarios are a common source of stop-and-go

waves on highways [4].

While there are different approaches to training

robust DRL policies in other domains with different

levels of success, our approach is to systematically

search for a robust policy by varying the training con-

ditions, evaluating the learned policy on our proposed

test set in a single-lane merge scenario, and selecting

the highest performing one. The highest performing

policy outperforms the human-only baseline with as

few as 1 % AVs across different traffic conditions in

the single-lane merge scenario.

We further investigate the policy’s generalization

to more complex scenarios it has not seen during train-

ing, specifically a scenario with two merging ramps

at a variety of distances, and a merge scenario with

a double-lane main road, with cars able to change

lanes. Notwithstanding negative prior results show-

ing that a policy developed in a single-lane ring road

fails to mitigate the congestion on a double-lane ring

road [5], our learned policy outperforms human-only

traffic and effectively mitigates congestion in these

more complex scenarios as well.
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Inspired by our successful results in a high-fidelity

microsimulation, this article further contributes a

novel extension of the well-known Cell Transmis-

sion Model (CTM) that, unlike past CTMs, is suitable

for modeling congestion in traffic networks, and is

thus suitable for studying congestion-reduction poli-

cies such as those considered in this article. Taken

together, this article’s contributions and insights take

us a step closer towards making the exciting concept

of traffic congestion reduction through AV control a

practical reality.

The rest of the article is structured as follows.

Section 2 presents related work. Section 3 provides

a background that includes a formalization of the

traffic reduction problem, a description of the DRL

setup, and a description of our robustness evalua-

tion conditions. Section 4 describes how the DRL

policy is learned and analyzes its empirical perfor-

mance. Section 5 describes the generalization of our

policy to unseen, complex roads. Section 6 intro-

duces a novel Cell Transmission Model formulation

and use it to empirically characterize the operation of

congestion reducing policies. Section 7 presents the

hyper-parameters used by the training algorithm and

the Cell Transmission Model. The code that gener-

ates all data used in this study is available at https:

//github.com/yulinzhang/MITC-LARG.

2 Related work

Traffic optimization has long been a challenging

research area with direct real-world impact [6]. An

important research question is how to mitigate high-

way stop-and-go waves, which have been demon-

strated to emerge when vehicle density exceeds a

critical value, and to result in reduced throughput

and increased driving time [2]. In small-scale field

experiments, vehicles controlled autonomously by

hand-designed driving policies successfully dissipated

stop-and-go waves, thus reducing congestion [3]. The

industry-wide development of autonomous vehicles

(AVs) has inspired researchers to tackle this problem

at a larger scale.

Recent progress in Reinforcement Learning

(RL) [7] has made it possible to learn congestion

reduction AV driving policies that perform well in

simulation. Using state-of-the-art algorithms, signifi-

cant congestion reduction was achieved both in circu-

lar roads with a fixed set of vehicles (referred to as

closed road networks), and acyclic roads with vehi-

cles entering and leaving the system (referred to as

open road networks) [8–10], as compared with simu-

lated human-driven traffic implemented with accepted

human driving models [11]. Most of these past suc-

cessful driving policies controlled AVs in a centralized

manner, where a single controller simultaneously pro-

cesses all available sensing information and sends

driving commands to the AVs. More recent efforts

focused on developing decentralized driving policies

https://github.com/yulinzhang/MITC-LARG
https://github.com/yulinzhang/MITC-LARG
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which might be harder to learn, but are considered

a more realistic option for real-world deployment, as

they mostly rely on local sensing and actuation capa-

bilities [10, 12]. this article continues the line of

research on decentralized policies but aims to develop

one that is robust to real-world traffic conditions of

practical interest.

Recent RL techniques for developing robust poli-

cies include adversarial training [13] and domain ran-

domization [14]. Existing research uses these ideas to

build congestion reduction policies that are robust to

some particular traffic conditions. Wu et al. present

policies that can generalize on a closed ring road

to traffic densities higher and lower than the ones

they were trained on, by randomizing densities during

training [15]. Parvate et al. evaluate the robustness of

a hand-coded controller over different AV penetration

and driving aggressiveness [16]. This article focuses

on learning a driving policy that is robust to different

traffic flows, AV penetrations, AV placement within

traffic, and road geometries.

In contemporary unpublished work [17], Vinitsky

et al. studied a similar setup. In particular, similarly

to our work, they developed a robust, decentralized

policy that is shared among all AVs for an open road

network scenario. On the other hand, our work differs

from theirs in several ways. First we focus on merge

scenarios, while they focus on bottleneck scenarios.

Second, they developed a robust policy by randomiz-

ing the training conditions, while we did a systematic

sweep of the training conditions to understand how

each training condition contributes to the performance

of the trained policy. Third, we further examined the

robustness of the policy trained from a merge scenario

on a more complex road with multiple merging ramps

and multiple lanes.

Finally, to evaluate proposed traffic systems more

efficiently, traffic engineers often make use of more

abstract traffic models for their initial analyses, such

as Cell Transmission Models (CTMs) [18]. Unfortu-

nately, traditional CTMs are not applicable to the topic

of this article because they do not capture the traffic

congestion from multiple merging inflows. To allevi-

ate this limitation, in Section 6 we introduce a novel

CTM formulation that models the traffic congestion

by conditionally discounting the merging inflows.

3 Background and setup

We start by introducing the problem of learning a

robust traffic congestion reduction policy.

3.1 Road-merge congestion reduction

Consider a network with a main highway and a merg-

ing road, as shown in Figure 1c. There are vehicles

joining and leaving the network, and the traffic con-

sists of both human-driven and autonomous vehicles.

The human drivers are assumed to be self-interested

and optimize their own travel time, while autonomous

vehicles (AVs) are assumed to be altruistic and have a

common goal of reducing traffic congestion. Our goal
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is to come up with a driving policy that controls each

AV such that traffic performance is improved.

We measure the performance of policies in terms

of both outflow and average speed. Outflow is the

number of vehicles per hour exiting the simulation,

representing system-level throughput. The average

speed represents the time delay it takes an average

driver to drive the simulated road. We note that it is

important to report both metrics, since scenarios with

low and high average speeds could have the same sys-

tem throughput, such that one is considered congested

while the other is not.

A policy can be hand-programmed or learned.

Reinforcement learning (RL) has been shown to pro-

duce superior policies [8–10, 19] and is therefore our

method of choice. Congestion reduction driving poli-

cies can either be centralized, controlling all vehicles

simultaneously based on global system information,

or decentralized, controlling each vehicle indepen-

dently based on its local observations. Decentralized

policies with no vehicle-to-vehicle communication are

most realistic, since they mostly rely on local sensing

and actuation capabilities [12, 17], and are therefore

the focus of this article.

This multiagent traffic congestion reduction prob-

lem can be modelled as a discrete-time, finite-horizon

decentralized partially observable Markov decision

process (Dec-POMDP) [20], denoted as a tuple

(S, {Ai}, P,R, {Ωi},O, T, γ) where,

• S is a state space representing the location and

speed of every vehicle in the network,

• {Ai} is a joint action space for all agents, where

Ai ∈ R is a real number that specifies an

acceleration action for agent i,

• P : S × {Ai} × S → [0, 1] is a stochastic state

transition function, which specifies the probabil-

ity distribution of target state given the source

state and action taken by the vehicle. In this

paper, this state transition function is realized via

a traffic simulator.

• R : S × {Ai} → R is a global reward function,

• {Ωi} is a collection of local observations for each

agent (see Section 3.2),

• O : S × {Ai} × {Ωi} → [0, 1] outputs the

probability that each agent receives a specific

observation given the next state and the joint

action just taken,

• T is the episode length,

• γ ∈ [0, 1] is the discount factor of reward.

A decentralized, shared driving policy is a prob-

ability density function over the action space πθ :

{Ωi}×{Ai} → [0, 1] parameterized by θ that stochas-

tically maps each agent’s local observations to its

driving actions.

Throughout this article we use the SUMO traf-

fic simulator [21] as the state transition function.

SUMO is a high-fidelity micro simulator that includes

accepted human driving models [11, 22] with config-

urable traffic networks, flows, and driving aggressive-

ness, as well as mechanisms for enforcing traffic rules,

safety rules, and basic physical constraints. To learn

AV driving policies, we use the RLlib library [23]. We
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interface with SUMO and RLlib using UC Berkeley’s

Flow software [24].

3.2 RL-based decentralized driving policy

To learn a decentralized driving policy we use the

Proximal Policy Optimization (PPO) algorithm [25].

To facilitate data and computational efficiency and

reduce the risk of overfitting, all AVs learn and exe-

cute a single, shared driving policy. The observation

space and reward design used in this article are mod-

eled after those used by Cui et al. [12], which were

shown to be effective for decentralized policies. The

observation for each AV includes

• the speed and distance of the closest vehicles in

front of and behind it,

• the AV’s speed,

• the AV’s distance to the next merging point,

• the speed of the next merging vehicle and its

distance to the merge junction (assumed to be

obtained by the vehicle’s cameras/radars, or be

computed by some global infrastructure and then

shared with all the vehicles).

The reward of the ith AV at time step t is defined as:

ri,t =(1− I{done})
(
− η + (1− η)×

∑nt

j=1 vj

ntVmax

)
+ I{done} ·Bonus

where I{done} is an indicator function of whether an

AV is leaving the network;Bonus is a constant reward

for an AV when it exits the network; the term
∑nt

j=1 vj

ntVmax

represents the normalized average speed, where vj is

the speed of vehicle j, nt is the total number of vehi-

cles in the network at time t, Vmax is the max possible

speed, and η is a constant that weights the individual

and the global reward.

3.3 Robustness evaluation conditions

Similarly to past work, our baseline setup consists of

simulated human-driven vehicles only, where the AVP

is 0. In contrast to past work, which typically showed

improvement over this baseline in a single combi-

nation of traffic conditions, our goal is to develop

a robust AV driving policy that improves over this

baseline across a range of realistic traffic conditions,

characterized by:

• Main Inflow Rate: the amount of incoming traffic

on the main artery (veh/hour),

• Merge Inflow Rate: the amount of incoming traf-

fic on the merge road (veh/hour),

• AV Placement: the place where the AVs appear in

the traffic flow; the AVs can either be distributed

evenly or randomly among the simulated human-

driven vehicles.

• AV Penetration: the percentage of vehicles that

are controlled autonomously,

• Merge road geometry: the distance between two

merge junctions (in relevant scenarios), and the

number of lanes.

In this article, we focus on a merge inflow rate of

200 veh/hour and a main inflow rate in the range

of [1600, 2000] veh/hour since these values tend to
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lead to congestion in the baseline (AVP=0) condi-

tions. We vary all the other parameters as follows:

AV penetration (AVP) is set to be within [0, 40] per-

cent to represent a realistic amount of controllable

AVs that can be expected in the coming years, and the

placement of the AVs can either be random or even.

For even placement, AVs are placed every N human-

driven vehicles in a lane. For random placement, AVs

are placed randomly among simulated human-driven

vehicles. Merge road geometries include one or two

merges at distances that vary between [200, 800]

meters, and the main road can have one or two lanes.

4 Learning a robust policy in the

single-lane merge scenario

While real-world congestion-reducing driving policies

need to operate effectively in a wide variety of traffic

conditions, most past research has tested learned poli-

cies under the same conditions on which they were

trained. Since in the real world it is impractical to

deploy a separate policy for each combination of con-

ditions, our primary goal is to understand whether it is

feasible to learn a single driving policy that is robust

to real-world variations in traffic conditions.

The performance of an RL-based driving policy

depends on the traffic conditions under which it is

trained. We hypothesize that the policy trained under

high inflow, medium AV penetration, and random

vehicle placement is robust in a range of traffic con-

ditions defined in Section 3.3 for a single-lane merge

scenario. We test this hypothesis by comparing 30

policies, each of which is trained under a combination

of traffic conditions specified below in Section 4.1.

The training of each policy takes about 7 hours on

a 3.7 GHz Intel 12 Core i7 processor. SUMO has

built-in stochasticity which includes vehicle departure

times and vehicle driving dynamics. Hence, each pol-

icy, including human-only baseline, is evaluated 100

times using a fixed set of 100 random seeds, and each

evaluation takes about one hour. After we identify a

policy that generalizes well across traffic conditions

in the training road geometry, a later section will

describe an evaluation this policy on more complex

road geometries unseen at training time.

4.1 Discretization of traffic conditions for

training

Since there is an innumerable set of possible traffic

conditions, for the purpose of training we discretize

traffic conditions along their defining dimensions to a

total of 30 representative combinations of conditions,

as follows. We consider main inflows of 1650, 1850,

and 2000 veh/hour which result in low, medium,

and high congestion. We discretize AV placement in

traffic to be random or even-spaced. Finally, we dis-

cretize the training AV penetration into 5 levels: 10 %,

30 %, 50 %, 80 %, 100 %. Based on this 3 × 2 × 5

discretization, we train 30 policies, one for each

combination.
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Each trained policy is then evaluated across the

range of traffic conditions described in Section 3.3,

leading to two performance values (outflow and aver-

age speed) on each testing condition for each policy.

We plot these results using the following convention.

The label of a data point consists of two parts: (i) the

training conditions of the policy to be evaluated, and

(ii) the policy’s evaluation conditions. The policy’s

training conditions indicate the vehicle placement,

main inflow, merge inflow, and AVP, separated by “-”.

For example, “random-2000-200-30” denotes the pol-

icy trained under random vehicle placement with main

inflow 2000 veh/hour, merging inflow 200 veh/hour,

and 30 % AVP. The evaluation conditions also con-

sist of vehicle placement, main inflow, merging inflow,

and AVP. In this article, the merging inflow is always

fixed to be 200 veh/hour and the vehicle place-

ment is specified separately from the graph label.

Therefore we only specify the evaluation-time main

inflow and AVP to indicate the evaluation condition

for each data point. Hence, each evaluation result is

labeled as a 6-tuple, where the first four elements

describe the training conditions and the remaining

two describe the evaluation conditions. For example,

“random-2000-200-30:1800-10” labels the result of

policy “random-2000-200-30” evaluated under main

inflow 1800 veh/hour and AVP 10 %. We further

use “*” in the evaluation condition to denote which

evaluation condition varies in a plot. For example,

“random-2000-200-30:1800-*” indicates that the pol-

icy “random-2000-200-30” was evaluated under main

inflow of 1800 and varying AVPs; “random-2000-200-

30:*-10” indicates that policy “random-2000-200-30”

was evaluated under AVP 10 % and varying main

inflows.

4.2 Robustness to vehicle placement, AV

penetration and inflow

In this section, we test our hypothesis that training

with high inflow, medium AV penetration, and random

vehicle placement yields a robust policy, by showing

representative slices of the evaluation results.

We start by showing that the policies trained under

random vehicle placement outperform policies that

are trained under even vehicle placement. The per-

formance of a representative subset of these policies

is depicted in Figure 2a and 2b. The red curves rep-

resent the evaluation results for the policies trained

under random vehicle placement, and the blue curves

represent the results for the policies trained under

even vehicle placement. These policies are evalu-

ated using the outflow and average speed metrics

under both random vehicle placement (Figure 2a) and

even vehicle placement (Figure 2b). When evaluat-

ing on either random placement or even placement,

the policies trained with random placement outper-

form the human baseline as well as their counterparts

trained with even placement. Specifically, the results

in Figure 2a confirm the intuition that when evaluated

with random vehicle placement, the policies trained

under random vehicle placement should have better
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(a) Evaluating the policies with random vehicle placement:
the policies trained under random placement (colored as
red) outperform the policies trained under even placement
(colored as blue).
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Fig. 2: Results of policies trained under different AV placements, AV penetrations, and main inflows. Figure (a)–
(b): we show that the policies trained under random vehicle placement outperform their counterparts trained with
even placement, when evaluated under both random and even vehicle placement. Figure (c): we fix the evaluation
inflow at a medium level and find that a training AVP of 30 % is the most robust when varying evaluation AVPs;
Figure (d): we fix the evaluation AVP, and verify that main inflow 2000 veh/hour is the most robust when varying
evaluation inflows.

performance than their counterparts trained with even

vehicle placement. However, counter-intuitively, ran-

dom placement at training time also results in more

robust policies when testing under even placement. We

hypothesize that this performance increase is due to

the more diverse data collected when RL vehicles are

randomly placed.

Next, we confirm the intuition that the polices

trained under medium AV penetration are better than

others. Figure 2c show when fixing the main inflow,

the policies trained under AVP 30 % (red curve with

triangle) are competitive in both their outflow and

average speed when evaluated under varying AVPs.

They have the best performance across a large range of
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the evaluation AVPs. We hypothesize that these mid-

range AVP values during training perform best since

(i) lower AVP may not encounter enough situations

with densely distributed AVs, and (ii) higher AVP

may not encounter enough situations with sparsely

distributed AVs.

Finally, we test the hypothesis that the policies

trained under high inflow are robust. When fixing

the AVP and varying main inflow during evalua-

tion, Figure 2d shows that the policy trained under

main inflow 2000 veh/hour (red curve) has better per-

formance than policies trained with different main

inflows, in terms of both outflow and average speed.

We hypothesize that the policies trained under the

highest inflow outperform others because a higher

main inflow yields more diverse vehicle densities at

training time. Specifically, the simulation dynamics

can lead high inflow to include both dense and sparse

vehicle placement, while a lower main inflow tends to

mostly result in a sparse vehicle distribution.

Verifying our hypothesis, we find that the policy

“random-2000-200-30”, which is trained under ran-

dom vehicle placement, main inflow 2000 veh/hour,

merge inflow 200 veh/hour, and AVP 30 %, outper-

forms the alternatives in terms of robustness. In the

single-lane merge scenario, this policy achieves sig-

nificant improvement over the human-only baseline

across all evaluating conditions when the AVP is

greater than or equal to 1 % during deployment (with

p-value 0.05 as the cutoff for significance).

5 Deploying the learned policy to

more complex roads

We learned a robust policy in a single-lane merge sce-

nario. To push this policy one step further toward a

real-world deployment, we test this policy’s robust-

ness to more complex road structures: roads with two

merging ramps, and double-lane roads.

5.1 Deployed to roads with two merging

ramps

We first deploy the selected policy on more complex

road structures, which have two merging roads at vary-

ing distances as shown in Figure 3, and evaluate the

performance of the learned policy with respect to the

distance between these two ramps.

Consider the merge scenario with two merging

ramps: the first merging ramp is located 500 meters

from the simulated main road’s start, the second merg-

ing ramp is located 200, 400, 600, or 800 meters

after the first, the total length of the main road is

1500 meters, and the total length of the merging roads

is 250 meters. We tested the random-2000-200-30

policy with random AV placement, main inflow of

1800 veh/hour, merge inflow 200 veh/hour, across a

range of AV penetrations and the above gaps between

the two merging roads.

The results are shown in Figure 4, where the blue

curves show the performance of the policy to be tested

with different AVP values, and the red curve shows
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Fig. 3: A merge road with two merging on-ramps.

the human baseline’s performance. The random-2000-

200-30 policy is best when the distance between

the two on-ramps is large. As we decrease this dis-

tance, the performance gap from the human baseline

decreases, but remains positive even when the merg-

ing ramps are just 200 meters apart, which is the

setup that is most different than the training condi-

tions, as explained next. When the distance between

on-ramps is small, the traffic congestion at the sec-

ond merging ramp interferes with the traffic flow at

the first merging ramp, but is not observable to the RL

vehicles approaching the first ramp. As we increase

the distance between these two merging ramps, such

interference decreases and the traffic flow approach-

ing these two merging ramps can be treated by the

AVs increasingly independently. As a consequence,

when these two merging ramps become further away

from each other, the decision making processes for

the AVs become similar to those on the single-lane

merge roads — they only need to consider the traffic

flow at the next incoming junction. To summarize, the

selected policy slightly reduces traffic congestion in

the two-ramp scenario; and its performance improves

as the distance between these two ramps increases.
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human-baseline

Fig. 4: Results of deploying the selected training pol-
icy on roads with two on-ramps. The result of human-
only traffic is represented as red, and the results of the
learned policy are represented as blue.

5.2 Deployed to double-lane merge roads

Urban highways often consist of multiple lanes. Thus

past research suggesting that AVs might increase traf-

fic congestion on multi-lane roads [5] has (rightfully)

raised concerns about the practical deployability of

systems like the one considered in this article. Con-

trary to those results, we find that AVs can reduce

congestion even in multi-lane scenarios. Specifically,

we consider a double-lane merge road, by adding a

second lane in the main road, as shown in Figure 5.

Similarly to the single-lane merge scenario, the vehi-

Fig. 5: A double-lane merge scenario.
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cles in the right lane must yield to the vehicles from

the merging lane and may cause potential congestion

in the right lane. But the vehicles in the left lane have

the right of way when passing the junction. As a con-

sequence, the vehicles in the left lane tend to move at

a faster speed, and there will be more vehicles chang-

ing from right to left for speed gain than the number

of vehicles changing from left to right. Those lane-

changing vehicles cause additional stop-and-go waves

in the left lane.

We test the robustness of our selected policy when

deployed in the right lane in this new road structure.

In our experiments, the left lane contains no AVs and

an inflow of 1600 veh/hour human-driven vehicles,

and the right lane contains an AVP of 10 %–40 % that

are controlled by our selected policy. Figure 6 shows

that for right main inflows of 1600−2000 veh/hour,

our policy improves outflow by about 4 % and traffic

speed by about 2x compared with human-only traf-

fic. We observed that the learned policy, mitigating the

congestion in the right lane b also reduces the amount

of lane-changing vehicles since the right lane is less

congested. Hence, the policy trained on the single-lane

merge road generalizes well in the double-lane merge

scenario.

6 Abstract Analysis in an Extended

Cell Transmission Model

The findings presented in Sections 4 and 5 mark a

significant advancement as they showcase, for the

Evaluation: random vehicle placement, left main inflow=1600
right main inflow=[1600,2000], right AVP=10-40%, left AVP=0%

Fig. 6: Results of deploying the selected training pol-
icy on the double-lane merge roads. The human-only
traffic is represented as red curves, and the traffic con-
trolled by the learned policy is represented as blue
curves.

first time, a driving policy that exhibits generalization

capabilities across diverse traffic conditions and real-

world road structures. This achievement represents a

notable stride towards the practical realization of traf-

fic congestion reduction through autonomous vehicle

(AV) control. Nonetheless, a knowledge gap persists

regarding the extent to which a local driving policy,

operating in a distributed manner with independent

control for each AV, contributes to overall enhance-

ments in average speed and outflow. Moreover, assess-

ing this driving policy’s effectiveness using a high-

fidelity microsimulation tool like SUMO poses com-

putational challenges, even on high-performance com-

puting platforms.

As summarized in Section 2, traffic engineers

commonly rely on abstract traffic simulators, which

efficiently calculate macroscopic traffic behavior with-

out simulating each individual vehicle, to prototype

and assess new traffic protocols. Cell Transmission

Models (CTM) [18] are widely utilized in such
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abstract traffic simulations. However, existing CTMs

do not incorporate the modeling of traffic congestion

resulting from multiple merging inflows, rendering

them unsuitable for our specific research focus. In this

section, we present a novel CTM that effectively cap-

tures the traffic congestion caused by merging inflows.

We validate this model by comparing it to microsim-

ulation outcomes obtained from SUMO. Additionally,

we employ this CTM to characterize the operation of

our proposed congestion-reducing policies and gain

insights about how a local driving policy improves

traffic performance globally.

Our analysis proceeds according to the following

steps:

• Discretizing the road into basic segments

(referred to hereby as cells)

• Empirically fitting a fundamental diagram of

traffic flow for each cell.

• Using these fundamental diagrams to construct a

novel extension of a CTM for the merge scenario

in Figure 1.

• Validating this CTM against SUMO by show-

ing that their global behaviors (overall simulation

inflow and outflow) are similar.

• Further introducing a novel extension of CTM

to model the double-lane merge scenario from

Figure 5, and similarly validating its global

behavior against SUMO’s.

• Using these CTMs to extract insights regarding

the desired local (intra-cell/segment) behavior of

a policy to improve global traffic flow (simula-

tion outflow), which in turn provides a direction

for designing congestion-reduction policies for

large-scale multilane scenarios that are too slow

to explore by exhaustive simulations.

6.1 Discretizing road into cells and fitting

their fundamental diagrams

We start by discretizing the single-lane merge sce-

nario from Figure 1 into 100 m cells, as shown in

Figure 7. The cell length of 100 m was selected to be

small enough to capture the local traffic around each

autonomous vehicle, and large enough for computa-

tional efficiency.

Fig. 7: Discretizing the road into cells.

Next, we import from traffic flow theory the con-

cept of a traffic fundamental diagrams, which yields

the relationship between the traffic density and traffic

flow [26]. To obtain a fundamental diagram for each

cell in SUMO, we profiled the instantaneous density

and average speed, and calculated the flow as the prod-

uct of instantaneous density and average speed. Since

the fundamental diagram characterizes the intrinsic

properties of the road conditions (such as capacity

and speed limit), the diagram is independent of the
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inflows. In Figure 8a, we profile the fundamental dia-

gram of merge inflow 200 (blue) and 0 (red) veh/hour.

For merge inflow 0, there is no congestion in the road

and so the density of the cells will never be higher than

0.05 veh/m. From this fundamental diagram, we can

observe that the results for both of these merge inflows

are almost the same. Similarly, we observe the same

fundamental diagrams for all cells, and therefore we

model every cell with the same fundamental diagram.

Based on the observed data, we see that the funda-

mental diagram is close to a triangular shape. Hence,

we fit a triangular fundamental diagram as shown in

Figure 8b, which is defined by the slope before the

peak (called free-flow speed v), maximum flow Q and

its corresponding density (critical density dc), slope

after the peak (speed of the backward wave w), and

the density to reach 0 flow (jam density dj).

6.2 Constructing an extended CTM from

fundamental diagrams.

Next, we introduce an extended CTM, which models

a single-lane merge scenario using the fitted funda-

mental diagram as a model of intra-cell behaviors.

We start by defining two additional parameters that

characterize all cells:

• Q = dc × v is the maximum number of vehicles

that can flow into a cell when the clock advances,

• N = 100 × dj is the maximum number of

vehicles in a cell, where 100 is the cell length.

(a) The flow density relation under different merge inflows
(red curve represents the result of 0 merge inflow, and blue
curve represents the result of merge inflow 200 veh/hour.)
The horizontal axis is the density (veh/m), and the vertical
axis represents the flow (veh/s).

(b) A triangular fundamental diagram and its parameters.

Fig. 8: Profiling the flow density relation of a cell in
SUMO, and modelling it as a triangular fundamental
diagram.

Let yi(t) and ni(t) be the inflow and number of vehi-

cles in cell i at time t. The inflow is upper bounded

by the total number of vehicles in the upstream cells,

maximum number of vehicles that can flow into the

current cell, and the number of available positions in

the cell discounted by the ratio of wave and free-flow

speeds [27] i.e.,

yi(t) = min
{
ni−1(t), Q,

w

v
[N − ni(t)]

}

When the merge traffic exceeds a certain threshold,

more vehicles on the main road will have to slow down
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or stop to yield to merging traffic. This causes a reduc-

tion in the inflow right after the junction, i.e., at cell 7.

To model this, we introduce a conditional penalty fac-

tor α to discount the inflow of the cell after the merge:

if the flow from the merge road is larger than some

threshold β, then the inflow of the downstream cell is

discounted by α, i.e.,

y′7(t) = α× y7(t),

where both α and β are hyper-parameters.

Using the above rules, we can update the number

of vehicles at cell i at time t+ 1 by adding the inflow

and subtracting the outflow at time t:

ni(t+ 1) = ni(t) + yi(t)− yi+1(t) (1)

The scenario’s overall inflow and outflow are then the

inflow of the left most cell (cell 1) and outflow of the

right most cell (cell 7). The video of the CTM simula-

tion for single-lane merge scenario can be found here:

https://tinyurl.com/single-lane-ctm.

6.3 Validating the single-lane CTM

against SUMO

To validate our novel single-lane merge CTM, we run

a CTM simulation by iterating the operation suggested

by Equation (1) until the inflow and outflow con-

verge to their steady state, and then compare its overall

inflow and outflow with SUMO’s. Figure 9 shows

this comparison, where each data point for SUMO

is collected by running 100 simulations, each with a

different random seed, and each data point for CTM

is collected from a single simulation (since CTM is

deterministic). The CTM outflows mostly fall within

the 95% confidence bounds of the mean, which rep-

resent 100 vehicles or fewer (around 5-6% of the

flow), thus providing reasonable similarity between

the inflow-outflow plots of the CTM and SUMO. Both

curves have similar values as the outflow first increase

with inflow, then decreases as the traffic congestion

develops, and finally saturates as we further increase

the inflow.

Running a CTM simulation takes less than a sec-

ond, while running 100 SUMO simulations can take

minutes, or even hours or days for large scenarios.

Therefore, CTM based on the triangular fundamental

diagram can be viewed as a lower-fidelity but more

computationally efficient alternative for SUMO.
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Fig. 9: Comparing the inflow-outflow relation
between SUMO and CTM under different main
inflows and merge inflows. The range of the main
inflow is [1400, 2000], and the range of the merge
inflow is [160, 200]. The human-only result in SUMO
is represented as cyan curves, and that of CTM is
represent as red curves.

https://tinyurl.com/single-lane-ctm
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6.4 Extending CTM to a double-lane

merge scenario

Next, we introduce another novel extension of CTM,

modelling for the first time a multilane merge sce-

nario. First, we discretize the double-lane scenario

from Figure 5 into 100 m cells, as illustrated in

Figure 10. Next, to capture traffic changing from

neighboring cells, we add the following definitions:

Fig. 10: Discretizing the double-lane scenario from
Figure 5 into CTM cells.

• nli(t), n
r
i (t): the number of vehicles on the left

and right lanes of cell i at time t

• lcli(t), lc
r
i (t): the number of lane-changes to the

left and right lanes of cell i at time t

We then add the following rules:

• The right main road follows the same update

rules as that of single-lane case.

• The left main road will not be blocked by the

merging vehicles.

• Rules for lane-changing vehicles lcli(t) and

lcri (t) from current lane to the target lane:

– If the number of vehicles in the current lane

is less than or equal to that of the target lane,

then more vehicles will be motivated to stay

and the number of vehicles changing from

current lane is small and denoted as ε.

– If the number of vehicles in the current

lane is larger than that of the target lane,

then additional vehicles will be motivated to

change to the less congested lane. Here, we

introduce a lane change factor δ, to capture

the fraction of vehicles that are motivated to

change lanes:

lcli(t) = δ × (nri (t)− nli(t)) + ε

• To capture the traffic congestion caused by lane-

changing behaviors, we build flow discounting

rules similar to those of the single-lane case as

follows. If the number of vehicles changing to

cell i (lcli(t)) is larger than 0 and the exist-

ing number of vehicles (nli(t)) is larger than a

certain threshold, then there will be congestion

caused by lane changing and we discount the out-

flow using the previously introduced discounting

factor α:

yi+1(t) := α× yi+1(t)

Based on the rules above, we can obtain a double-

lane CTM, and a video of this model can be found:

https://tinyurl.com/double-lane-ctm.

Similarly to the single-lane CTM, we validate the

CTM by iterating the update equation until conver-

gence of inflow and outflow, and then compare its

https://tinyurl.com/double-lane-ctm
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overall inflow and outflow with SUMO’s. Figure 11

shows this comparison on a range of inflows and out-

flows, where the main inflow on the right lane is

chosen to be larger than that of the left lane so that

most traffic changes from the right lane to the left

lane to reflect a typical merge scenario. It can be seen

that the inflow-outflow curves match each other well.

We conclude that the double-lane CTM that uses a

triangular fundamental diagram to model each cell

can serve as a lower-fidelity, computationally effi-

cient alternative to SUMO for the double-lane merge

scenario.

6.5 Insights from fundamental diagrams

and CTM

We introduced novel CTMs for single-lane and

double-lane merge scenarios, by discretizing these

roads into cells that are simulated using fitted tri-

angular fundamental traffic flow diagrams. We have

observed that the inflow-outflow CTM plots approxi-

mate closely those of the SUMO micro-simulation, in

both single-lane and double-lane merge scenarios. So

the CTMs can be treated as a low-fidelity alternative of

the SUMO microsimulator. In this section, we present

insights about congestion reduction policies that are

suggested by studying the behavior of our extended

CTMs.

In the triangular fundamental diagram shown in

Figure 8b, the flow of each cell is maximized when

the density is around a critical density in which a

(a) Fixing a few right-lane inflows, varying left-lane inflows

(b) Fixing a few left-lane inflows, varying right-lane inflows

Fig. 11: Comparing the inflows and outflows of
the double-lane CTM with SUMO’s. The results in
SUMO are represented as red curves, and the results in
CTM are represented as blue.Here we only present the
data points where the inflow on the left lane is smaller
than that from the right lane.

maximal flow is achieved (the peak of the rectangle

in Figure 8b). Hence, it seems that an effective AV

driving policy ought to seek to manipulate the traffic

density in its vicinity to remain close to the critical

density. Indeed, our proposed driving policy does so

by slowing down to reduce traffic density if there is

congestion ahead.

A similar intuition applies in the double-lane

merge scenario as well. According to the lane-

changing rules of CTM and SUMO, vehicles

change from high-density lanes to low-density lanes.
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Autonomous vehicles are observed to encourage such

lane-changing behaviors, by opening a gaps suitable

for other cars to merge into. This behavior helps to

optimize the traffic density in both lanes toward their

critical densities.

The benefit of our extended CTMs could become

even more apparent in large-scale multilane scenarios

that are too slow to explore by exhaustive simula-

tions of different traffic conditions. Using a similar

approach, we can discretize such scenarios into cells

modelled using fitted fundamental diagrams, and then

use the computationally-efficiently CTMs to explore a

range of traffic conditions and desired AV density con-

trol policies, which could direct the development of

practical congestion reduction policies for large-scale

scenarios.

7 Implementation Details and

Hyper-parameters

All experiments are built on top of SUMO 1.6.0 and

UC Berkeley’s Flow software framework [24]. The

human-driven vehicles are controlled by the Krauss

model with hyper-parameters defined in Table 1. To

control the autonomous vehicles, we use Proximal

Policy Optimization algorithm [25] to learn a driv-

ing policy, and the hyper-parameters for this algo-

rithm is defined in Table 2. The hyper-parameters

used by CTM is shown in Table 3. Our implemen-

tation is available at https://github.com/yulinzhang/

MITC-LARG.

8 Conclusion and future work

We presented an approach for learning a congestion

reduction driving policy that performs robustly in road

merge scenarios over a variety of traffic conditions

of practical interest. Specifically, the resulting policy

reduces congestion in AV penetrations of 1 %–40 %,

traffic inflows ranging from no congestion to heavy

congestion, random AV placement in traffic, single-

lane single-merge road, single-lane road with two

merges at varying distances, and double-lane single-

merge road with lane changes. The process of finding

this policy involved identifying a single combination

of training conditions that yields a robust policy across

different evaluating conditions in a single-lane merge

scenario. We find, for the first time, that the resulting

policy generalizes beyond the training conditions and

road geometry it was trained on.

Recently there has been an increasing interest in

developing RL training methods that result in robust

policies. In our domain we find that randomizing

AV placement and searching for an effective train-

ing setup over the space of traffic conditions achieve

robustness effectively. The straightforward nature of

our method and its limited set of assumptions and

tuning parameters make it a potential candidate for

real-world deployments. Given that RL algorithms

have been shown to be brittle in many domains, find-

ing an RL-based policy that performs robustly across

https://github.com/yulinzhang/MITC-LARG
https://github.com/yulinzhang/MITC-LARG
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Table 1: Hyper-Parameters for Human-driven Vehicles
Parameter Value
Controller IDM Controller

Max Acceleration 2.6
Max Deceleration 4.5

Expected Time Headway 1 second

Table 2: Hyper-Parameters for Training Autonomous Vehicles
Parameter Value
Algorithm Proximal Policy Optimization (PPO)
Horizon 14000

Simulation Time Step Size 0.5
Optimizer Stochastic Gradient Descent

Learning Rate
piece-wise linearly decreasing starting

from 5× 10−4 (From scratch)
Discount Factor (γ) 0.998
GAE Lambda (λ) 0.95

Actor Critic True
Value Function Clip Parameter 108

Number of SGD Update per Iteration 10
Model hiddens [100,50,25]
Clip Parameter 0.2

Entropy Coefficient 10−3

Sgd Minibatch size 4096
Train Batch Size 60000

Value Function Share Layers True
Value Loss Coefficient 0.5

KL Coefficient 0.01
KL Target 0.01

Max Acceleration 2.6
Max Deceleration 4.5
Training Iterations 500

Number of Rollouts per Iteration 30
Bonus 20
η 0.9

a wide variety of traffic conditions in the challeng-

ing domain of multiagent congestion reduction is both

encouraging and somewhat surprising.

As a secondary contribution of the article, and in

order to more rapidly assess potential directions for

reducing congestion at merge points, we introduced a

novel variant of the Cell Transmission Model (CTM).

To this end, we first fit a fundamental diagram for

the micro-simulation results in SUMO. Based on this

fundamental diagram, we then construct an extended

CTM that accounts for traffic congestion in the merge

scenario. This extended CTM can serve as a lower

fidelity, but more computationally efficient, alterna-

tive to micro-simulation, and can thus be leveraged for
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Table 3: Hyper-Parameters for the Extended Cell Transmission Model
Parameter Value

Q 4.0 veh/s
N 14
v 21 m/s
w 8.40 m/s
dc 0.04 veh/m
α 0.65
β 1
δ 0.15
ε 0.05

rapid prototyping. Additionally, we reflect on insights

from experiments using the extended CTM model that

motivate training policies that improve the traffic flow

by keeping the traffic density close to the critical

density from the fundamental diagram.

Nonetheless, our work has a few limitations that

could serve as important directions for future research.

First, the question of whether there exists a driving

policy that reduces congestion when deployed on the

left lane of multilane scenarios still open. Second, our

tests used the same aggressiveness level for all sim-

ulated human-driven vehicles. Testing with a variety

of human behaviors would further increase the sim-

ulation results’ applicability. Third, there is room to

investigate a wider variety of road geometries beyond

the ones we investigated. Finally, even after investi-

gating these extensions, there will likely be a sim2real

gap to close, due to noisy/limited sensing and actu-

ation delay. These limitations notwithstanding, this

article’s contributions and insights advance our ongo-

ing effort to reduce traffic congestion via AV control

in the real world.
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