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Lecture 2: Class Introduction

Instructor:Brent Waters Scribe: Rashid Kaleem

1 Public Key Encyption

The following scenario describes a public key encryption system in practice.

1. Bob decides to communicate with alice@yahoo.com but fears an attacker.

2. Bob would lookup Alice’s public key from a trusted source.

3. Bob would encrypt the email using the public key aquired in the above step.

4. Alice would have the private key which she can use to decrypt the message.

In an identity based encryption, the first step is not required. Today we will review
some basic number theory and public key cryptosystems such as the El Gammal and prove
it secure under a number theoretic assumption.

2 Groups

A group is a finite set of elements having the following properties

• The order of the group is the number of elements in it.

• The group is closed under an operation (addition, multiplication etc)

• The existence of an Identitiy element I such that ∀h ∈ G, I ∗ h = h ∗ I = h.

• Existence of an inverse for all elements, ∀h ∈ G,∃h−1 such that h ∗ h−1 = I

• The operation under which the group is defined be commutative and associative.

For example, the following are groups:

• Z∗

P
: for some prime P , is the set of elements {1, 2, 3, ...P − 1} under the operation

multiplication. The order of the group is P − 1.

• Z7: consists of {1, 2, 3, 4, 5, 6}. For instance, 5 ∗ 5mod7 = 25mod7 = 4.
The inverse can be derived similarly, for instance 3−1 is represented by 5 since 3 ∗
5mod7 = 15mod7 = 1

• G = {1, 2, 4} is a group under the operation multiplication modulo 7.

• G = {1, 2, 4, 6} is not a group under the operation multiplication modulo 7 because it
does not obey the closure property.

• Elliptic Curve groups. More on this later, but they permit an equal strength cryp-
tosecurity for smaller keys.
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2.1 Some usefull facts.

Let G be a group of prime order P , and let g ∈ G

1. ga = g ∗ g ∗ g...g

2. ga ∗ gb = ga+b. Not gab.

3. gP = 1, where P is the group order.

4. ga = gamodP .

2.2 Repeated Squaring for Exponentiation.

In practice, ‖G‖ ≈ 2160, and to compute ga for very very large a would require extensive
computing. It would take exponential time to compute ga using regular multiplication a

times.
In order to compute ga more efficiently, we use the following procedure:

1. Detemine n = loga2.

2. Compute g2i = gi ∗ gi for i = 1, 2, 4, ...n.

3. Let the binary representation of a be an, an−1, ...a2, a1, a0.

4. Now use the following to determine ga :

ga = (g1)a1 + (g2)a2 + ... + (g2n

)an

3 Hard Problems

Now we shall consider some hard problems, as well as show how to prove a cryptosystem
secure. We will consider three hard problems :

• Discrete Logarithm

• Computational Diffie Hellman

• Decisional Diffie Hellman

Now let us discuss each of these:

3.1 Discrete Logarithm

Given a group G of order P and a generator g, and let a be randomly chosen from ZP . Now
consider g ∈ G. Let h = ga. The discrete logarithm problem T is to determince a from g

and ga.
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3.1.1 Assumption

For all poly-time algorithms A,

Pr[A(T (G, g, ga)) = a] = negligible

But we need to be specific by what we mean negligible and plynomial time algorithm with
respect to what. Whenever we have a number theoretic assumption, it is always going to
be parameterized with respect to a security parameter λ, so the algorithm A is polynomial
time with respect to λ. We also define a function F to be negligile in λ if for all plynomials
g(x), ∃n such that ∀x′ > n

f(x′) <
1

g(x′)

Hence, as λ becomes larger, the probability of solving the problem becomes smaller.

3.2 Computational Diffie Hellman

Given a group G of order P and a generator g, and let a, b be randomly chosen from ZP .
Now consider g ∈ G. The computational Diffie Hellman problem T is to determince gab

from g, ga, and gb.
No polynomial time algorithm can compute gab without negligible probability.

3.2.1 Proof of Hardness

We can show that a problem A is harder than a problem B if we can show that solving B

can be used to solve A as well. In order to show that the Computational Diffie Hellman
problem is harder than the Discrete Logarithm problem by showing that a solution to the
latter can be used to solve the former.

Suppose that an algorithm (or procedure) A which can solve the Discrete Logarithm
problem i.e, A(g, ga) = a with greater than negligible probability. We can construct an
algorithm B that solves the computational Diffie Hellman problem :

Theorem 3.1 Computational Diffie Hellman is harder than Discrete Logarithm

Proof. We can construct an algorithm B(g, ga, gb) that can compute gab as follows:

• Invoke A(g, ga) = a, hence determine a.

• Simply compute (gb)a to determine gab.

But the above assumption requires the following conditions:

1. A is a polynomial time algorithm.

2. A solves the Discrete Logarithm problem with greater than negligible probability.

3. B takes polynomial time (and hence invokes A polynomial number of times).

4. Probability of success for B is equal to that of A.
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3.3 Decisional Diffie Hellman

Given a group G of order P and a generator g, and let a, b be randomly chosen from ZP ,
also consider a randomly selected β ∈ 0, 1 such that if β = 0 χ = gab else χ is randomly
selected from G. The decisional Diffie Hellman problem T is to determince β from g, χ, ga,

and gb (i.e, is it a valid Diffie Hellman tuple?).
Note that β is uniformly random, so the adversary can also randomly pick his guess for

β and get it correct half of the time. So we need to rephrase our definition of the hardness.
For all plynomial time algorithms A, the probability that A(G, g, ga, gb, χ) = β is less

than 1

2
+ negligible(λ), i.e;

Pr[A(g, ga, gb, χ) = β] <
1

2
+ negligible(λ)

Theorem 3.2 Decisional Diffie Hellman is harder than Computational Diffie Hellman

Proof. If algorithm A breaks computational Diffie Hellman, then there exists an algorithm
B that can break decisional Diffie Hellman algorithm as follows:

• B is passed the arguments g, ga, gbandχ.

• B invokes A with the arguments g, ga and gb which returns χ′.

• B can check if χ′ equals χ and outputs 0 else outputs 1.
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