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Abstract

Active learning is composed of two equally im-
portant problems: deciding which areas in state
space most warrant further learning, and decid-
ing how to get to these areas. Very little effort
has been devoted to the latter problem. I will
address this area in the symposium as described
below.

Tasks with Distance Relationships

In many learning tasks, data-query is neither free nor
of constant cost. Often the cost of a query depends on
the distance from the current location in state space
to the desired query point. This is easiest to visualize
in robotics environments where a robot must physi-
cally move to a location in order to learn something
there. The cost of this learning is the time and effort
it takes to reach the new location. Furthermore, this
cost is characterized by a distance relationship: When
the robot moves as directly as possible from a source
state to a destination state, the states through which
it passes are closer (i.e., cheaper to reach) than is the
destination state. Distance relationships hold in many
real-world non-robotics tasks also — any environment
where states are not immediately accessible. Optimiz-
ing the performance of a chemical plant, for example,
requires the adjustment of analog controls which have
a continuum of intermediate states. Querying possibly
optimal regions of state space in these environments is
inadvisable if the path to the query point intersects a
region of known volatility.

In continuous environments, some first-order ap-
proximations to such distance-dependent active learn-
ing has been done (Cohn 1994; Linden & Weber 1993;
Schmidhuber 1991; Thrun & Möller 1992). In these
cases, the learning agent follows a gradient towards
promising learning areas by taking the action at each
step that maximizes a local ignorance measure. These
techniques have no explicit way of balancing the ex-

ploration of mildly promising local areas with greatly
promising distant areas.

Keeping Track of Navigation Costs

In discrete environments with small numbers of states,
it’s possible to keep track of precisely where and to
what degree learning has already been done sufficiently
and where it still needs to be done. It is also possible
to keep best known estimates of the distances from
each state to each other (see Kaelbling, 1993). Kael-
bling’s DG-learning algorithm is based on Floyd’s all-
pairs shortest-path algorithm (Aho, Hopcroft, & Ull-
man 1983) and is just slightly different from that used
here. These “all-goals” algorithms (after Kaelbling)
can provide a highly satisfying representation of the
distance/benefit tradeoff.

Associated with every state x is a value Ex and a
set Sx of N pairs (where N is the number of states):

Sxy = (Dxy, Axy),

where Ex is the exploration value of state x (the poten-
tial benefit of exploring state x), Dxy is the distance
to state y, and Axy is the action to take in state x to
move most cheaply to state y. This information can be
learned incrementally and completely : That is, it can
be guaranteed that if a path from any state x to any
state y is deducible from the state transitions seen so
far, then (1) the algorithm will have a non-null entry
for Sxy (i.e., the algorithm will know a path from x to
y), and (2) The current value for Dxy will be the best
deducible value from all data seen so far.

Weighting Actions by Exploration
Benefit and Navigation Costs

With this information, decisions about which areas to
explore next can be based on not just the amount to
be gained from such exploration but also on the cost
of reaching each area together with the benefit of inci-
dental exploration done on the way. Though optimal



exploration is NP-hard (i.e., it’s at least as difficult
as TSP) good approximations are easily computable.
One such good approximation is to take the action at
each state that leads in the direction of greatest accu-
mulated exploration benefit:

For each action a in state x

wa =
∑

{y|a=Axy}

f(Dxy, Ey)

Every action gets a weight, wa, and the one with
the greatest weight will be taken next (only in the case
of a tie is an action chosen stochastically). Different
functions f can be used to balance small local benefit
with large but distant benefit in different ways. And, of
course, even when all nearby regions are fully explored,
the agent will automatically take the least-cost path to
distant regions of highest potential exploration benefit.

The E values can also be modified to explicitly bal-
ance exploitation with exploration. That is, they can
be directly manipulated to represent the goodness of
being in a particular state or set of states, if, for ex-
ample, exploration is not the only goal of the system.

Full Exploration Guaranteed
The following property can be proven for any determin-
istic environment, regardless of the actions available:

If there are any reachable states that have not yet
been fully explored, then there is a known path
from the current state to a state with unexplored
actions.

More formally, define the following sets: R,K, and U .
R is the set of all states reachable from the current
state. K is the set of all states to which a path from
the current state is known (K ⊂ R). U is the set of
all underexplored states (i.e., states in which there is
at least one action that has not yet been tried).

Theorem 1 [∃x : x ∈ U ∩R] → [∃y : y ∈ U ∩K].

Proof : Since x is reachable, there is a path from the
current state to x. The first underexplored state y
encountered on this path (i.e., y ∈ U) will be x if no
earlier such state is encountered. All states on the path
before y are fully explored. Therefore, all actions on
the path from the current state to y have been tried.
Since all actions from the current state to y have been
tried, a path from the current state to y is deducible
and therefore (from above) such a path is also known,
i.e., y ∈ K.

As a result, the algorithm will always know a path to
an underexplored state until all reachable states have
been explored.

Some Results
When implemented in a two-dimensional grid world
with random obstacles, the benefits of this approach
become evident. In these environments there are four
possible actions in each state, and each state is acces-
sible from every other. A lower bound on the number
of actions needed to fully explore these environments
is NA (where A is the number of actions), though this
can only be achieved if the topology of the environ-
ment is known in advance (or by great luck). Ran-
dom exploration performs particularly poorly. With
about 85 states in a 10x10 grid (i.e., about 15% of
the grid is occupied by obstacles), about 4200 ac-
tions are required on average before all state/action
pairs have been tried, or roughly 1100% above the
theoretical optimum (which is 340 in this environ-
ment). Better performance is achieved when actions
are locally intelligent: untested actions in a state are
tried before already-tested actions are retried. This
yields about 2200 actions to fully explore 85 states, or
about 550% above the theoretical optimum. In con-
trast, the method described above results in approxi-
mately 410 actions in an environment of 85 states when
f(x, y) = y/x4. This is about 20% above the opti-
mum. Of course, the performance of the two random
approaches scales miserably. The intelligent approach
scales extremely well: even with 4500 states, the num-
ber of actions taken was still less than 20% above the
optimum.

The principle disadvantage of the method is O(N2)
storage. The amount of storage required for stochastic
environments is even higher. This limits the number
of states to about 5-10K for realistic hardware config-
urations. Continuous environments having an infinite
number of states are, of course, well beyond the capa-
bilities of this method. Techniques that finesse these
storage requirements are currently under investigation.
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