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Abstract

This paper revisits the continual-learning paradigm I described at the pre-
vious workshop in 1995. It presents a framework that formally merges
ideas from reinforcement learning and inductive transfer, potentially
broadening the scope of each. Most research in RL assumes a station-
ary (non-changing) world, while research in transfer primarily focuses
on supervised learning. Combining the two approaches yields a learning
method for an agent that constantly improves its ability to achieve reward
in complex, non-stationary environments.

To design a learning algorithm is to make an assumption. The assumption is that there is
structure in the learning task. If there is no structure, then there is no relationship between
training data and testing data, there is nothing to be learned, and all learning fails. So we
assume that there are regularities common to the training and testing data and we develop
algorithms to find and exploit these regularities.

In general, we assume there is a (usually stochastic) function, f : X → Y that generated
both the training and testing output data, which is to say that the task of the learning agent
is to discover this function (or a function with sufficiently similar behavior).

1 Inductive Transfer

Inductive transfer works when the functions learned in different tasks can be decomposed
into functions over subfunctions. For example, a task a may be to learn some function fa :
X → Y , based on (x, y) pairs sampled from a joint distribution over X × Y . And it may
be that fa can be decomposed, say, into an ordered set of k functions F a = {fa

1 , ..., fa
k :

X → <} and a combining function fa
C : <k → Y such that

fa(x) = fa
C(fa

1 (x), fa
2 (x), ..., fa

k (x)),
or, more succinctly:

fa(x) = fa
C(F a(x)).

The functions fa
i ∈ F a form a minimal basis for the mapping fa : X → Y , when (1)

fa(x) is sufficiently well approximated, and (2) no fa
i is unnecessary. Condition (1) can

be achieved in the standard way through the introduction of an appropriate loss function.
Condition (2) is achieved when there is no proper subset G ⊂ F a nor combining function
ga

C : <|G| → Y such that for all x ∈ X ,
fa(x) = ga

C(G(x)).



Given two tasks, a and b, generated respectively by functions, fa and f b : X → Y ,
inductive transfer is possible when there is a minimal basis for each with members in
common; i.e., for some sets of basis functions F a and F b, there are combining functions
fa

C : <|F a| → < and f b
C : <|F b| → < such that

fa(x) = fa
C(F a(x))

f b(x) = f b
C(F b(x))

F a ∩ F b 6= ∅

Such functions that can share subfunctions are referred to here as transfer compatible func-
tions. Conditions (1) and (2) are fairly weak if the combining functions fa

C can be of
arbitrary complexity, though the conditions are fairly strong if the combining functions are,
for example, linear. Intuitively it seems likely the functional and structural similarity [3]
of functions fa and f b (and hence the potential benefit of transfer from one task to the
other) increases as |F a ∩F b|/|F a ∪F b| increases and the VC dimension of the combining
functions decreases.

Inductive transfer is therefore the search for common bases, as was done, for example, quite
explicitly by Baxter [1], and implicitly in the case of multi-task learning (as for example
by Caruana [2]).

2 Reinforcement Learning

In the standard reinforcement-learning framework (cf. Sutton and Barto, 1998) , a learning
agent interacts with a Markov Decision Process (MDP) over a series of time steps t ∈
{0, 1, 2, ...}. At each time step the agent takes an action at ∈ A in its current state st ∈ S
and receives a reward rt ∈ <. The dynamics underlying the environment are described as
an MDP with state-to-state transition probabilities Pa

ss′ = Pr{st+1 = s′|st = s, at = a}
and expected rewards Ra

s = E{rt+1|st = s, at = a}. The agent’s decision-making
process is described by a policy, π(s, a) = Pr{at = a|st = s} which the agent refines
through repeated interaction with the environment so as to increase Eπ,s0 [r0, r1, ..., r∞],
the reward it can expect to receive if it follows policy π from state s0. Alternatively, the
agent may sample observations o ∈ O related to the current state (possibly stochastically),
where st may or may not be uniquely identified by the current observation ot, perhaps when
taken in combination with previous observations and actions (o0, a0, o1, a1, ..., ot−1, at−1).

3 Continual Learning

In traditional reinforcement learning, the world is modeled as a stationary MDP: fixed dy-
namics and states that can recur infinitely often. The agent’s learning “task” is to improve
performance by improving its policy, which generally entails developing an estimate of the
expected cumulative reward attainable from individual states (the state-value function) or
from state-action pairs (the action-value function). Augmenting RL with concepts from
inductive transfer quickly hits a snag: small changes to the structure of the state space (es-
pecially small changes to the placement of rewards) can introduce major changes in the
value function. One solution is to model the relationships between the states separately
from the value function and then when the rewards change, recalculate the value function
from the model using dynamic-programming methods. Predictable changes in the relation-
ships between the states, however, are more difficult to capture. The alternative explored
here is to step away from the MDP foundation of RL and instead describe the environment
in terms of regular relationships between history and future.



3.1 The Continual-Learning Problem, Formally

A continual-learning agent’s inputs are observations, ot ∈ O. The agent may learn from all
its past experiences, collectively known as its history. Each moment of history is a triple,
m = (o, r, a) ∈ M where M = O × < × A and a ∈ A is an agent action.1 In the
discrete-time case, a history is a discrete series of moments, h(t) = (m0, ...,mt), while in
the continuous-time case, the history is a continuous function of time h : [0, t] →M.

The future is slightly different from the past in that it is not yet known. Instead, there are
probability distributions over possible futures contingent on the policy. Each possible fu-
ture is an infinite-length trajectory of moments. In the continuous case it can be represented
as a function mapping time to possible future moments ξ : (t,∞) → M. The set of all
possible futures is Z , and for each policy and history there is a probability distribution D
over Z; i.e., D(ξ|h ∈ H, π ∈ Π), where H is the space of all possible histories, and Π is
the space of all possible policies.

The agent’s aim is to maximize its expected return by estimating the reward part of this
distribution and finding the policy with greatest expected reward. If R(m) is the reward
part of a moment, then the expected return for a particular future is

R(ξ, t) =
∫ ∞

τ=t

γτ−tR[ξ(τ)] dτ (1)

where 0 < γ ≤ 1 is a discounting factor that, if less than 1, keeps the integral from
diverging. The overall expected return for a given policy and history is:

R(π, h, t) =
∫

ξ∈Z
D(ξ|h, π)R(ξ, t) dξ. (2)

The agent’s aim is to choose a policy that maximizes its expected reward:

π∗t = argmax
π

[R(π, h, t)] (3)

3.2 Examples

Space does not allow an extended illustration of non-stationary domains where the envi-
ronment and/or reward structure changes in predictable ways. One example is a “shaping”
situation where an agent can be taught to negotiate a certain simple environment or per-
form a simple maneuver that is changed bit by bit to increasingly more complicated situ-
ations. Non-stationary environments and changing value functions can be problematic for
traditional RL approaches, even when the changes seem reasonably small. The continual-
learning framework, however, is particularly appropriate for situations where the learning
agent can find regularities in the environment, use them and build upon them to find new
regularities, thus attaining reward increasingly well; i.e., where skills can be developed in
a seemingly hierarchical fashion.

3.3 Solution Method

Since D is not known in advance, it must be estimated from available evidence, namely,
from the history seen so far. To help estimateD, a functional model is built and maintained
that explains the historical data. The agent runs the following processes continually:

1Alternatively, the control parameters, θ ∈ Θ, which fully describe the agent’s interaction with
the world (its policy), are recorded instead of actions, m = (o, r, θ) ∈M, whereM = O×<×Θ.
This alternative has the advantages that (a) θ may change more smoothly over time than the actions,
and (b) it places no constraints on the way that actions unfold over time. In this case, the agent’s only
explicit knowledge of its actions are through its control parameters θ and its observations, which may
also — as a choice of implementation — extensively describe the actions taken.



1. Fit or refit a model to the historical data,
2. Use the model to estimate/predict future reward from a given policy and history,
3. Modify the policy to increase predicted reward.

The model is constantly being rebuilt, so short-term objectives may change at any moment;
thus the notion of “learning task” is greatly challenged, but in a structured world the new
model and the previous one should be transfer compatible. It may therefore be helpful
to think of the continual-learning paradigm as a process of continual transfer, where the
“transfer-to” task is potentially new at every time step and the source or “transfer-from”
task consists of everything seen so far: i.e.,

f t(x) = f t
C(F t(x))

f t+1(x) = f t+1
C (F t+1(x))

F t ∩ F t+1 6= ∅,
where f t could be one of several different mappings. In principle, f t is a model of the
environment, but eventually we want to use f t for choosing agent policies, or at the very
least, agent actions; therefore f t might (1) be a probabilistic function that mimics D, i.e.,
f t : Π×H× t → O×< which can be used to draw estimated sample trajectories from the
future for evaluation. (2) directly estimate the expected reward of a policy, f t : H×Π → <
(Equation 2), or of just the next action, f t : H×A → <, (3) simply choose the next policy
f t : H → Π (Equation 3) or next action f t : H → A. (Much more can be said about these
possibilities than space allows.)

In simple cases F t ⊆ F t+1 and all regularities discovered to explain events so far are
maintained for predicting future events. Since we assume a structured world, it makes
sense to bias our learning algorithms in favor of uncovering this structure (i.e., towards
finding functions with minimal VC dimension) and then increasing capacity over time to
accommodate new data. One way to achieve this is by continually augmenting F with new
basis functions. Yet it should be noted that each f t is an approximation of f t+1 and we are
continually seeking the maximally structured function f∞ that fits all the data seen and yet
to be seen.

Inductive transfer and reinforcement learning are natural extensions of each other, par-
ticularly when the reinforcement-learning problem is reformulated in terms of continual
function fitting. It should be noted that the paradigm presented is a superset of classical
reinforcement learning in the sense that the target function of the environment (f∞) can be
many things, including an MDP.

Acknowledgments

Thanks to Rich Sutton, Yaakov Engel, Eddie Rafols, Cosmin Paduraru, and David Silver
for helpful discussions.

References
[1] Jonathan Baxter. Learning Internal Representations. PhD thesis, The Flanders University of

South Australia, 1994.
[2] Rich Caruana. Multitask learning: A knowledge-based source of inductive bias. In Machine

Learning: Proceedings of the tenth International Conference, pages 41–48. Morgan Kaufmann
Publishers, June 1993.

[3] Daniel L. Silver. Selective Transfer of Neural Network Task Knowledge. PhD thesis, University
of Western Ontario, London, Ontario, 2000.

[4] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.


