Even with Arbitrary Transfer Functions,
RCC Cannot Compute Certain FSA

Mark Ring
Research Group for Adaptive Systems
GMD — German National Research Center for Information Technology
Schloss Birlinghoven
D-53 754 Sankt Augustin, Germany
email: Mark.Ring@GMD.de

Category: algorithms and architectures — recurrent networks.
No part of this paper has been submitted elsewhere.
Preference: poster.

Abstract

Existing proofs demonstrating the computational limitations of the
Recurrent Cascade Correlation (RCC) Network (Fahlman, 1991)
explicitly limit their results to units having sigmoidal or hard-
threshold transfer functions (Giles et al., 1995; and Kremer, 1996).
The proof given here shows that, for any given finite, discrete,
deterministic transfer function used by the units of an RCC net-
work, there are finite-state automata (FSA) that the network can-
not model, no matter how many units are used. The proof applies
equally well to continuous transfer functions with a finite number
of fixed-points, such as the sigmoid function.

1 Introduction

The Recurrent Cascade Correlation (RCC) network was proposed by Fahlman
(1991) to offer a fast and efficient alternative to fully connected recurrent networks.
For purposes of efficient learning, the network is arranged such that each unit has
only a single recurrent connection: the connection that goes from itself to itself.
The remaining input to each unit consists of the input to the network as a whole
together with the outputs from all the units lower in the RCC network. Since it is
the structure of the network and not the learning algorithm that is of interest here,
only the structure will be described in detail.

The functionality of a network of N RCC units, Uy, ...,Uy_1 can be described in

Figure 1: This finite-state automaton was shown by Giles et al. (1995) to be un-
representable by an RCC network whose units have sigmoidal or hard-threshold
transfer functions. The arcs are labeled with transition labels of the FSA which
are given as input to the RCC network. The nodes are labeled with the output
values that the network is required to generate. The node with an inner circle is an
accepting or halting state.

1

oGO0

1

Figure 2: This finite-state automaton is one of those shown by Kremer (1996) not to
be representable by an RCC network whose units have a sigmoidal or hard-threshold
transfer function. This FSA computes the parity of the inputs seen so far.

the following way:

Vo) = foli(t), Vot = 1)) (1)
Va(t) = falit), Via(t — 1), Voo 1 (), Veo(t), ..., Vo(1)), (2)

where V(1) is the output value of U, at time step ¢, and i(¢) is the input to the
network at time step ¢. The value of each unit is determined from: (1) the network
input at the current time step, (2) its own value at the previous time step, and (3)
the output values of the units lower in the network at the current time step. Since
learning is not being considered here, the weights are assumed to be constant.

2 Existing Proofs

The proof of Giles, et al (1995) showed that an RCC network whose units had a
sigmoidal or hard-threshold transfer function cannot produce outputs that oscillate
with a period greater than two when the network input is constant. (An oscillation
has a period of z if it repeats itself every z steps.) Thus, the FSA shown in Figure 1
cannot be modeled by such an RCC network, since its output (shown as node labels)
oscillates at a period greater than two given constant input. Kremer (1996) refined
the class of FSA representable by an RCC network showing that, if the input to
the net oscillates with period p, then the output can only oscillate with a period of
w, where w is one of p’s factors (or of 2p’s factors if p is odd). An unrepresentable
example, therefore, is the parity FSA shown in Figure 2, whose output has a period
of four given the following input (of period two): 0, 1,0, 1, Both the proof by Giles
et al. and that by Kremer are explicitly restricted to sigmoidal and hard-threshold
transfer functions.

Figure 3: This finite-state automaton cannot be modeled with any RCC network
whose units are capable of representing only k& discrete outputs. The values within
the circles are the state names and the output expected from the network. The arcs
describe transitions from state to state, and their values represent the input given
to the network when the transition is made. The dashed lines indicate an arbitrary
number of further states between state 3 and state £ which are connected in the
same manner as states 1,2, and 3.

3 Details of the Proof

This section proves that RCC networks are incapable even in principle of modeling
certain kinds of FSA | regardless of the sophistication of each unit’s transfer function,
provided only that the transfer function be finite, discrete, and deterministic. The
terms “finite” and “discrete” mean only that the units of the RCC network are
capable of generating a fixed number, k, of distinct output values. Since all functions
implemented on a discrete computer fall into this category, this assumption is minor.
(Furthermore, as will be discussed in Section 4, the outputs of most interesting
continuous transfer functions reduce to only a small number of distinct values.) This
generalized RCC network is proven here to be incapable of modeling the finite-state
automaton shown in Figure 3.

For ease of exposition, let us call any FSA of the form shown in Figure 3 a CF¥+!
for Cyclical FSA with k + 1 states. Further, call a unit whose output can be any
of k distinct values and whose input includes its own previous output, a DRU*
for Discrete Recurrent Unit. These units are, of course, the units used by RCC
networks, though the specific transfer function is not prescribed.

Clearly, a DRU**! with a sufficiently sophisticated transfer function could by itself
model a CF¥+! by simply allocating one of its k 4+ 1 output values for each of the
k + 1 states. At each step it would receive as input the last state of the FSA and
the next transition and could therefore compute the next state. However, an RCC
network composed exclusively of DRU*’s, regardless of how many, can never model
a CFF*+1 | as will now be proven.

The proof is inductive and begins with the first unit in the network, which, after
being given certain sequences of inputs, becomes incapable of distinguishing among
any states of the FSA. The second step, the inductive step, proves that no finite
number of such units can assist a unit higher in the RCC network in making a
distinction between any states of the CFF+1,

Lemma 1 No DRU* whose input is the current transition of a CF*T' can reliably

distinguish among any states of the CF*+t1. More specifically, at least one of the

DRU*’s k output values can be generated in all of the CF**17s k + 1 states.

Proof: Let us name the DRU*’s k distinct output values VO V! ... V*=1 The
mapping function implemented by the DRU* can be expressed as follows:

(Ve,i) = V¥,

which indicates that when the unit’s last output was V* and its current input is ¢,
then its next output is VY.

Since a CF* is cyclical, the arithmetic in the following will also be cyclical (i.e.,
modular):

’ _ r+y fet+y<k
rOy = {J;—Fy—/{: fzt+y>k
‘ _ r—y ife>y
TOY = {x+k—y ifz <y

where 0 <z < kand 0 <y < k.

Since it is impossible for the DRU* to represent each of the CF*+1’s k41 states with
a distinct output value, at least two of these states must be represented ambiguously
by the same value. That is, there are two CF¥+! states a and b and one DRU* value
Vel such that V%/® can be generated by the unit both when the FSA is in state
a and when it is in state b. Furthermore, this value will be generated by the unit
given an appropriate sequence of inputs. (Otherwise the value is unreachable, serves
no purpose, and can be discarded, reducing the unit to a DRU*~1.)

Once the DRU* has generated V /% it cannot in the next step distinguish whether
the FSA’s current state is @ or b. Since the FSA could be in either state a or b, the
next state after a b transition could be either a or b @ 1. That is:

(Velb by = yao/ber (3)

where ¢ ©b > bS a and k > 1. This new output value V¢/*®1 can therefore be
generated when the FSA is in either state a or state b & 1. By repeatedly replacing

b with 4@ 1 in Equation 3, all states from b to a & 1 can be shown to share output
values with state a, i.e., Vo/b Ve/b®1 ya/b@2 ya/ad2 yra/a®l 4] exist,

Repeatedly substituting ¢ © 1 and a for a and b respectively in the last paragraph
produces values V#/Y Y,y € 0,1,...,k+ 1. There is, therefore, at least one value
that can be generated by the unit in both states of every possible pair of states.

Since there are <k —2}— 1) distinct pairs but only & distinct output values, and since

3]

when k& > 1, then not all of these pairs can be represented by unique V values. At
least two of these pairs must share the same output value, and this implies that
some V /8¢ exists that can be output by the unit in any of the three FSA states
a,b, and c.

Starting with
(Va/b/c’c) = Va/b/c@l,

and following the same argument given above for V?, there must be a V#/¥/% for

all triples of states z,y, and z. Since there are (k —?t— 1) distinct triples but only &
distinct output values, and since
k+1
3 > 1,
k
where k > 3, some V /% ¢/d must also exist.
This argument can be followed repeatedly since:
k+1
m > 1,
k
for all m < k + 1, including when m = k. Therefore, there is at least one

VO/1/2/ - [k/k+1 that can be output by the unit in any of the k + 1 states of the
CF*+1. Call this value and any other that can be generated in all FSA states V.
All V¥’s are reachable (else they could be discarded and the above proof applied for
DRU',l < k). When a V* is output by a DRU*, it does not distinguish any states
of the CF*+1,

Lemma 2 Once a DRU* outputs a V*, all future outputs will also be V¥ ’s.

Proof: The proof is simply by inspection, and is shown in the following table:

Actual State Transition Next State

z z D1
zd1 z x
xr®2 z x®2
zP3 xr z D3
62 z 62
z51 z z51

If the unit’s last output value was a V*, then the FSA might be in any of its k + 1
possible states. As can be seen, if at this point any of the possible transitions is
given as input, the next state can also be any of the k41 possible states. Therefore,
no future input can ever serve to lessen the unit’s ambiguity.

Theorem 1 An RCC network composed of any finite number of DRU* ’s cannot
model a CF*+1,

Proof: Let us describe the transitions of an RCC network of N units by using the
following notation:

((VN—la VN—2; [EES) Vl: V0>,Z) = (V]Q—la V]<f—2a LR 1l: VOI>:

where V,,, is the output value of the m’th unit (i.e., Uy,) before the given input,
i, is seen by the network, and V!, is U,,’s value after i has been processed by the
network. The first unit, Uy, receives only ¢ and Vj as input. Every other unit U,
receives as input ¢ and V, as well as Vy’, y<z.

The first unit, Uy, can be shown using Lemma 1 to eventually generate a value V¥
which can be produced in all states of the CF¥*'. From Lemma 2, the unit will
continue to produce VJ values after this point.

Given any finite number N of DRU*’s, U,,,_1, ..., Uy that are producing their Vj
values, V]f,_l, ..., V&, the next higher unit, Uy, will be incapable of disambiguating
all states by itself, i.e.,; at least two FSA states, @ and b, will have overlapping

output values, Vﬁ,/b. Since none of the units Un_1, ..., Uy can distinguish between
any states (including @ and b),

((ngf/ba V]@—l: () V1k7 V0k>1 b) = <V]$7/b®1a VJ@—la] Vlka V0k>7
assuming that bSa > a©b and k£ > 1. The remainder of the proof follows identically
along the lines developed for Lemmas 1 and 2. The result of this development is
that Uy also has a set of reachable output values VX that can be produced in any
state of the FSA. Once one such value is produced, no less-ambiguous value is ever
generated. Since no RCC network containing any number of DRU*’s can over time
distinguish among any states of a CF¥*! no such RCC network can model such an

FSA.

4 Continuous Transfer Functions

Sigmoid functions can generate a theoretically infinite number of output values;
if represented with 32 bits, they can generate 232 outputs. This hardly means,
however, that all such values are of use. In fact, as was shown by Giles et al. (1995), if
the input remains constant for a long enough period of time (as it can in all CFF+1’s),
the output of sigmoid units will converge to a constant value (a fixed point) or
oscillate between two values. This means that a unit with a sigmoid transfer function
is in principle a DRUZ. Most useful continuous transfer functions (Gaussians, for
example), exhibit the same property, reducing to only a small number of distinct
output values when given the same input repeatedly. The results shown here are
therefore not merely theoretical, but are of real, practical significance.

5 Conclusion

The principle conclusion of this paper is that RCC networks are in principle unable
to model any FSA containing a CF*¥*! (such as that shown in Figure 3), given
deterministic units limited to generating k possible output values, regardless of the
sophistication of the transfer function that generates these values. This places an
upper bound on the computational capabilities of an RCC network. Less sophisti-
cated transfer functions, such as the sigmoid units investigated by Giles et al. and
Kremer may have even greater limitations. Figure 2, for example, could be modeled
by a single sufficiently sophisticated DRU?, but cannot be modeled by an RCC net-
work composed of hard-threshold or sigmoidal units. Hard-threshold units, though
they are capable of representing two distinct outputs, cannot exploit all mappings
from inputs to outputs, which is why a network of these units cannot model these

FSA’s.

The FSA shown in Figure 3 is composed of a set of forward links that traverses the
k+ 1 states using k+ 1 transition labels, and a set of backwards links using the same
transition labels. Though I do not offer a proof, I do conjecture that the backwards
links are unnecessary. I have used them here because they greatly simplify the proof.
Without the links, the FSA is somewhat simpler and suggests more directly what
the RCC network structure cannot model. In particular, it cannot model FSA’s that
rely on a state representation distributed across multiple units in which the state
components represented by higher units are needed to determine parts of the state
represented by lower units. This does not imply that any cycle containing more
than k states cannot be modeled by a network of DRU*’s, however. In some cases

Figure 4: This finite-state automaton having 2* states can be modeled with an RCC
network made up of £k DRU%’s.

it is possible to distribute the state information among multiple units in such a way
that only information from lower units is needed to determine a unit’s next value.
Take for example the addition automaton given in Figure 4. This automaton may
contain 2* states but can still be modeled by an RCC network composed exclusively
of DRU%’s which represent the state as a binary code. Each unit has two values,
0 and 1, and computes its next value as follows: if the input to the network is a 1
and the output of all lower units is 0, then the unit’s next output is the opposite of
its last, otherwise it’s the same. (This is in fact very similar to how a CPU adder
works.) Similar FSA’s with a number of states, k, not equal to a power of two can be
modeled by a network of DRU/’s, where j is the largest of k’s prime factors. Thus,
it is not simply the size of an FSA’s largest cycle that determines its difficulty for an
RCC network to model. The reason CF*’s are more difficult to model is that, unlike
the states of the addition FSA, each state in the CF* cycle is uniquely identified
by its input and output transitions, and this uniqueness prohibits the states from
being represented across multiple units.

References

Scott E. Fahlman. The recurrent cascade-correlation architecture. In R. P. Lipp-
mann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Informa-
tion Processing Systems 3, pages 190-196, San Mateo, California, 1991. Morgan
Kaufmann Publishers.

C.L. Giles, D. Chen, G.Z. Sun, H.H. Chen, Y.C. Lee, and M.W. Goudreau. Con-
structive learning of recurrent neural networks: Problems with recurrent cas-
cade correlation and a simple solution. IEEE Transactions on Neural Networks,

6(4):829, 1995.
Stefan C. Kremer. Finite state automata that recurrent cascade-correlation cannot
represent. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselno, editors,

Advances in Neural Information Processing Systems 8, pages 679-686. MIT
Press, 1996. In Press.

