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Abstract

We connect high-dimensional subset selection and submodular maximization.
Our results extend the work of Das and Kempe (2011) from the setting of linear
regression to arbitrary objective functions. Our proof technique uses the concept of
weak submodularity initially defined in [1]. We draw a connection between convex
analysis and submodular set function theory which may be of independent interest,
demonstrating that Restricted Strong Convexity (RSC) implies weak submodularity.
More generally, this natural relaxation of submodularity can be used in other
machine learning applications that have combinatorial structure.
For greedy feature selection, this connection allows us to obtain strong multi-
plicative performance bounds on several methods without statistical modeling
assumptions. This is in contrast to prior work that requires data generating models
to obtain theoretical guarantees. Our work shows that greedy algorithms perform
within a constant factor from the best possible subset-selection solution for a broad
class of general objective functions. Our methods allow a direct control over the
number of obtained features as opposed to regularization parameters that only
implicitly control sparsity.

1 Introduction

Sparse modeling is central in modern data analysis and high-dimensional statistics since it provides
interpretability and robustness. Given a large set of p features we wish to build a model using only a
small subset of k features: the central combinatorial question is how to choose the optimal feature
subset. Specifically, we are interested in optimizing over sparse parameter vectors β and consider
problems of the form:

β̄
k ∈ arg max

β:‖β‖0≤k
l(β) (1)

for some function l(·). This is a very general framework: the function l(·) can be a linear regression
R2 objective, a generalized linear model (GLM) likelihood, a graphical model learning objective, or
an arbitrary M -estimator [2]. This subset selection problem is NP-hard [3] even for the sparse linear
regression objective, and a vast body of literature has analyzed different approximation algorithms
under various assumptions. In parallel work, several authors have demonstrated that the subset
selection problem can be connected to submodular optimization [4–7] and that greedy algorithms are
widely used for iteratively building good feature sets.
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The Restricted Isometry Property (RIP) (and the closely related Restricted Eigenvalue property)
is a condition on l(β) that allows convex relaxations and greedy algorithms to solve the subset
selection problem within provable approximation guarantees. The mathematical connection between
submodularity and RIP was made explicit by Das and Kempe [1] for linear regression. Specifically,
they showed that when l(β) is the R2 objective, it satisfies a weak form of submodularity when
the linear measurements satisfy RIP. Note that for a given set of features S, the function l(βS) with
support restricted to S can be thought of as a set function and this is key in this framework. Using
this novel concept of weak submodularity they established strong multiplicative bounds on the
performance of greedy algorithms for subset selection and dictionary selection.

In this paper we extend the machinery of [1] beyond linear regression, to any function l(β). To
achieve this we need the proper generalization of the Restricted Eigenvalue and RIP conditions
for arbitrary functions. This was obtained by Negahban et al. [2] and is called Restricted Strong
Convexity (RSC). The title of this paper should now be clear: we show that any objective function
that satisfies RSC (and a natural smoothness assumption) must be weakly submodular.

We establish multiplicative approximation bounds on the performance of greedy algorithms, including
(generalized) Orthogonal Matching Pursuit and Forward Stepwise Regression, for general likelihood
functions using our connection. To the best of our knowledge, this is the first analysis of greedy
algorithms in terms of only the objective function’s strong convexity and smoothness. Our approach
provides sharp approximation bounds in any setting where these fundamental structural properties
are well-understood, e.g. generalized linear models.

Contrary to prior work we require no assumptions on the sparsity of the underlying problem. Rather,
we obtain a deterministic result establishing multiplicative approximation guarantees from the best-
case sparse solution. Our results improve further over previous work by providing bounds on a
solution that is guaranteed to match the desired sparsity, without any assumptions on the underlying
model. Convex methods such as `1 regularized objectives require extremely strong assumptions on
the model, such as the irrepresentability conditions on the feature vectors, in order to provide exact
sparsity guarantees on the recovered solution. Our main result is summarized below, with M , m, and
γ defined formally in Section 2.

Theorem 1 (RSC/RSM Implies Weak Submodularity, Informal). If a function l(·) has M -
restricted smoothness (RSM) and m-restricted strong convexity (RSC), then the set function
f(S) = maxsupp(β)⊆S−l(β) is weakly submodular with parameter γ ≥ m/M .

We use this result to analyze three greedy algorithms, each progressively better but more compu-
tationally intensive: the Oblivious algorithm computes for each feature the increase in objective
and keeps the k individually best features without accounting for dependencies or reduncancies.
Orthogonal Matching Pursuit (OMP) greedily adds one feature at a time by picking the feature
with the largest inner product with the function gradient at the current model. The gradient is the
correct generalization of the residual error used in linear regression OMP. Finally, the most effective
algorithm is Forward Stepwise Regression: it adds one feature at a time by re-fitting the model
repeatedly and keeping the feature that best improves the objective function at each step.

One implication of our work is that weak submodularity seems to be a sharper technical tool than
RSC, as any function satisfying the latter also satisfies the former. Das and Kempe [1] noted that it is
easy to find problems which satisfy weak submodularity but not RSC, emphasizing the limitations
of spectral techniques versus submodularity. We show this holds beyond linear regression, for any
likelihood function.

Related Work: There have been a wide range of techniques developed for solving problems with
sparsity constraints. These include using the Lasso, greedy selection methods (such as Forward
Stagewise/Stepwise Regressions, OMP, and CoSaMP [8]), forward-backward methods [9, 10], and
truncated gradient methods [11]. Under the restricted strong convexity and smoothness assumptions
that will be outlined below, forward-backward methods can in fact recover the correct support of the
optimal set of parameters under an assumption on the smallest value of the optimal variable as it
relates to the gradient. In contrast, the results derived in our setting for sparse GLMs allow one to
provide recovery guarantees at various sparsity levels regardless of the optimal solution with only
information on the desired sparsity level and the RSC and RSM parameters. Focusing explicitly
on OMP, most previous results require the strong RIP assumption (such as in Corollary 2 of [12]),
whereas we only require the weaker RSC and RSM assumptions. However, we do note that under
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certain stochastic assumptions, for instance independent noise, the results established in those works
can provide sharper guarantees with respect to the number of samples required by a factor on the
order of log [log(p)k/n].

Greedy algorithms are prevalent in compressed sensing literature [8], statistical learning theory
[13], and sparsity constrained regression [9–11, 14–16] but without connections to submodularity.
Submodularity has been used in the context of convex optimization [7] and active learning [4, 6]. In
the latter, the focus is on selecting predictive data points instead of features. Recently, [17] and [18]
proved constant factor guarantees for greedy algorithms using techniques from submodularity even
though the problems considered were not strictly submodular.

2 Preliminaries

First we collect some notation that will be used throughout the remainder of this paper. Sets are
represented by sans script fonts e.g. A,B. Vectors are represented using lower case bold letters e.g.
x,y, and matrices are represented using upper case bold letters e.g. X,Y. The i-th column of X
is denoted Xi. Non-bold face letters are used for scalars e.g. j,M, r and function names e.g. f(·).
The transpose of a vector or a matrix is represented by > e.g. X>. Define [p] := {1, 2, . . . , p}. For
simplicity, we assume a set function defined on a ground set of size p has domain [p]. For singleton
sets, we write f(j) := f({j}). Next, we define the submodularity ratio of a set function f(·).
Definition 1 (Submodularity Ratio [1]). Let S, L ⊂ [p] be two disjoint sets, and f(·) : [p]→ R. The
submodularity ratio of L with respect to S is given by

γL,S :=

∑
j∈S [f(L ∪ {j})− f(L)]

f(L ∪ S)− f(L)
. (2)

The submodularity ratio of a set U with respect to an integer k is given by

γU,k := min
L,S:L∩S=∅,
L⊆U,|S|≤k

γL,S. (3)

It is straightforward to show that f is submodular if and only if γL,S ≥ 1 for all sets L and S. In our
application, γL,S ≤ 1 which provides a notion of weak submodularity in the sense that even though
the function is not submodular, it still provides provable bounds on performance of greedy selections.

Next we define the restricted versions of strong concavity and smoothness, consistent with [2, 19].
Definition 2 (Restricted Strong Concavity, Restricted Smoothness). A function l : Rp → R is said to
be restricted strong concave with parameter mΩ and restricted smooth with parameter MΩ if for all
x,y ∈ Ω ⊂ Rp,

−mΩ

2
‖y − x‖22 ≥ l(y)− l(x)− 〈∇l(x),y − x〉 ≥ −MΩ

2
‖y − x‖22.

If a function l(·) has restricted strong concavity parameter m, then its negative −l(·) has restricted
strong convexity parameter m. In the case of ML estimation, for example, l(·) is the log-likelihood
function and −l(·) is the data fit loss.

If Ω′ ⊆ Ω, then MΩ′ ≤ MΩ and mΩ′ ≥ mΩ. With slight abuse of notation, let (mk,Mk) denote
the RSC and RSM parameters on the domain of all k-sparse vectors. If j ≤ k, then Mj ≤ Mk

and mj ≥ mk. In addition, denote Ω̃ := {(x,y) : ‖x− y‖0 ≤ 1} with corresponding smoothness
parameter M̃1 ≤M1.

Support Selection Algorithms: We study general M -estimators of the form (1) for some function
l(·). Note that l(·) will implicitly depend on our specific data set, but we hide that for ease of notation.
One common choice of l(·) is the log-likelihood of a parametric distribution. [1] considers the specific
case of maximizing R2 objective. Through a simple transformation, that is equivalent to maximizing
the log-likelihood of the parametric distribution that arises from the model yi = 〈xi,β∗〉+ w where
w ∼ N(0, σ2). If we let β̂

s
be the s-sparse solution derived, then we wish to bound

l(β̂
s
) ≥ (1− ε)l(β̄k),
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without any assumptions on the underlying sparsity or a true parameter.

For a concave, differentiable function l : Rp → R, we can define an equivalent, monotone set
function f : [p] → R so that f(S) = maxsupp(x)⊆S l(x). The problem of support selection for a
given integer k is: max|S|≤k f(S). Recall that a vector is k-sparse if it is 0 on all but k indices. The
support selection problem is thus equivalent to finding the k-sparse vector β that maximizes l(β):

max
S:|S|≤k

f(S)⇔ max
β:βSc=0

|S|≤k

l(β). (4)

Let β(A) denote the β maximizing f(A), and let β(A)
B denote β(A) restricted to the coordinates

specified by B. We consider the three support selection strategies for f(·) introduced in Section 1,
which are widely used and simple to implement. Complete descriptions of the algorithms can be
found in the full version of this paper [20].

3 Approximation guarantees

In this section, we derive theoretical lower bounds on the submodularity ratio based on strong
concavity and strong smoothness of a function l(·). Our approximation guarantees are on the
normalized set function defined as f(S) = f̄(S)− f̄(∅). While our results are applicable to general
functions, in [20] we discuss a direct application of maximum likelihood estimation for sparse
generalized linear models. Theorem proofs and tighter guarantees are also deferred to [20].
Theorem 2 (RSC/RSM Implies Weak Submodularity, Formal). Define f(S) as in (4), with a function
l(·) that is (m,M )-(strongly concave, smooth) on all (|U|+ k)-sparse vectors and M̃1 smooth on all
(x,y) ∈ Ω̃. Then the submodularity ratio γU,k is lower bounded by

γU,k ≥
m

M̃1

≥ m

M
. (5)

In the case of linear least-squares regression, m and M become sparse eigenvalues of the covariance
matrix. Thus Theorem 2 is consistent with [1]. Since m/M ≤ 1, this method cannot prove that the
function is submodular (even on a restricted set of features). However, the guarantees in this section
only require weak submodularity. Next we present performance guarantees for feature selection.
Theorem 3 (Oblivious Algorithm Guarantee). Define f(S) as in (4), with a function l(·) that is
M -smooth and m-strongly concave on all k-sparse vectors. Let fOBL be the value at the set selected
by the Oblivious algorithm, and let fOPT be the optimal value over all sets of size k. Then

fOBL ≥ max

{
m

kM
,

3m2

4M2
,
m3

M3

}
fOPT . (6)

When the function is modular, i.e. m = M , then fOBL = fOPT and the bound in Theorem 3 holds
with equality. Next, we prove a stronger, guarantee for the greedy, Forward Stepwise algorithm.
Theorem 4 (Forward Stepwise Algorithm Guarantee). Define f(S) as in (4), with a function that is
M -smooth and m-strongly concave on all 2k-sparse vectors. Let SGk be the set selected by the FS
algorithm and S∗ be the optimal set of size k corresponding to values fFS and fOPT . Then

fFS ≥
(

1− e−γSGk ,k

)
fOPT ≥

(
1− e−m/M

)
fOPT . (7)

This constant factor bound can be improved by running the Forward Stepwise algorithm for r > k
steps. The proof of Theorem 4 generalizes to compare performance of r greedy iterations to the
optimal k-subset of features (see [20]). This generalized bound does not necessarily approach 1 as
r →∞, however, since γSG

r ,k
is a decreasing function of r.

OMP is more computationally efficient than forward stepwise regression, since step i only fits one
regression instead of p− i. Thus we have a weaker guarantee than Theorem 4.
Theorem 5 (OMP Algorithm Guarantee). Define f(S) as in (4), with a log-likelihood function that
is M̃1-smooth on Ω̃ and m-strongly concave on all 2k-sparse vectors. Let fOMP be the value of the
set selected by OMP and fOPT be the optimum value over all sets of size k. Then

fOMP ≥
(

1− e−3m2/4M̃2
1

)
fOPT . (8)

4



References
[1] A. Das and D. Kempe, “Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse

Approximation and Dictionary Selection,” in ICML, 2011.

[2] S. Negahban, P. Ravikumar, B. Yu, and M. J. Wainwright, “A Unified Framework for High-Dimensional
Analysis of M-Estimators with Decomposable Regularizers,” Statistical Science, vol. 27, no. 4, 2012.

[3] B. K. Natarajan, “Sparse Approximate Solutions to Linear Systems,” SIAM Journal on Computing, vol. 24,
no. 2, pp. 227–234, 1995.

[4] S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu, “Batch Mode Active Learning and its Application to Medical
Image Classification,” in ICML, 2006, pp. 417–424.

[5] K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes, “Using Document Summarization Techniques for Speech Data
Subset Selection,” in NAACL-HLT, 2013, pp. 721–726.

[6] K. Wei, I. Rishabh, and J. Bilmes, “Submodularity in Data Subset Selection and Active Learning,” ICML,
pp. 1954–1963, 2015.

[7] F. R. Bach, “Learning with Submodular Functions: A Convex Optimization Perspective,” Foundations and
Trends in Machine Learning, vol. 6, 2013.

[8] D. Needell and J. A. Tropp, “CoSaMP : Iterative Signal Recovery from Incomplete and Inaccurate Samples,”
Applied and Computational Harmonic Analysis, vol. 3, no. 26, pp. 301–321, 2009.

[9] A. Jalali, C. Johnson, and P. Ravikumar, “On Learning Discrete Graphical Models Using Greedy Methods,”
in NIPS, 2011.

[10] J. Liu, J. Ye, and R. Fujimaki, “Forward-Backward Greedy Algorithms for General Convex Smooth
Functions Over a Cardinality Constraint,” in ICML, 2014, pp. 503–511.

[11] P. Jain, A. Tewari, and P. Kar, “On Iterative Hard Thresholding Methods for High-dimensional M-
Estimation,” in NIPS, 2014, pp. 685–693.

[12] T. Zhang, “Sparse Recovery With Orthogonal Matching Pursuit Under RIP,” IEEE Transactions on
Information Theory, vol. 57, no. 9, pp. 6215–6221, September 2011.

[13] A. R. Barron, A. Cohen, W. Dahmen, and R. A. DeVore, “Approximation and Learning by Greedy
Algorithms,” Annals of Statistics, vol. 36, no. 1, pp. 64–94, 2008.
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