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Abstract

Low rank matrix completion plays a fundamental role in collaborative filtering
applications, the key idea being that the variables lie in a smaller subspace than
the ambient space. Often, additional information about the variables is known,
and it is reasonable to assume that incorporating this information will lead to
better predictions. We tackle the problem of matrix completion when pairwise
relationships among variables are known, via a graph. We formulate and derive
a highly efficient, conjugate gradient based alternating minimization scheme that
solves optimizations with over 55 million observations up to 2 orders of magni-
tude faster than state-of-the-art (stochastic) gradient-descent based methods. On
the theoretical front, we show that such methods generalize weighted nuclear norm
formulations, and derive statistical consistency guarantees. We validate our results
on both real and synthetic datasets.

1 Introduction
Low rank matrix completion approaches are among the most widely used collaborative filtering
methods, where a partially observed matrix is available to the practitioner, who needs to impute the
missing entries. Specifically, suppose there exists a ratings matrix Y ∈ Rm×n, and we only observe
a subset of the entries Yij ,∀(i, j) ∈ Ω, |Ω| = N � mn. The goal is to estimate Yi,j ,∀(i, j) /∈ Ω.
To this end, one typically looks to solve one of the following (equivalent) programs:

Ẑ = arg min
Z

1

2
‖PΩ(Y − Z)‖2F + λz‖Z‖∗ (1)

Ŵ , Ĥ = arg min
W,H

1

2
‖PΩ(Y −WHT )‖2F +

λw
2
‖W‖2F +

λh
2
‖H‖2F (2)

where the nuclear norm ‖Z‖∗, given by the sum of singular values, is a tight convex relaxation of the
non convex rank penalty, and is equivalent to the regularizer in (2). PΩ(·) is the projection operator
that only retains those entries of the matrix that lie in the set Ω.

In many cases however, one not only has the partially observed ratings matrix, but also has access
to additional information about the relationships between the variables involved. For example, one
might have access to a social network of users. Similarly, one might have access to attributes of
items, movies, etc. The nature of the attributes can be fairly arbitrary, but it is reasonable to assume
that “similar” users/items share “similar” attributes. A natural question to ask then, is if one can take
advantage of this additional information to make better predictions. In this paper, we assume that
the row and column variables lie on graphs. The graphs may naturally be part of the data (social
networks, product co-purchasing graphs) or they can be constructed from available features. The
idea then is to incorporate this additional structural information into the matrix completion setting.
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We not only require the resulting optimization program to enforce additional constraints on Z, but
we also require it to admit efficient optimization algorithms. We show in the sections that follow that
this in fact is indeed the case. We also perform a theoretical analysis of our problem when the ob-
served entries of Y are corrupted by additive white Gaussian noise. To summarize, the contributions
of our paper are as follows:

• We provide a scalable algorithm for matrix completion graph with structural information.
Our method relies on efficient Hessian-vector multiplication schemes, and is orders of mag-
nitude faster than (stochastic) gradient descent based approaches.

• We make connections with other structured matrix factorization frameworks. Notably, we
show that our method generalizes the weighted nuclear norm [20], and methods based on
Gaussian generative models [26].

• We derive consistency guarantees for graph regularized matrix completion, and empirically
show that our bound is smaller than that of traditional matrix completion, where graph
information is ignored.

• We empirically validate our claims, and show that our method achieves comparable error
rates to other methods, while being significantly more scalable.

Related Work and Key Differences

For convex methods for matrix factorization, Haeffele et al. [9] provided a framework to use regu-
larizers with norms other than the Euclidean norm in (2). Abernethy et al. [1] considered a kernel
based embedding of the data, and showed that the resulting problem can be expressed as a norm min-
imization scheme. Srebro and Salakhutdinov [20] introduced a weighted nuclear norm, and showed
that the method enjoys superior performance as compared to standard matrix completion under a
non-uniform sampling scheme. We show that the graph based framework considered in this paper is
in fact a generalization of the weighted nuclear norm problem, with non-diagonal weight matrices.

In the context of matrix factorization with graph structural information, [5] considered a graph reg-
ularized nonnegative matrix factorization framework and proposed a gradient descent based method
to solve the problem. In the context of recommendation systems in social networks, Ma et al. [14]
modeled the weight of a graph edge1 explicitly in a re-weighted regularization framework. Li and
Yeung [13] considered a similar setting to ours, but a key point of difference between all the afore-
mentioned methods and our paper is that we consider the partially observed ratings case. There are
some works developing algorithms for the situation with partially observations [12, 25, 26]; how-
ever, none of them provides statistical guarantees. Weighted norm minimization has been considered
before ([15, 20]) in the context of low rank matrix completion. The thrust of these methods has been
to show that despite suboptimal conditions (correlated data, non-uniform sampling), the sample
complexity does not change. None of these methods use graph information. We are interested in a
complementary question: Given variables conforming to graph information, can we obtain better
guarantees under uniform sampling to those achieved by traditional methods?

2 Graph-Structured Matrix Factorization
Assume that the “true” target matrix can be factorized as Z? = W ?(H?)T , and there exist a graph
(V w, Ew) whose adjacency matrix encodes the relationships between them rows ofW ? and a graph
(V h, Eh) for n rows of H?. In particular, two rows (or columns) connected by an edge in the graph
are “close” to each other in the Euclidean distance. In the context of graph-based embedding, [3, 4]
proposed a smoothing term of the form

1

2

∑
i,j

Ewij(wi −wj)
2 = tr(WT Lap(Ew)W ) (3)

where Lap(Ew) := Dw − Ew is the graph Laplacian for (V w, Ew), where Dw is the diagonal
matrix with Dw

ii =
∑
j∼iE

w
ij . Adding (3) into the minimization problem (2) encourages solutions

where wi ≈ wj when Ewij is large. A similar argument holds for H? and the associated graph
Laplacian Lap(Eh).

1The authors call this the “trust” between links in a social network
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We would thus not only want the target matrix to be low rank, but also want the variables W,H to
be faithful to the underlying graph structure. To this end, we consider the following problem:

min
W,H

1

2
‖PΩ

(
Y −WHT

)
‖2F+

λL
2
{tr(WT Lap(Ew)W ) + tr(HT Lap(Eh)H)}+ (4)

λw
2
‖W‖2F +

λh
2
‖H‖2F

≡ min
W,H

1

2
‖PΩ

(
Y −WHT

)
‖2F +

1

2

{
tr(WTLwW ) + tr(HTLhH)

}
(5)

where Lw := λL Lap(Ew) + λwIm, and Lh is defined similarly. Note that we subsume the regu-
larization parameters in the definition of Lw, Lh. Note that ‖W‖2F = tr(WT ImW ).

The regularizer in (5) encourages solutions that are smooth with respect to the corresponding graphs.
However, the Laplacian matrix can be replaced by other (positive, semi-definite) matrices that en-
courage structure by different means. Indeed, a very general class of Laplacian based regularizers
was considered in [19], where one can replace Lw by a function:

〈x, τ(Lap(E))x〉 where τ(Lap(E)) ≡
|V |∑
i=1

τ(λi)qiq
T
i ,

where {(λi, qi)} constitute the eigen-system of Lap(E) and τ(λi) is a scalar function of the eigen-
values. Our case corresponds to τ(·) being the identity function. We briefly summarize other
schemes that fit neatly into (5), apart from the graph regularizer we consider:

Covariance matrices for variables: [26] proposed a kernelized probabilistic matrix factorization
(KPMF), which is a generative model to incorporate covariance information of the variables into
matrix factorization. They assumed that each row ofW ?,H? is generated according to a multivariate
Gaussian, and solving the corresponding MAP estimation procedure yields exactly (5), with Lw =
C−1
w and Lh = C−1

h , where Cw, Ch are the associated covariance matrices.

Feature matrices for variables: Assume that there is a feature matrix X ∈ Rm×d for objects
associated rows. For such X , one can construct a graph (and hence a Laplacian) using various
methods such as k-nearest neighbors, ε-nearest neighbors etc. Moreover, one can assume that there
exists a kernel k(xi,xj) that encodes pairwise relations, and we can use the Kernel Gram matrix as
a Laplacian.

We can thus see that problem (5) is a very general scheme, and can incorporate information available
in many different forms. In the sequel, we assume the matrices Lw, Lh are given. In the theoretical
analysis in Section 5, for ease of exposition, we further assume that the minimum eigenvalues of
Lw, Lh are unity. A general (nonzero) minimum eigenvalue will merely introduce multiplicative
constants in our bounds.

3 GRALS: Graph Regularized Alternating Least Squares
In this section, we propose efficient algorithms for (5), which is convex with respect to W or H
separately. This allows us to employ alternating minimization methods [24] to solve the problem.
When Y is fully observed, Li and Yeung [13] propose an alternating minimization scheme using
block steepest descent. We deal with the partially observed setting, and propose to apply conjugate
gradient (CG), which is known to converge faster than steepest descent, to solve each subproblem.
We propose a very efficient Hessian-vector multiplication routine that results in the algorithm being
highly scalable, compared to the (stochastic) gradient descent approaches in [14, 26].

We assume that Y ∈ Rm×n, W ∈ Rm×k and H ∈ Rn×k. When optimizing H with W fixed, we
obtain the following sub-problem.

min
H

f(H) =
1

2
‖PΩ

(
Y −WHT

)
‖2F +

1

2
tr(HTLhH). (6)

Optimizing W while H fixed is similar, and thus we only show the details for solving (6). Since Lh
is nonsingular, (6) is strongly convex.2 We first present our algorithm for the fully observed case,
since it sets the groundwork for the partially observed setting.

2In fact, a nonsingular Lh can be handled using proximal updates, and our algorithm will still apply
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Algorithm 1 Hv-Multiplication for g(s)

• Given: Matrices Lh,W
• Initialization: G = WTW
• Multiplication: ∇2g(s0)s:

1 Input: S ∈ Rn×k s.t.
s = vec(S)

2 A← SG + LhS
3 Return: vec(A)

Algorithm 2 Hv-Multiplication for gΩ(s)

• Given: Matrices Lh,W,Ω
• Multiplication: ∇2g(s0)s:

1 Input: S ∈ Rk×n s.t.
s = vec(S)

2 Compute K = [k1, . . . ,kn] s.t.
kj ←

∑
i∈Ωj

(wT
i sj)wi

3 A← K + SLh
4 Return: vec(A)

3.1 Fully Observed Case
As in [5, 13] among others, there may be scenarios where Y is completely observed, and the goal
is to find the row/column embeddings that conform to the corresponding graphs. In this case, the
loss term in (6) is simply ‖Y −WHT ‖2F . Thus, setting ∇f(H) = 0 is equivalent to solving the
following Sylvester equation for an n× k matrix H:

HWTW + LhH = Y TW. (7)

(7) admits a closed form solution. However the standard Bartels-Stewart algorithm for the Sylvester
equation requires transforming both WTW and Lh into Schur form (diagonal in our case where
WTW and Lh are symmetric) by the QR algorithm, which is time consuming for a large Lh. Thus,
we consider applying conjugate gradient (CG) to minimize f(H) directly. We define the following
quadratic function:

g(s) :=
1

2
sTMs− vec

(
Y TW

)T
s, s ∈ Rnk, M = Ik ⊗ Lh + (WTW )⊗ In

It is not hard to show that f(H) = g(vec(H)) and so we apply CG to minimize g(s).

The most crucial step in CG is the Hessian-vector multiplication. Using the identity (BT ⊗
A) vec(X) = vec(AXB), it follows that

(Ik ⊗ Lh)s = vec(LhS), and
(
(WTW )⊗ In

)
s = vec

(
SWTW

)
,

where vec(S) = s. Thus the Hessian-vector multiplication can be implemented by a series of matrix
multiplications as follows.

Ms = vec
(
LhS + S(WTW )

)
,

where WTW can be pre-computed and stored in O(k2) space. The details are presented in Algo-
rithm 1. The time complexity for a single CG iteration is O(nnz(Lh)k+ nk2), where nnz(·) is the
number of non zeros. Since in most practical applications k is generally small, the complexity is
essentially O(nnz(Lh)k) as long as nk ≤ nnz(Lh).

3.2 Partially Observed Case
In this case, the loss term of (6) becomes

∑
(i,j)∈Ω(Yij −wT

i hj)
2, where wT

i is the i-th row of W
and hj is the j-th column of HT . Similar to the fully observed case, we can define:

gΩ(s) :=
1

2
sTMΩs− vec

(
WTY

)T
s,

where MΩ = B̄ + Lh ⊗ Ik, B̄ ∈ Rnk×nk is a block diagonal matrix with n diagonal blocks
Bj ∈ Rk×k. Bj =

∑
i∈Ωj

wiw
T
i , where Ωj = {i : (i, j) ∈ Ω}. Again, we can see f(H) =

gΩ(vec
(
HT
)
). Note that the transpose HT is used here instead of H , which is used in the fully

observed case.

For a given s, let S = [s1, . . . sj , . . . sn] be a matrix such that vec(S) = s and K =
[k1, . . . ,kj , . . . ,kn] with kj = Bjsj . Then B̄s = vec(K). Note that since n can be very large
in practice, it may not be feasible to compute and store all Bj in the beginning. Alternatively, Bjsj
can be computed in O(|Ωj |k) time as follows.

Bjsj =
∑
i∈Ωj

(wT
i sj)wi.
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Thus B̄s can be computed in O(|Ω|k) time, and the Hessian-vector multiplication MΩs can be
done in O(|Ω|k + nnz(Lh)k) time. See Algorithm 2 for a detailed procedure. As a result, each CG
iteration for minimizing gΩ(s) is also very cheap.

Remark on Convergence. In [2], it is shown that any local minimizer of (5) is a global minimizer
of (5) if k is larger than the true rank of the underlying matrix.3 From [24], the alternating mini-
mization procedure is guaranteed to globally converge to a block coordinate-wise minimum4 of (5).
The converged point might not be a local minimizer, but it still yields good performance in practice.
Most importantly, since the updates are cheap to perform, our algorithm scales well to large datasets.

4 Convex Connection via Generalized Weighted Nuclear Norm
We now show that the regularizer in (5) can be cast as a generalized version of the weighted nuclear
norm. The weights in our case will correspond to the scaling factors introduced on the matrices
W,H due to the eigenvalues of the shifted graph Laplacians Lw, Lh respectively.

4.1 A weighted atomic norm:

From [7], we know that the nuclear norm is the gauge function induced by the atomic set: A∗ =
{wih

T
i : ‖wi‖ = ‖hi‖ = 1}. Note that all rank one matrices in A∗ have unit Frobenius norm.

Now, assume P = [p1, . . . ,pm] ∈ Rm×m is a basis of Rm and S−1/2
p is a diagonal matrix with

(S
−1/2
p )ii ≥ 0 encoding the “preference” over the space spanned by pi. The more the preference, the

larger the value. Similarly, consider the basis Q and the preference S−1/2
q forRn. Let A = PS

−1/2
p

and B = QS
−1/2
q , and consider the following “preferential” atomic set:

A := {ai = wih
T
i : wi = Aui,hi = Bvi, ‖ui‖ = ‖vi‖ = 1}. (8)

Clearly, each atom a in A has non-unit Frobenius norm. This atomic set allows for biasing of the
solutions towards certain atoms. We then define a corresponding atomic norm:

‖Z‖A = inf
∑

ai∈A

|ci| s.t. Z =
∑

ai∈A

ciai. (9)

It is not hard to verify that ‖Z‖A is a norm and {Z : ‖Z‖A ≤ τ} is closed and convex.

4.2 Equivalence to Graph Regularization

The graph regularization (5) can be shown to be a special case of the atomic norm (9), as a conse-
quence of the following result:

Theorem 1. For any A = PS
−1/2
p , B = QS

−1/2
q , and corresponding weighted atomic set A ,

‖Z‖A = inf
W,H

1

2
{‖A−1W‖2F + ‖B−1H‖2F } s.t. Z = WHT .

We prove this result in Appendix A. Theorem 1 immediately leads us to the following equivalence
result:
Corollary 1. Let Lw = UwSwU

T
w and Lh = UhShU

T
h be the eigen decomposition for Lw and Lh.

We have
Tr
(
WTLwW

)
= ‖A−1W‖2F , and Tr

(
HTLhH

)
= ‖B−1H‖2F ,

where A = UwS
−1/2
w and B = UhS

−1/2
h . As a result, ‖M‖A with the preference pair (Uw, S

−1/2
w )

for the column space and the preference pair (Uh, S
−1/2
h ) for row space is a weighted atomic norm

equivalent for the graph regularization using Lw and Lh.

The results above allow us to obtain the dual weighted atomic norm for a matrix Z

‖Z‖∗A = ‖ATZB ‖ = ‖S−
1
2

w UTwZUhS
− 1

2

h ‖ (10)

3The authors actually show this for a more general class of regularizers.
4Nash equilibrium is used in [24].
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which is a weighted spectral norm. An elementary proof of this result can be found in Appendix B.
Note that we can then write

‖Z‖A = ‖A−1ZB−T ‖∗ = ‖S
1
2
wU
−1
w ZU−Th S

1
2

h ‖∗ (11)

In [20], the authors consider a norm similar to (11), but with A,B being diagonal matrices. In the
spirit of their nomenclature, we refer to the norm in (11) as the generalized weighted nuclear norm.

5 Statistical Consistency in the Presence of Noisy Measurements
In this section, we derive theoretical guarantees for the graph regularized low rank matrix estimators.
We first introduce some additional notation. We assume that there is a m × n matrix Z? of rank
k with ‖Z?‖F = 1, and N = |Ω| entries of Z? are uniformly sampled5 and revealed to us (i.e.,
Y = PΩ(Z?)). We further assume an one-to-one mapping between the set of observed indices Ω
and {1, 2, . . . , N} so that the tth measurement is given by

yt = Yi(t),j(t) = 〈ei(t)eTj(t), Z
?〉+

σ√
mn

ηt ηt ∼ N (0, 1). (12)

where 〈·, ·〉 denotes the matrix trace inner product, and i(t), j(t) is a randomly selected coordinate
pair from [m]×[n]. LetA,B are corresponding matrices defined in Corollary 1 for the givenLw, Lh.
W.L.O.G, we assume that the minimum singular value of both Lw and Lh is 1. We then define the
following graph based complexity measures:

αg(Z) :=
√
mn
‖A−1ZB−T ‖∞
‖A−1ZB−T ‖F

, βg(Z) :=
‖A−1ZB−T ‖∗
‖A−1ZB−T ‖F

(13)

where ‖ · ‖∞ is the element-wise `∞ norm. Finally, we assume that the true matrix Z? can be
expressed as a linear combination of atoms from (8) (we define α? := αg(Z

?)):

Z? = AU?(V ?)TBT , U? ∈ Rm×k, V ? ∈ Rn×k, (14)

Our goal in this section will be to characterize the solution to the following convex program, where
the constraint set precludes selection of overly complex matrices in the sense of (13):

Ẑ = arg min
Z∈C

1

N
‖PΩ(Y − Z)‖2F + λ‖Z‖A where C :=

{
Z : αg(Z)βg(Z) ≤ c̄0

√
N

log(m+ n)

}
,

(15)
where c̄0 is a constant depending on α?.

A quick note on solving (15): since ‖ · ‖A is a weighted nuclear norm, one can resort to proximal
point methods [6], or greedy methods developed specifically for atomic norm constrained minimiza-
tion [17, 21]. The latter are particularly attractive, since the greedy step reduces to computing the
maximum singular vectors which can be efficiently computed using power methods. However, such
methods will first involve computing the eigen decompositions of the graph Laplacians, and then
storing the large, dense matrices A,B. We refrain from resorting to such methods in Section 6, and
instead use the efficient framework derived in Section 3. We now state our main theoretical result:

Theorem 2. Suppose we observe N entries of the form (12) from a matrix Z? ∈ Rm×n, with
α? := αg(Z

?) and which can be represented using at most k atoms from (8). Let Ẑ be the minimizer

of the convex problem (15) with λ ≥ C1

√
(m+n) log(m+n)

N . Then, with high probability, we have

‖Ẑ − Z?‖2F ≤ Cα?2 max
{

1, σ2
}k(m+ n) log(m+ n)

N
+O

(
α?2

N

)
where C, C1 are positive constants.

See Appendix C for the detailed proof. A proof sketch is as follows:

5Our results can be generalized to non uniform sampling schemes as well.
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Proof Sketch: There are three major portions of the proof:

• Using the fact that Z? has unit Frobenius norm and can be expressed as a combination of
at most k atoms, we can show ‖Z?‖A ≤

√
k (Appendix C.1)

• Using (10), we can derive a bound for the dual norm of the gradient of the loss L(Z), given

by ‖∇L(Z)‖∗A = ‖S−
1
2

w UTw∇L(Z)UhS
− 1

2

h ‖. (Appendix C.2)
• Finally, using (13), we define a notion of restricted strong convexity (RSC) that the “error”

matrices Z? − Ẑ lie in. The proof follows closely along the lines of the equivalent result
in [15], with appropriate modifications to accommodate our generalized weighted nuclear
norm. (Appendix C.3).

5.1 Comparison to Standard Matrix Completion:

It is instructive to consider our result in the context of noisy matrix completion with uniform samples.
In this case, one would replace Lw, Lh by identity matrices, effectively ignoring graph information
available. Specifically, the “standard” notion of spikiness (αn :=

√
mn‖Z‖∞‖Z‖F ) defined in [15]

will apply, and the corresponding error bound (Theorem 2) will have α? replaced by αn(Z?). In
general, it is hard to quantify the relationship between αg and αn, and a detailed comparison is an
interesting topic for future work. However, we show below using simulations for various scenarios
that the former is much smaller than the latter. We generate m × m matrices of rank k = 10,
M = UΣV T with U, V being random orthonormal matrices and Σ having diagonal elements picked
from a uniform[0, 1] distribution. We generate graphs at random using the schemes discussed below,
and set Z = AMBT , with A,B as defined in Corollary 1. We then compute αn, αg for various m.

Comparing αg to αn: Most real world graphs exhibit a power law degree distribution. We
generated graphs with the ith node having degree (m × ip) with varying negative p values. Figure
1(a) shows that as p → 0 from below, the gains received from using our norm is clear compared to
the standard nuclear norm. We also observe that in general the weighted formulation is never worse
then unweighted (The dotted magenta line is αn/αg = 1). The same applies for random graphs,
where there is an edge between each (i, j) with varying probability p (Figure 1(b)).
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Figure 1: (a), (b): Ratio of spikiness measures for traditional matrix completion and our formulation.
(c): Sample complexity for the nuclear norm (NN) and generalized weighted nuclear norm (GWNN)

Sample Complexity: We tested the sample complexity needed to recover am = n = 200, k = 20
matrix, generated from a power law distributed graph with p = −0.5. Figure 1(c) again outlines that
the atomic formulation requires fewer examples to get an accurate recovery. We average the results
over 10 independent runs, and we used [17] to solve the atomic norm constrained problem.

6 Experiments on Real Datasets
Comparison to Related Formulations: We compare GRALS to other methods that incorporate
side information for matrix completion: the ADMM method of [12] that regularizes the entire target
matrix; using known features (IMC) [10, 23]; and standard matrix completion (MC). We use the
MOVIELENS 100k dataset,6 that has user/movie features along with the ratings matrix. The dataset
contains user features (such as age (numeric), gender (binary), and occupation), which we map

6http://grouplens.org/datasets/movielens/
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Figure 2: Time comparison of different methods
on MOVIELENS 100k

Method RMSE
IMC 1.653
Global mean 1.154
User mean 1.063
Movie mean 1.033
ADMM 0.996
MC 0.973
GRALS 0.945

Table 1: RMSE on the
MOVIELENS dataset

Table 2: Data statistics.
Dataset # users # items # ratings # links rank used
Flixster ([11]) 147,612 48,794 8,196,077 2,538,746 10
Douban ([14]) 129,490 58,541 16,830,839 1,711,802 10
YahooMusic ([8]) 249,012 296,111 55,749,965 57,248,136 20

into a 22 dimensional feature vector per user. We then construct a 10-nearest neighbor graph using
the euclidean distance metric. We do the same for the movies, except in this case we have an 18
dimensional feature vector per movie. For IMC, we use the feature vectors directly. We trained
a model of rank 10, and chose optimal parameters by cross validation. Table 1 shows the RMSE
obtained for the methods considered. Figure 2 shows that the ADMM method, while obtaining a
reasonable RMSE does not scale well, since one has to compute an SVD at each iteration.
Scalability of GRALS: We now demonstrate that the proposed GRALS method is more efficient
than other state-of-the-art methods for solving the graph-regularized matrix factorization problem
(5). We compare GRALS to the SGD method in [26], and GD: ALS with simple gradient descent.
We consider three large-scale real-world collaborate filtering datasets with graph information: see
Table 2 for details.7 We randomly select 90% of ratings as the training set and use the remaining
10% as the test set. All the experiments are performed on an Intel machine with Xeon CPU E5-
2680 v2 Ivy Bridge and enough RAM. Figure 3 shows orders of magnitude improvement in time
compared to SGD. More experimental results are provided in the supplementary material.
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Figure 3: Comparison of GRALS, GD, and SGD. The x-axis is the computation time in log-scale.

7 Discussion
In this paper, we have considered the problem of collaborative filtering with graph information for
users and/or items, and showed that it can be cast as a generalized weighted nuclear norm prob-
lem. We derived statistical consistency guarantees for our method, and developed a highly scalable
alternating minimization method. Experiments on large real world datasets show that our method
achieves ∼ 2 orders of magnitude speedups over competing approaches.
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A Proof of Theorem 1

Proof For all Z =
∑
i ciai with ‖A‖A =

∑
i |ci|, where ai = Auiv

T
i B

T , we can construct the
i-th column of W and H as

wi =
√
|ci|Aui and hi =

√
|ci|Bvi.

Clearly, we have Z = WHT and

‖A−1W‖2F = ‖B−1H‖2F =
∑
i

|ci|

Thus, if follows that LHS ≥ RHS. Oh the other hand, for a matrix Z = WHT , we can construct

ui =
A−1wi

‖A−1wi‖
and vi =

B−1hi
‖B−1hi‖

,

and ci = ‖A−1wi‖‖B−1hi‖. Clearly, we have wih
T
i = ciAuiviB

T and Z =
∑
i ciAuiv

T
i B

T .
We also have

|ci| = ‖A−1wi‖‖B−1hi‖ ≤
1

2

(
‖A−1wi‖2 + ‖B−1hi‖2

)
by AM-GM inequality. Thus, we have LHS ≤ RHS.

B Dual Weighted Generalized Nuclear Norm

Recall the definition of the weighted atomic set:

A := {ai = wih
T
i : wi = Aui,hi = Bvi, ‖ui‖ = ‖vi‖ = 1}.

We derive the dual norm as follows.

‖Z‖∗A = sup
a∈A
〈a, Z〉

= sup
u,v
〈AuvTBT , Z〉, s.t. ‖u‖ = ‖v‖ = 1

= sup
u,v

Tr
(
BvuTATZ

)
, s.t. ‖u‖ = ‖v‖ = 1

= sup
u,v

uTATZBv, s.t. ‖u‖ = ‖v‖ = 1

=‖ATZB‖

C Proof of Theorem 2

The proof of our main Theorem 2 follows the similar steps used in [15]. The main idea is to use
Theorem 3 [16] to obtain the consistency guarantee. Our proof steps (and indeed that of [15]) are a
consequence of carefully bounding the various quantities needed to make Theorem 3 hold:
Theorem 3 (Theorem 1 of [16]). For the convex optimization problem of the following form:

Ẑ = arg min
Z∈Rm×n

L(Z;X1, . . . , XN ) + λR(Z),

where

(a) the regularizer R is a norm and is decomposable with respect to the subspace pair
(M,M̄⊥), whereM⊆ M̄ is a subspace.

(b) the loss function L is convex and differentiable, and satisfies restricted strong convexity
with curvature κ and tolerance τ

10



with a strictly positive regularization constant λ ≥ 2R∗(∇L(Z?)), any optimal solution Ẑ satisfies
the bound

‖Ẑ − Z?‖2 ≤ 9
λ2

κ2
Ψ(M)2 +

λ

κ

{
2τ2(Z?) + 4R(Z?M⊥)

}
, (C.1)

where Ψ(M) := supZ∈M\{0}
R(Z)
‖Z‖F . Furthermore, if Z? ∈M, then the bound becomes

‖Ẑ − Z?‖2 ≤ 9
λ2

κ2
Ψ(M)2. (C.2)

See [16] for the detailed definitions of decomposable norms and restricted strong convexity.

To apply Theorem 3 to analyze the consistency of (15), we make the following remarks:

• R(Z) = ‖Z‖A : the weighted atomic norm defined in (9).
• R∗(Z) = ‖Z‖∗A : the dual norm of the weighted atomic norm.

• M = {Z = AMBT : rank(Z) = k}: the subspace we are interested in.

• L(Z;X1, . . . , Zn) = 1
N

∑N
i=1(yt − 〈Xt, Z〉)2: where Xt = ei(t)e

T
j(t) (See the corre-

sponding measurement model in (12)). Because the squared-L2 loss is used in our setting,
the restricted strong convexity parameter κ is related to the minimum singular value of the
Hessian of L(Z;X1, . . . , XN ). Thus, from (C.1) and (C.2) we can see that the bounds
remain the same when we scale {Xt} and {yt} by the same constant as both κ and the
lower bound of λ (which is R∗(∇L(Z?))) are scaled with the same constant. Thus, in the
following proof, we consider the following equivalent statistical measurement model:

yt = 〈
√
mnεtei(t)e

T
j(t), Z

?〉+ σεtηt (C.3)

where εt are i.i.d. Rademacher random variables [15]. Let’s re-define

Xt :=
√
mnεtei(t)e

T
j(t), (C.4)

yt := 〈Xt, Z〉+ σεtηt.

In addition, we also define X (Z) ∈ RN be the vector such that X (Z)t = 〈Xt, Z〉.
• The exact restricted strong convexity condition we need for (15) is as follows:

1√
N
‖X (Z)‖ ≥ 1

8
‖Z‖F

{
1− ĉ0

αg(Z)√
N

}
∀Z ∈ C, (C.5)

where C is defined in (15) and ĉ0 is a constant (similar to [15, Eq. 28]).

In the following subsections, we prove bounds for the quantities needed for establishing Theorem 2
via the following steps:

• In Section C.1, we derive an upper bound for Ψ(M).
• In Section C.2, we derive an upper bound forR∗(∇L(Z∗)).
• In Section C.3, we prove that the restricted strong convexity (C.5) holds L with exponen-

tially high probability.

Note that for the sake of proving our results, we assume that the target matrix Z? is exactly low rank,
and the minimum singular values of A, B are 1. Our results can be extended in a straightforward
manner when Z? does not exactly lie inM (it is approximately low rank).

C.1 Bounding the Atomic Norm

Based on the definition of Ψ(M), we can derive its upper bound on the atomic norm of Z ∈ M
with ‖Z‖F = 1.

Lemma 1. Let Z ∈ Rm×n, Z = AUV TBT , rank(Z) = k be a linear combination of atoms in
A . Then, with the assumption ‖Z‖F = 1 we have

‖Z‖A ≤
√
k

11



Proof
‖Z‖A = ‖UV T ‖∗ ≤

√
k‖UV T ‖F ≤

√
k‖A−1AUV TB−T ‖F ,

where the first inequality follows from Cauchy Schwartz, and the second inequality follows from
noting that ‖A−1‖ ≤ 1 and likewise for ‖B−1‖, since we assumed that the minimum singular value
of both Lw, Lh is unity.

C.2 Bounding the Dual Norm of the Gradient of Loss Function

A key ingredient for our main result will be a bound on the dual norm of the gradient of the loss
function, which we will use to bound the regularizer λ. From Eq. (11), and our problem set up in
Eq. (16), we have the following set of inequalities:

‖∇L‖∗A = ‖S−
1
2

w UTw∇LUhS
− 1

2

h ‖
(i)

≤ ‖S−
1
2

w UTw ‖‖UhS
− 1

2

h ‖‖(∇L)‖

=
‖∇L‖

σmin(L
1
2
w)σmin(L

1
2

h )

(ii)

≤ Cσ

√
(m+ n) log(m+ n)

N
, (C.6)

with probability at least 1 − exp
(
c
√
N log(m+ n)

)
. (i) appeals to submultiplicativity, and we

prove (ii) below. From our assumption about unit minimum singular values, we can ignore the
denominator.

Here we develop a bound on the spectral norm of the gradient of the loss function, specifically step
(ii) in (C.6). Our proof follows that of the corresponding result in [15], which we show here for
completeness.

Recall the definition of Xt :=
√
mnεtei(t)e

T
j(t) in (C.4), we have the gradient of the loss function

given by

∇L =
σ

N

∥∥∥∥∥
N∑
t=1

ηtXt

∥∥∥∥∥ (C.7)

For ease of exposition, assume m = n. We now show that with high probability, the quantity in

(C.7) is bounded above by Cσ
√

m log(m)
N . For m 6= n, our bound can be made necessarily better

since the result we prove can be seen as holding for max{m,n}. To prove our result, we make use
of the matrix noncommutative Bernstein inequality (Theorem 3.2 in [18]):
Lemma 2. Let X1, · · · , XN be independent, zero mean random matrices of size m × n. Suppose
ρ2
t := max{‖E[XtX

T
t ]‖, ‖E[XT

t Xt]‖}, and suppose ‖Xt‖ ≤ M̄ almost surely ∀t. Then for any
τ > 0

P

[∥∥∥∥∥
N∑
t=1

Xt

∥∥∥∥∥ > τ

]
≤ (m+ n) exp

(
− τ

2

2∑N
t=1 ρ

2
t + Mτ

3

)
The above result holds even for sub-exponential random variables [22] and the Orlicz norm instead
of the spectral norm being bounded above by a constant M̄ .

To use Lemma 2, we first derive bounds on the relevant quantities. First, note that for all t, Xt has
a single non zero entry of magnitude m. Noting that ηt is a standard Gaussian random variable, we
can bound the Orlicz norm ‖ηtXt‖ψ1 ≤ m. Also

E
[
η2
tX

T
t Xt

]
= E

[
m2ej(t)e

T
i(t)ei(t)e

T
j(t)

]
= m2E

[
ej(t)e

T
j(t)

]
The matrix inside the expectation has a 1 in the j(t), j(t) location. Since j(t) is chosen uniformly
at random, the expected value of the non zero entry is 1/m. This means

‖E
[
η2
tX

T
t Xt

]
‖ = m = ‖E

[
η2
tXtX

T
t

]
‖

This gives M = ρ2
t = m. Setting τ = Nδ, and from Lemma 2, we get

P

[
σ

N

∥∥∥∥∥
N∑
t=1

ηtXt

∥∥∥∥∥ > σδ

]
≤ 2m exp

(
−CNδ

m

)
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Our result then follows by setting δ = c
√

m log(m)
N .

C.3 Restricted Strong Convexity for Generalized Weighted Nuclear Norm

The proof of this result mirrors the corresponding proof in [15]. Hence, to keep things simple,
we skip the steps that are common between our method and [15], and only pause to highlight the
differences.

First, note that since we assume uniformly weighted samples, we need not concern ourselves with
the “weight” matrices that are considered in [15]. Also, define X (Z)t = 〈Xt, Z〉, where Xt is
defined as in Appendix C.2. Then, the RSC condition requires us to prove (C.5), which we re-state
it again as follows.

1√
N
‖X (Z)‖ ≥ 1

8
‖Z‖F

{
1− ĉ0

αg(Z)√
N

}
∀Z ∈ C,

where C is defined in (15) and ĉ0 is a constant In other words, we wish to prove that the following
event holds with high probability:

E1 :=

{
∀Z ∈ C :

1√
N
‖X (Z)‖ ≥ 1

8
‖Z‖F −

ĉ0m

8
√
N
‖Z‖F

‖M‖∞
‖M‖F

}
, (C.8)

where M := A−1ZB−T and αg is the spikiness defined in (13). Subtracting ‖Z‖F from both sides
of the inequality in (C.8), we get

1√
N
‖X (Z)‖ − ‖Z‖F ≥ −

7

8
‖Z‖F −

ĉ0m

8
√
N
‖Z‖F

‖M‖∞
‖M‖F

,

and hence we can define a “bad” event as

E2 :=

{
∃Z ∈ C :

∣∣∣∣ 1√
N
‖X (Z)‖ − ‖Z‖F

∣∣∣∣ > 7

8
‖Z‖F +

ĉ0m

8
√
N
‖Z‖F

‖M‖∞
‖M‖F

}
(C.9)

Now, due to the definition of C, event E2 is invariant under rescaling of Z (so as M := A−1ZB−T ).
Thus, without loss of generality, we may assume that ‖M‖∞ = 1/m. Then, the remaining degrees
of freedom in the set C can be parameterized in terms of the quantities D = ‖M‖F and ρ = ‖M‖∗.
For any Z = AMBT ∈ C with ‖M‖∞ = 1/d and ‖M‖F ≤ D, we have ‖M‖∗ ≤ ρ(D), where

ρ(D) := c̄0D
2

(
N

m log(m)

) 1
2

.

For each radius D > 0, consider the set

B(D) :=
{
Z = AMBT : ‖M‖∞ = 1/m, ‖M‖F ≤ D, ‖M‖∗ ≤ ρ(D)

}
, (C.10)

and consider the event

E3(D) :=

{
∃Z ∈ B(D) :

∣∣∣∣ 1√
N
‖X (Z)‖ − ‖Z‖F

∣∣∣∣ > 3

4
D +

ĉ0m

8
√
N
‖Z‖F

‖M‖∞
‖M‖F

}
(C.11)

Now, note that the RHS of inequality in the above event satisfies, for Z ∈ B(D)

3

4
D +

ĉ0m

8
√
N
‖Z‖F

‖M‖∞
‖M‖F

=
3

4
D +

ĉ0

8
√
N

‖Z‖F
‖M‖F

≥ 3

4
D +

ĉ0

8
√
N
,

where the first equality follows since Z = AMBT ∈ C ⇒ ‖M‖∞ = 1/m, and the last inequality
follows since ‖Z‖F = ‖AMBT ‖F ≥ σmin(A)σmin(B)‖M‖F , and noting that the minimum
singular values of A,B are unity. Finally, we define the event

E4(D) :=

{
∃Z ∈ B(D) :

∣∣∣∣ 1√
N
‖X (Z)‖ − ‖Z‖F

∣∣∣∣ ≥ 3

4
D +

ĉ0

8
√
N

}
(C.12)
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Let S1 be the set of Z that satisfy event E1, and similarly define sets S2,S3(D),S4(D). The follow-
ing statement will be used to prove our results: for each fixed D > 0,

S4(D) ⊃ S3(D) ⊃ S2 ⊃ Sc1 (C.13)

Meaning that if we can show that E4 holds with very low probability for a fixed D, then it follows
from (C.13) that E1 holds with high probability. The remainder of the proof will focus on doing so.

First, note that the event E4 defined in (C.12) is exactly the same as the event defined in [15, Eq. 29].
Hence, we can use the exact same argument as described in [15, Section 5.2] to obtain

P(E4(D)) ≤ c1 exp
(
−c2ND2

)
.

Now, we have the following result:
Lemma 3. Suppose there are constants c1, c2 so that, for each fixed D > 0,

P(E4(D)) ≤ c1 exp
(
−c2ND2

)
then ∃ a universal constant c′2 so that

P(E2) ≤ c1
exp(−c′2m log(m))

1− exp(−c′2m log(m))
.

The statement is the same as [15, Lemma 3], but we have to slightly modify the proof to adapt it to
our setting. We do this in Appendix C.4.

Lemma 3 allows us to shows that if E4 holds with low probability, then E2 holds with low probability
as well. Since by construction, Ec1 ⊂ E2, the RSC result follows.

Since the results derived here are for the statistical model defined by (C.3), we go from this model
to the initial model that we consider in (12). To this end, one needs to make the following two
transformations, as explained in the remarks following Theorem 3:

• Scale the magnitude of Xt, and consequently λ by 1/m

• Scale the noise variance σ by m.

The rates we obtain in Theorem 2 remain unchanged as a result of this scaling.

C.4 Proof of Lemma 3

The proof is similar to [15, Lemma 3], we include it with our notation for completeness. For any
Z = AMBT ∈ C, with ‖M‖∞ = 1/m, based on the definition of C in (15), we have

‖M‖2F ≥ c̄−1
0 ‖M‖∗

(
m log(m)

N

) 1
2

≥ c̄−1
0 ‖M‖F

(
m log(m)

N

) 1
2

,

which gives us ‖M‖F ≥ c̄−1
0

(
m log(m)

N

) 1
2

. Hence, we only need to focus on sets B(D) where

D > µ := c̄−1
0

(
m log(m)

N

) 1
2

. For l = 1, 2, . . . and a = 7
6 define

Sl :=
{
Z = AMBT ∈ C : ‖M‖∞ = 1/m, al−1µ ≤ ‖M‖F ≤ alµ, ‖M‖∗ ≤ ρ(alµ)

}
From the definition of (C.9), we have Sl ⊂ B(alµ). Now, if E2 holds for some Z, then Z must
belong to Sl for some l. When Z ∈ Sl, we know ∃Z ∈ B(alµ) such that∣∣∣∣‖X (Z)‖√

N
− ‖Z‖F

∣∣∣∣ ≥ 7

8
‖Z‖F +

ĉ0m

8
√
N
‖Z‖F

‖M‖∞
‖M‖F

≥ 7

8
‖Z‖F +

ĉ0

8
√
N

≥ 7

8
al−1µ+

ĉ0

8
√
N

=
3

4
alµ+

ĉ0

8
√
N

since a = 7/6.

14



Thus, we have shown that when this Z ∈ Sl, then E4(alµ) must hold. Because any Z which make
the event E2 hold must fall into some set Sl, the union bound implies that

PJE2K ≤
∞∑
l=1

P
q
E(alµ)

y

≤ c1
∞∑
l=1

exp
(
−c2Na2lµ2

)
≤ c1

∞∑
l=1

exp
(
−2c2 log(a)lNµ2

)
≤ c1

exp(−c̄2Nµ2)

1− exp(−c̄2Nµ2)

= c1
exp(−c′2m logm)

1− exp(−c′2m logm)
,

where the last equality follows as Nµ2 = c̄−1
0 (m logm).

D Additional Details for Experimental Results

Experimental environment and Implementation. All the experiments are generated on an Intel
machine with 2 Xeon CPU E5-2680 v2 Ivy Bridge and 256 GB ram. GRALS is implemented using
a MEX routine written in C++. For SGD and GD, we optimize the code from [26] in several ways:
vectorization of for-loops and parallel residual computation using a MEX routine using C++. All
the implementations employ embarrassing parallelization for BLAS operations whenever applicable
(either through parallel BLAS library in Matlab, or simple OpenMP parallel-for loop).

Parameters. In Section 6, we show the results in Figure 3 to demonstrate the superiority of the
proposed algorithm GRALS over the existing approaches: SGD and GD [26]. In Table Supp-1, we
list the parameters used to generate the results. Note that in all the datasets we used, there is only
one set of variables which comes with graph information (say W ). Thus, the regularization consists
of three terms as follows:

λL Tr
(
WT Lap(Ew)W

)
+ λw‖W‖2F + λh‖H‖2F .

In addition to the regularization parameters, there are algorithmic parameters for each approach:

• GRALS: the number of CG iterations to solve each sub-problem
• SGD: the learning rate, ηsgd
• GD: the learning rate, ηgd

In Table Supp-1, we also report the best algorithm-specific parameters for each method.

Table Supp-1: Parameters used in the experiments for Figure 3

λL λw λh
GRALS SGD GD
CG-iters ηsgd ηgd

Flixster 0.01 0.01 0.02 3 10−4 10−6

Douban 1 0.01 1.01 5 10−4 10−6

YahooMusic 100 100 200 20 10−6 10−6

Graph Information in Datasets. For Flixster and Douban, the datasets come with the graph in-
formation among users. For YahooMusic, we use the Yahoo Music Track 2 dataset from KDDCup
2011 [8] for the purpose of showing that GRALS scales much better than other approaches. As most
of entries in the test split of the Track 2 dataset are marked as −1 (for the classification purpose in
that track), we only use the training set in our experiments. The original training set is randomly
partitioned into a 90− 10 training-test split. There is no explicit graph information in YahooMusic.
Thus, we use the provided “album”, “artist”, and “genre” attributes for each item (or music track)

15



to construct a binary indicator vector and construct a 10-NN graph graph using the inner product
distance over all the items.

RMSE Performance. Because the aim of this paper is to develop scalable algorithms and con-
sistency results for graph regularized matrix factorization (4), we did not include the performance
comparison table (similar to Table 1) for other large datasets for want of space. Here, we report
the results in Table Supp-2. Note that there are other approaches to incorporate graph information
into collaborative filtering, which might lead to different RMSEs. A detailed comparison to all such
methods is beyond the scope of this paper. However, whenever there is a means to incorporate
pairwise relationships between user-user variables or item-item variables, we can use GRALS to
achieve the same results as other approaches, but at a much faster rate. Note that the Yahoo Music
dataset has ratings in the range [0, 100] and hence the larger RMSE values. A fairer comparison can
be obtained by dividing the results by 20, to correspond to ratings in the range [0, 5].

Table Supp-2: RMSE of various methods on the datasets considered in Figure 3. PMF : Our method
with graph Laplacians replaced by identity matrices.

DATASET PMF GRALS Global Mean User Mean Item Mean
Flixster 0.923 0.845 1.092 0.979 1.088
Douban 0.719 0.714 0.907 0.848 0.790

YahooMusic 23.823 22.872 37.941 43.308 38.042
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