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ABSTRACT
Learning meaningful topic models with massive document
collections which contain millions of documents and billions
of tokens is challenging because of two reasons. First, one
needs to deal with a large number of topics (typically on
the order of thousands). Second, one needs a scalable and
efficient way of distributing the computation across multi-
ple machines. In this paper, we present a novel algorithm
F+Nomad LDA which simultaneously tackles both these
problems. In order to handle large number of topics we use
an appropriately modified Fenwick tree. This data structure
allows us to sample from a multinomial distribution over T
items in O(log T ) time. Moreover, when topic counts change
the data structure can be updated in O(log T ) time. In or-
der to distribute the computation across multiple processors,
we present a novel asynchronous framework inspired by the
Nomad algorithm of [25]. We show that F+Nomad LDA
significantly outperforms recent state-of-the-art topic mod-
eling approaches on massive problems which involve millions
of documents, billions of words, and thousands of topics.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing

General Terms
Algorithms, Experimentation

Keywords
Topic Models; Scalability; Sampling

1. INTRODUCTION
Topic models provide a way to aggregate vocabulary from

a document corpus to form latent “topics.” In particular,
Latent Dirichlet Allocation (LDA) [3] is one of the most
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popular topic modeling approaches. Learning meaningful
topic models with massive document collections which con-
tain millions of documents and billions of tokens is challeng-
ing because of two reasons. First, one needs to deal with a
large number of topics (typically on the order of thousands).
Second, one needs a scalable and efficient way of distributing
the computation across multiple machines.

Unsurprisingly, there have been significant attempts at
developing scalable inference algorithms for LDA. To tackle
large number of topics, [23] proposed a clever sparse sam-
pling trick that is widely used in packages like MALLET and
Yahoo! LDA. More recently, [11] proposed using the Alias
table method to speed up sampling from the multinomial
distribution. At the same time, there has also been sig-
nificant effort towards distributing the computation across
multiple processors. Some early efforts in this direction in-
clude [22] and [10], where the basic idea is to partition the
documents across processors. During each inner iteration
the words in the vocabulary are partitioned across proces-
sors and each processor only updates the latent variables
associated with the subset of documents and words that it
owns. After each inner iteration, a synchronization step is
used to update global counts and to re-partition the words
across processors. In fact, a very similar idea was indepen-
dently discovered in the context of matrix completion by
[6] and [15]. However, in the case of LDA we need to keep
a global count synchronized across processors which signifi-
cantly complicates matters as compared to matrix comple-
tion. Arguably, most of the recent efforts towards scalable
LDA such as [16, 13] have been focused on the global count
issue either implicitly or explicitly. Recently there is also
a growing trend in machine learning towards asynchronous
algorithms which avoid bulk synchronization after every it-
eration. For example, in the context of LDA see the work
of [1], and in the more general machine learning context see
e.g., [7, 12].

In this paper, we propose a new asynchronous distributed
topic modeling algorithm called F+Nomad LDA which si-
multaneously tackles the twin problems of large number of
documents and large number of topics. In order to han-
dle large number of topics we use an appropriately modified
Fenwick tree. This data structure allows us to sample from
a multinomial distribution over T items in O(log T ) time.
Moreover, when topic counts change, the data structure can
be updated in O(log T ) time. In order to distribute the
computation across multiple processors, we present a novel
asynchronous framework inspired by the Nomad algorithm



of [25]. While we believe that our framework can handle
variable update schedules of many different methods, in this
paper we will primarily focus on Collapsed Gibbs Sampling
(CGS). Our technical contributions can be summarized as
follows:
• We identify the following key property of various infer-

ence methods for topic modeling: only a single vector
of size k needs to be synchronized across multiple pro-
cessors.
• We present a variant of the Fenwick tree which al-

lows us to efficiently encode a multinomial distribu-
tion using O(T ) space. Sampling can be performed
in O(log T ) time and maintaining the data structure
requires only O(log T ) work.
• F+Nomad LDA: we propose a novel parallel frame-

work for various types of inference methods for topic
modeling. Our framework utilizes the concept of no-
madic tokens to avoid locking and conflict at the same
time. Our parallel approach is fully asynchronous with
non-blocking communication, thus leading to good
speedups. Moreover, our approach minimizes the stal-
eness of the variables (at most k variables can be stale)
for distributed parallel computation.
• We demonstrate the scalability of our methods by per-

forming extensive empirical evaluation on large datasets
which contain millions of documents and billions of
words.

2. NOTATION AND BACKGROUND
We begin by very briefly reviewing Latent Dirichlet Al-

location (LDA) [3]. Suppose we are given I documents
denoted as d1, d2, . . . , dI , and let J denote the number of
words in the vocabulary. Moreover, let ni denote the num-
ber of words in a document di. Let wj denote the j-th
word in the vocabulary and wi,j denote the j-th word in
the i-th document. Assume that the documents are gener-
ated by sampling from T topics denoted as φ1, φ2, . . . , φT ;
a topic is simply a J dimensional multinomial distribution
over words. Each document includes some proportion of
the topics. These proportions are latent, and we use the
T dimensional probability vector θi to denote the topic dis-
tribution for a document di. Moreover, let zi,j denote the
latent topic from which wi,j was drawn. Let α and β be hy-
per parameters of the Dirichlet distribution. The generative
process for LDA can be described as follows:

1. Draw T topics φk ∼ Dirichlet(β), k = 1, . . . , T .
2. For each document di ∈ {d1, d2, . . . , dI}:

• Draw θi ∼ Dirichlet(α).
• For j = 1, . . . , ni

– Draw zi,j ∼ Discrete(θi).
– Draw wi,j ∼ Discrete(φzi,j ).

2.1 Inference
The inference task for LDA is to characterize the posterior

distribution Pr(φi, θi, zi,j | wi,j). In the Bayesian setting,
we want an efficient way to draw samples from this poste-
rior distribution. Collapsed Gibbs Sampling (CGS) [8] is a
popular inference scheme for LDA. Define

nz,i,w :=

niX
j=1

I (zi,j = z and wi,j = w) , (1)

nz,i,∗ =
P
w nz,i,w, nz,∗,w =

P
i nz,i,w, and nz,∗,∗ =

P
i,w nz,i,w,

where I(·) is the indicator function. The update rule for
CGS can be written as follows

1. Decrease nzi,j ,i,∗, nzi,j ,∗,wi,j , and nzi,j ,∗,∗ by 1.
2. Resample zi,j according to

Pr (zi,j |wi,j , α, β) ∝
`
nzi,j ,i,∗ + αzi,j

´ `
nzi,j ,∗,wi,j + βwi,j

´
nzi,j ,∗,∗ +

PJ
j=1 βj

.

(2)

3. Increase nzi,j ,i,∗, nzi,j ,∗,wi,j , and nzi,j ,∗,∗ by 1.
Although in this paper we will focus on CGS, note that there
are many other inference techniques for LDA such as col-
lapsed variational Bayes, stochastic variational Bayes, or ex-
pectation maximization which essentially follow a very sim-
ilar update pattern [2]. We believe that the parallel frame-
work proposed in this paper will apply to this wider class of
inference techniques as well.

2.2 Review of Multinomial Sampling
Given a T -dimensional discrete distribution characterized

by unnormalized parameters p with pt ≥ 0 such as in (2),
many sampling algorithms can be applied to draw a sample
z such that Pr(z = t) ∝ pt.
• LSearch: Linear search on p. Initialization: Com-

pute the normalization constant cT =
P
t pt. Gen-

eration: First generate u = uniform(cT ), a uniform
random number in [0, cT ), and perform a linear search

to find z = min
n
t :
“P

s≤t ps
”
> u

o
.

• BSearch: Binary search on c = cumsum(p). Initial-
ization: Compute c = cumsum(p) such that ct =P
s:s≤t ps. Generation: First generate the cumulated

sum u = uniform(cT ) and perform a binary search on
c to find z = min {t : ct > u}.
• Alias method. Initialization: Construct an Alias ta-

ble [19] for p, which contains two arrays of length
T : alias and prob. See [18] for a linear time con-
struction scheme. Generation: First generate u =
uniform(T ), j = buc, and

z =

(
j + 1 if (u− j) ≤ prob[j + 1]

alias[j + 1] otherwise
.

See Table 1 for a comparison of the time/space requirements
of each of the above sampling methods.

3. FENWICK TREE SAMPLING
In this section, we first describe a binary tree structure

F+tree for fast T -dimensional multinomial sampling. The
initialization of an F+tree is linear in T and the cost to gen-
erate a sample is logarithmic in T . Furthermore, F+tree
can also be maintained in logarithmic time for a single pa-
rameter update of pt. We will explain how such properties
of F+tree can be explored to significantly accelerate LDA
sampling.

3.1 F+tree Sampling
F+tree, first introduced for weighted sampling without

replacement [21], is a simplified and generalized version of
Fenwick tree [5], which supports both efficient sampling and
update procedures. In fact, Fenwick tree can be regarded as
a compressed version of the F+tree studied in this paper.



Table 1: Comparison of samplers for a T -dimensional multinomial distribution p described by unnormalized parameters
{pt : t = 1, . . . , T}.

Data Structure Initialization Generation Parameter Update
Space Time Space Time Time

LSearch cT = p>1: O(1) O(T ) O(1) O(T ) O(1)
BSearch c = cumsum(p): O(T ) O(T ) O(1) O(log T ) O(T )
Alias Method prob, alias: O(T ) O(T ) O(T ) O(1) O(T )
F+tree Sampling F.initialize(p): O(T ) O(T ) O(1) O(log T ) O(log T )
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Figure 1: Illustration of sampling and updating using F+tree in logarithmic time.

For simplicity, we assume T is a power of 2. F+tree is a
complete binary tree with 2T −1 nodes for a given p, where
• each leaf node corresponds to a dimension t and stores
pt as its value, and
• each internal node stores the sum of the values of all of

its leaf descendants, or equivalently the sum of values
of its two children due to binary tree structure.

See Figure 1a for an example with p = [0.3, 1.5, 0.4, 0.3] and
T = 4. Nodes in the dotted rectangle are internal nodes.
Similar to the representation used in a heap [4], an array F

of length 2T can be used to represent the F+tree structure.
Let i be the index of each node, and F[i] be the value stored
in the i-th node. The index of the left child, right child, and
parent of the i-th node is 2i, 2i+ 1, and bi/2c, respectively.
The 0/1 string along each node in Figure 1 is the binary
number representation of the node index.

Initialization. By the definition of F+tree, given p, the
values of F be defined as follows:

F[i] =

(
pi−T+1 if i ≥ T,
F[2i] + F[2i+ 1] if i < T.

(3)

Thus, F can be constructed in O(T ) by initializing elements
using (3) in reverse. Unlike the Alias method, there is no
extra space required in the F+tree initialization in addition
to F.

Sample Generation. Sampling using a F+tree can be
carried out as a simple top-down traversal procedure to lo-

cate z = min
n
t :
“P

s:s≤t ps
”
> u

o
for a number uniformly

sampled between [0,
P
t pt). Note that

P
t pt is stored in

F[1], which can be directly used to generate u = uniform(F[1]).
Let leaves(i) be the set of all leaf descendant of the i-th
node. We can consider a general recursive step in the traver-
sal with the current node i and u ∈ [0, F[i]). The definition

of F+tree guarantees that

u ≥ F[i.left]⇒ z ∈ leaves(i.right),

u < F[i.left]⇒ z ∈ leaves(i.left),

This provides a guideline to determine which child to go
next. If right child is chosen, F[i.left] should be subtracted
from u to ensure u ∈ [0, F[i.right]). Note that as half of
the possible t values are removed from the set of candidates,
it is clear that this sampling procedure costs only O(log T )
time. The detailed procedure, denoted by F.sample(u), is
described in Algorithm 1. A toy example with u = 2.1 is
illustrated in Figure 1b.

Algorithm 1 Logarithmic time sampling: F.sample(u).

Input: F: an F+tree for p, u = uniform(F[1]).

Output: z = min
n
t :
“P

s≤t ps
”
> u

o
• i← 1
• While i is not a leaf

– If u ≥ F[i.left],
∗ u← u− F[i.left]
∗ i← i.right

– Else
∗ i← i.left

• z ← i− T + 1

Maintenance for Parameter Updates. A simple and
efficient maintenance routine to deal with slight changes on
the multinomial parameters p can be very useful in CGS for
LDA (See details in Section 3.2). F+tree structure supports
a logarithmic time maintenance routine for a single element
change on p. Assume the t-th component is updated by δ:

p̄← p + δet,



Algorithm 2 Logarithmic time F+tree maintenance for a
single parameter update: F.update(t, δ)

Input: a F+tree F for p, t, δ.
Output: F+tree F is updated for p̄ ≡ p + δet
• i← leaf[t]
• While i is a valid node

– F[i] = F[i] + δ
– i← i.parent

where et is the t-th column of the identity matrix of order T .
A simple bottom-up update procedure to modify a F+tree
F for the current p to a F+tree for p̄ can be carried out
as follows. Let leaf[t] be the leaf node corresponding to t.
For all the ancestors i of leaf[t] (self included), perform the
following delta update:

F[i] = F[i] + δ.

See Figure 1c for an illustration with t = 3 and δ = 1.0. The
detailed procedure, denoted by F.update(t, δ), is described
in Algorithm 2. The maintenance cost is linear to the depth
of the F+tree, which is O(log T ). Note that to deal with a
similar change in p, LSearch can update its normalization
constant cT ← cT +δ in a constant time, while both BSearch
and Alias method require to re-construct the entire data
structure (either c = cumsum(p) or the Alias table: alias
and prob), which costs O(T ) time in general.

See Table 1 for a summary of the complexity analysis for
each multinomial sampling approach. Clearly, LSearch has
the smallest update cost but the largest generation cost, and
Alias method has the best generation cost but the worst
maintenance cost. In contrast, F+tree sampling has a loga-
rithmic time procedure for both operations.

Algorithm 3 F+LDA with word-by-word sampling

• F.initialize(q), with qt = β
nt+β̄

• For each word w
– F.update(t, ntw/

`
nt + β̄

´
) ∀t ∈ Tw

– For each occurrence of w, say wi,j = w in di
∗ t← zi,j
∗ Decrease nt, ntdi , ntw by one
∗ F.update(t, δ) with δ = ntw+β

nt+β̄
− F[leaf(t)]

∗ c← cumsum(r) (on Tw only)
∗ t ← discrete(p, uniform(αF[1] + r>1)) by

(6)
∗ Increase nt, ntdi , ntw by one
∗ F.update(t, δ) with δ = ntw+β

nt+β̄
− F[leaf(t)]

∗ zi,j ← t
– F.update(t,−ntw/

`
nt + β̄

´
) ∀t ∈ Tw

3.2 F+LDA = LDA with F+tree Sampling
In this section, we give details on applying F+tree sam-

pling to CGS for LDA. Let us focus on a single CGS step
in LDA with the current document id di, the current word
w, and the current topic assignment tcur. For simplicity of
presentation, we further denote ntd = nt,di,∗, ntw = nt,∗,w,
and nt = nt,∗,∗ and assume αt = α,∀t, βj = β, ∀j, and
β̄ = J × β. The multinomial parameter p of the CGS step

in (2) can be decomposed into two terms as follows.

pt =
(ntd + α) (ntw + β)

nt + β̄
, ∀t = 1, . . . , T.

= β

„
ntd + α

nt + β̄

«
+ ntw

„
ntd + α

nt + β̄

«
. (4)

Let q and r be two vectors with qt = ntd+α

nt+β̄
and rt = ntwqt.

Some facts and implications about this decomposition:
(a) p = βq + r. This leads to a simple two-level sampling

for p

discrete(p, u) =

(
discrete(r, u) if u ≤ r>1,

discrete(q, u−r>1
β

) otherwise,

where 1 is the all-ones vector and p>1 denotes the nor-
malization constant for p, and u = uniform(p>1). This
means that sampling for p can be very fast if q and r
can be sampled efficiently.

(b) q is always dense but only two elements will be changed
at each CGS step if we follow a document-by-document
sampling sequence. Note q only depends on ntd. Decre-
ment or increment of a single ntd only changes a single
element of q. We propose to apply F+tree sampling for
q for its logarithmic time sampling and maintenance. At
the beginning of CGS for LDA, a F+tree F for q with
qt = α

nt+β̄
is constructed in O(T ) time. When CGS

switches to a new document di, perform the following
updates

F.update(t,
ntd

nt + β̄
) ∀t ∈ Td := {t : ntd 6= 0} .

When CGS finishes sampling for this document, we can
perform F.update(t, −ntd

nt+β̄
) ∀t ∈ Td. Both updates can

be done in O(|Td| log T ). As |Td| is upper bounded by
the number of words in this document, the amortized
sampling cost for each word in the document remains
O(log T ).

(c) r is Tw sparse, where Tw := {t : ntw 6= 0}. Unlike q, all
the elements of r change when we switch from one word
to another word in the same document. Moreover, r is
only used once to compute r>1 and to generate at most
one sample. Thus, we propose to use BSearch approach
to perform the sampling for r. In particular, we only
calculate the cumulative sum on nonzero elements in
Tw. Thus, the initialization cost of BSearch is O(|Tw|)
and the sampling cost is O(log |Tw|).

Word-by-word CGS for LDA. Other than the tradi-
tional document-by-document CGS for LDA, we can also
consider CGS using a word-by-word sampling sequence. For
this sequence, we consider another decomposition of (4) as
follows.

pt = α

„
ntw + β

nt + β̄

«
+ ntd

„
ntw + β

nt + β̄

«
, ∀t. (5)

For this decomposition (5), q and r have analogous defini-
tions such that qt = ntw+β

nt+β̄
and rt = ntdqt, respectively.

The corresponding three facts for (5) are as follows.
(a) p = αq + r. The two-level sampling for p is

discrete(p, u) =

(
discrete(r, u) if u ≤ r>1,

discrete(q, u−r>1
α

) otherwise,

(6)



Table 2: Comparison of various sampling methods for LDA. We use #MH to denote number of Metropolis-Hasting steps for
Alias LDA. Note that in this table only the time complexity is presented—there are some hidden constants that also play
important roles in practice. For example, the initialization cost of the Alias table is much more than linear search although
they have the same time complexity.

F+LDA F+LDA Sparse-LDA Alias-LDA
Sample Sequence Word-by-Word Doc-by-Doc Doc-by-Doc Doc-by-Doc
Exact Sampling Yes Yes Yes No

Decomposition α
“
ntw+β
nt+β̄

”
+ntd

“
ntw+β
nt+β̄

”
β
“
ntd+α

nt+β̄

”
+ntw

“
ntd+α

nt+β̄

”
αβ
nt+β̄

+β
“

ntd
nt+β̄

”
+ntw

“
ntd+α

nt+β̄

”
α
“
ntw+β
nt+β̄

”
+ntd

“
ntw+β
nt+β̄

”
Sampling method F+tree BSearch F+tree BSearch LSearch LSearch LSearch Alias Alias
Fresh samples Yes Yes Yes Yes Yes Yes Yes No Yes
Initialization O(log T ) O(|Td|) O(log T ) O(|Tw|) O(1) O(1) O(|Tw|) O(1) O(|Td|)
Sampling O(log T ) O(log |Td|) O(log T ) O(log |Tw|) O(T ) O(|Td|) O(|Tw|) O(#MH) O(#MH)

(b) q is always dense but only very few elements will be
changed at each CGS step using word-by-word sampling
sequence. A F+tree structure F is maintained for q. The
amortized update time for each occurrence of a word is
O(log T ) and the sampling generation for q using F also
costs O(log T ). Thus, discrete(q, u) := F.sample(u).

(c) r is a sparse vector with |Td| non-zeros. BSearch is used
to construct c = cumsum(r) in O(Td) space and time. c
is used to perform binary search to generate a sample
required by CGS for the occurrence of the current word.
Thus, discrete(r, u) := binary search(c, u).

The detailed procedure of using word-by-word sampling se-
quence is described in Algorithm 3. Let us analyse the per-
formance difference of F+LDA between two sampling se-
quences of a large number of documents. The amortized cost
for each CGS step is O(|Td| + log T ) for the word-by-word
sequence and O(|Tw|+log T ) for the document-by-document
sequence. Note that |Td| is always bounded by the number of
words in a document, which is usually a much smaller num-
ber than a large T (say 1024). In contrast, |Tw| approaches
to T when the number of documents increases. Thus, we
can expect that F+LDA with the word-by-word sequence is
faster than the document-by-document sequence. Empirical
results in Section 5.1 also confirm our analysis.

3.3 Related Work
SparseLDA [23] is the first sampling method which con-

sidered decomposing p into a sum of sparse vectors and a
dense vector. In particular, it considers a three-term decom-
position of pt as follows.

pt =
αβ

nt + β̄
+ β

„
ntd

nt + β̄

«
+ ntw

„
ntd + α

nt + β̄

«
,

where the first term is dense, the second term is sparse
with |Td| non-zeros, and the third term is sparse with |Tw|
non-zeros. In both SparseLDA implementations (Yahoo!
LDA [16] and Mallet LDA [23]), LSearch is applied to all
of these three terms. As SparseLDA follows the document-
by-document sequence, very few elements will be changed
for the first two terms at each CGS step. Sampling pro-
cedures for the first two terms have very low chance to be
performed due to the observation that most mass of pt is
contributed from the third term. The choice of LSearch,
whose normalization constant cT can be updated in O(1)
time, for the first two terms is reasonable. Note that O(T )
and O(|Td|) initialization costs for the first two terms can

be amortized. The overall amortized cost for each CGS step
is O(|Tw|+ |Td|+ |T |).

AliasLDA [11] is a recently proposed approach which re-
duces the amortized cost of each step to O(|Td|). AliasLDA
considers the following decomposition of p:

pt = α

„
ntw + β

nt + β̄

«
+ ntd

„
ntw + β

nt + β̄

«
.

Instead of the“exact”multinomial sampling for p, AliasLDA
considers a proposal distribution q with a very efficient gen-
eration routine and performs a series of Metropolis-Hasting
(MH) steps using this proposal to simulate the true distri-
bution p. In particular, the proposal distribution is con-
structed using the latest second term and a stale version of
the first term. For both terms, Alias method is applied to
perform the sampling. #MH steps decides the quality of
the sampling results. The overall amortized cost for each
CGS step is O(|Td| + #MH). Note the initialization cost
O(|T |) for the first term can be amortized as long as the
same Alias table can be used to generate T samples.

See Table 2 for a detailed summary for LDA using various
sampling methods. Note that the hidden coefficient ρA in
the O(|Td|) notation for the construction of the Alias table is
larger than the coefficient ρB for the construction of BSearch
and the coefficient ρF for the maintenance and sampling of

F+tree. Thus as long as T < 2
ρA−ρB
ρF

|Td|, F+LDA using the
word-by-word sampling sequence is faster than AliasLDA.
Empirical results in Section 5.1 also show the superiority of
F+LDA over AliasLDA for real-world datasets even using
T = 50, 000.

4. PROPOSED PARALLEL APPROACH
In this section we present our second innovation—a novel

parallel framework for CGS. Note that the same technique
can also be used for other inference techniques for LDA
such as collapsed variational Bayes and stochastic varia-
tional Bayes [2] since they follow similar update patterns.

To explain our proposed approach, we find it instructive to
consider a hypergraph G. Let G = (V,E) be a hypergraph
with (I + J + 1) nodes:

V = {di : i = 1, . . . , I} ∪ {wj : j = 1, . . . , J} ∪ {s},

and hyperedges:

E = {eij = {di,wj , s}},
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Figure 2: Abstract access graph for LDA

where |E| =
P
i ni. Note that G contains multi-edges, which

means that the same hyperedge can appear more than once
in E just as a single word can appear multiple times in a
document. Clearly, G is equivalent to a bag-of-words rep-
resentation of the corpus {d1, . . . , dI}; each di is associated
with the i-th document, each wj is associated with the j-
th vocabulary, and each hyperedge eij corresponds to one
occurrence of the vocabulary wj in the i-th document di.
See Figure 2 (a) for a visual illustration; here, each gray
edge corresponds to an occurrence of a word and the black
triangle highlights a particular hyperedge eij = {di,wj , s}.

To further connect G to the update rule of CGS, we asso-
ciate each node of G with a T -dimensional vector. In many
inference methods, an update based on a single occurrence
wij can be realized as a graph operation on G which accesses
values of nodes in a single hyperedge eij . More concretely,
let us define the t-th coordinate of each vector as follows:

(di)t := nt,i,∗, (wj)t := nt,∗,wj , and (s)t := nt,∗,∗.

Based on the update rule of CGS, we can see that the update
for the occurrence of wij only reads from and writes to the
values stored in di, wwij , and s.

Interestingly, this property of the updates is reminiscent of
that of the stochastic gradient descent (SGD) algorithm for
matrix completion model. Similarly to LDA, matrix com-
pletion model has two sets of parameters w1, . . . ,wJ and
d1, . . . ,dI , and each SGD update requires only one of wj

and one of di to be read and modified. Since each update
is highly localized, there is considerable parallelism avail-
able; [25] exploits this property to propose an efficient asyn-
chronous parallel SGD algorithm for matrix completion.

The crucial difference in the case of LDA, however, is that
there is an additional variable s which participates in every
hyperedge of the graph. Thus, if we change the update se-
quence from (eij , ei′j′) to (ei′j′ , eij), then even if i 6= i′ and
j 6= j′ the result of updates will not be the same since the
value of s changes in the first update. Fortunately, this de-
pendency is very weak; each element of s is a large number
because it is a summation over the whole corpus and each
update changes its value at most by one, therefore the rel-
ative change of s made in a short period of time is often
negligible.

While existing approaches such as Yahoo! LDA [16] exploit
this observation by introducing a parameter server and let
each machine query the server to retrieve recent updates, it

is certainly not desirable in a large scale system that every
machine has to query the same central server. Motivated
by the “nomadic” algorithm introduced by [25] for matrix
completion, we propose a new parallel framework for LDA
that is decentralized, asynchronous and lock-free.
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(a) Initial assignment of wj .
Each worker works only on the
diagonal active area in the be-
ginning.
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(b) After a worker finishes
processing j, it sends the
corresponding wj to another
worker. Here, w2 is sent from
worker 1 to 4.
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(c) Upon receipt, the wj is
processed by the new worker.
Here, worker 4 can now pro-
cess w2 since it owns it.
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(d) During the execution of
the algorithm, the ownership
of the wj changes.

Figure 3: Illustration of the Nomad LDA algorithm

Algorithm 4 The basic Nomad LDA algorithm

Given: initialized sl, s̄, and local queue ql
• While stop signal has not been received

– If receive a token τ , push(ql, τ)
– τ ← pop(ql)
– If τ = τs
∗ s← s + (sl − s̄)
∗ sl ← s
∗ s̄← s
∗ Send τs to another worker

– Else if τ = τj := (j,wk)

∗ Perform the j-th subtask

∗ Send τs to another worker

4.1 Nomadic Framework for Parallel LDA
Let p be the number of parallel workers, which can be a

thread in a shared-memory multi-core machine or a proces-
sor in a distributed memory multi-machine system.

Data Partition and Subtask Split. The given docu-
ment corpus is split into p portions such that the l-th worker
owns the l-th partition of the data, Dl ⊂ {1, . . . , J}. Un-
like the other parallel approach where each unit subtask is
a document owned by the worker, our approach uses a fine-
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Figure 4: (a) and (b) present the convergence speed in terms of number of iterations. (c) and (d) present the sampling speed
of each iteration—the y-axis is the speedup over the normal LDA implementation which takes O(T ) time to generate one
sample. We observe all the sampling algorithms have similar convergence speed, while F+LDA(doc) is the fastest compared
to other document-wise sampling approaches. Also, F+LDA(word) is faster than F+LDA(doc) for larger datasets, which
confirms our analysis in Section 3.2.

grained split for tasks. Note that in the inference for LDA,
each word occurrence corresponds to an update. Thus, we
consider a unit subtask tj as all occurrences of word wj in
all documents owned by the worker. See Figure 2b for an
illustration in the data partition and task split. Each “x”
denotes an occurrence of a word. Each block row (bigger
rectangle) represents a data partition owned by a worker,
while each smaller rectangle stands for a unit subtask for
the worker.

Asynchronous Computation. It is known that syn-
chronous computation would suffer from the curse of last
reducer when the load-balance is poor. In this work, we aim
to develop an asynchronous parallel framework where each
worker maintains a local job queue ql such that the worker
can keep performing the subtask popped from the queue
without worrying about data conflict and synchronization.
To achieve this goal, we first study the characteristics of
subtasks. The subtask tj for the l-th worker involves up-
dates on all occurrences of wj in Dl, which means that to
perform tj , the l-th worker must acquire permission to ac-
cess {di : i ∈ Dl}, wj , and s. Our data partition scheme
has guaranteed that two workers will never need to access
a same di simultaneously. Thus we can always keep the
ownership of di, ∀i ∈ Dl to l-th worker. The difficulty for
parallel execution comes from the access to wj and s which
can be accessed by different workers at the same time. To

overcome this difficulty, we propose to use a nomadic token
passing scheme to avoid access conflicts. Token passing is
a standard technique used in telecommunications to avoid
conflicting access to a resource shared by many members.
The idea is “owner computes”: only the member with the
ownership of the token has the permission to access the re-
source. Here we borrow the same idea to avoid the situation
where two workers require access to the same wj and s.

Nomadic Tokens for wj. We have a token τj dedicated
for the ownership of each word wj . These J tokens are
nomadically passed among p workers. The ownership of a
token τj means the worker can perform the subtask tj . Each
token τj is a tuple (j,wj), where the first entry is the index
for the token, and the second entry is the latest value of
wj . For a worker, a token τ means the activation of the
corresponding inference subtask. Thus, we can guarantee
that 1) the values of wj used in each subtask is always up-
to-date; 2) no two workers require access to a same wj .

Nomadic Token for s. So far we have successfully kept
the values of di and wj used in each subtask latest, and
avoid access conflicts by nomadic token passing. However,
all subtasks depend on each other due to the need to access s.
Based on the summation property, we propose to deal with
this issue by creating a special nomadic token τs = (0, s) for
s, where 0 is the token index for τs, and have two copies of s
in each worker: sl and s̄. sl is a local shadow node for s. The
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Figure 5: (a) and (b) present the sampling speed for T = 10, 000 and T = 50, 000. The superiority of F+LDA(word) is more
significant when T is large. (c) shows the sampling speed for various T . The increase in sampling time is much smaller than
the increase in the number of topics T . Note that the sampling time per iteration for T = 100, 000 is only about twice as
much as the time required for T = 1, 000.

l-th worker always uses the values of sl to perform updates
and makes the modification to sl. s̄ was the snapshot of
s from the last arrival of τs. Due to the additivity of s,
the delta sl − s can be regarded as the effort that has been
made since the last arrival of τs. Thus, each time that τs
arrives, the worker can perform the following operations to
accumulate its local effort to the global s and update its
local sl.

1. s← s + (sl − s̄)
2. s̄← s
3. sl ← s

We present the general idea of Nomad LDA in Algorithm 4
and its illustration in Figure 3.

4.2 Related Work
Unlike the situation in the serial case, the latest values

of nz,∗,w and nz,∗,∗ can be distributed among different ma-
chines in the distributed setting. The existing parallel ap-
proaches focus on developing mechanisms to communicate
these values. We briefly review two approaches for paral-
lelizing CGS in distributed setting: AdLDA [13] and Yahoo!
LDA [16]. In both approaches, each machine has a local
copy of the entire nz,∗,w and nz,∗,∗. AdLDA uses bulk syn-
chronization to update its local copy after each iteration. At
each iteration, each machine just uses the snapshot from last
synchronization point to conduct Gibbs sampling. On the
other hand, Yahoo! LDA creates a central parameter server
to maintain the latest values for nz,∗,w and nz,∗,∗. Every
machine asynchronously communicates with this machine
to send the local update to the server and get new values
to update its local copy. Note that the communication is
done asynchronously in Yahoo! LDA to avoid expensive net-
work locking. The central idea of Yahoo! LDA is that mod-
est stale values would not affect the sampler significantly.
Thus, there is no need to spend too much effort to synchro-
nize these values. Note that for these two approaches, both
values of nz,∗,w and nz,∗,∗ used in Gibbs sampling could be
stale. In contrast, our proposed Nomad LDA has the fol-
lowing advantages:
• No copy of the entire nz,∗,w is required in each ma-

chine.
• The value of nz,∗,w used in the Gibbs sampling is al-

ways up-to-date in each machine.

• The computation is both asynchronous and decentral-
ized.

Our Nomad LDA is close to a parallel approach for matrix
completion [25], which also utilized the concept of nomadic
variables. However, the application is completely different.
[25] concentrates on parallelizing stochastic gradient descent
for matrix completion. The access graph for this problem is
a bipartite graph, and there is no variable that needs to be
synchronized across processors.

5. EXPERIMENTAL EVALUATION
In this section we investigate the performance and scaling

of our proposed algorithms. We demonstrate that our pro-
posed F+tree sampling method is very efficient in handling
large number of topics compared to the other approaches in
Section 5.1. When the number of documents is also large, in
Section 5.2 we show our parallel framework is very efficient
in multi-core and distributed systems.

Datasets. We work with five real-world large datasets—
Enron, NyTimes, PubMed, Amazon, and UMBC. The de-
tailed data set statistics are listed in Table 3. Among them,
Enron, NyTimes and PubMed are bag-of-word datasets in
the UCI repository1. These three datasets have been used
to demonstrate the scaling behavior of topic modeling al-
gorithms in many recent papers [2, 16, 11]. In fact, the
PubMed dataset stretches the capabilities of many imple-
mentations. For instance, we tried to use LDA code from
http://www.ics.uci.edu/~asuncion/software/fast.htm,
but it could not handle PubMed.

To demonstrate the scalability of our algorithm, we use
two more large-scale datasets—Amazon and UMBC. The
Amazon dataset consists of approximately 35 million prod-
uct reviews from Amazon.com, and was downloaded from
the Stanford Network Analysis Project (SNAP) home page.
Since reviews are typically short, we split the text into words,
removed stop words, and using Porter stemming [14]. After
this pre-processing we discarded words that appear fewer
than 5 times or in 5 reviews. Finally, any reviews that were
left with no words after this pre-processing were discarded.

1https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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Figure 6: (a) and (b) show the comparison between Nomad LDA and Yahoo! LDA using 20 cores on a single machine. (c)
shows the scaling performance of Nomad LDA as a function of number of cores.

Table 3: Data statistics.
# documents (I) # vocabulary (J) # words

Enron 37,861 28,102 6,238,796
NyTimes 298,000 102,660 98,793,316
PubMed 8,200,000 141,043 737,869,083
Amazon 29,907,995 1,682,527 1,499,602,431
UMBC 40,599,164 2,881,476 1,483,145,192

This resulted in a corpus of approximately 30 million docu-
ments and approximately 1.5 billion words.

The UMBC WebBase corpus is downloaded from http:

//ebiquity.umbc.edu/blogger/2013/05/01/. It contains
a collection of pre-processed paragraphs from the Stanford
WebBase2 crawl on February 2007. The original dataset has
approximately 40 million paragraphs and 3 billion words.
We further processed the data by stemming and remov-
ing stop words following the same procedure in LibShort-
Text [24]. This resulted in a corpus of approximately 1.5
billion words.

Hardware. The experiments are conducted on a par-
allel platform at the Texas Advanced Computing Center
(TACC), called Maverick3. Each node contains 20 Intel
Xeon E5-2680 CPUs and 256 GB memory. Each job can
run on at most 32 nodes (640 cores) for at most 12 hours.

Parameter Setting. Throughout the experiments we
set the hyper parameters α = 50/T and β = 0.01, where
T is the number of topics. Previous papers showed that
this parameter setting gives good model qualities [9], and
many widely-used software such as Yahoo! LDA and Mallet-
LDA also use this as the default parameters. To test the
performance with a large number of topics, we set T = 1024
in all the experiments except the ones in Figure 5.

Evaluation. Our main competitor is Yahoo! LDA in
large-scale distributed setting. To have a fair comparison,
we use the same training likelihood routine to evaluate the
quality of model (see Eq. (2) in [16] for details).

5.1 Comparison of sampling methods: han-
dling large number of topics

In this section, we compare various sampling strategies
used for LDA in the serial setting. We include the following

2Stanford WebBase project: http://dbpubs.stanford.
edu:8091/~testbed/doc2/WebBase/
3https://portal.tacc.utexas.edu/user-guides/
maverick

sampling strategies into the comparison (see Section 3 for
details):

1. F+LDA: our proposed sampling scheme. Document-
wise and word-wise sampling order are denoted by
F+LDA(doc) and F+LDA(word), respectively.

2. SparseLDA: the approach that uses linear search on
PDF to conduct document-wise sampling. This ap-
proach is used in Yahoo! LDA and Mallet-LDA.

3. AliasLDA: the approach that uses Alias method to
do the sampling with document-wise sampling order.
This approach is proposed very recently in [11].

To have a fair comparison focusing on different sampling
strategies, we implemented the above three approaches to
use the same data structures. We use two smaller datasets—
Enron and NyTimes to conduct the experiments. Note that
[11] also conducts the comparison of different sampling ap-
proaches using these two datasets after further preprocess-
ing. Figure 4 presents the comparison results using T =
1, 024, while in Figure 5 we show the results by varying T
from 1, 000 to 100, 000.

We first compare F+LDA(doc), Sparse LDA, and Alias
LDA, where all of the three approaches have the same document-
wise sampling ordering. F+LDA(doc) and Sparse LDA fol-
low the exact sampling distribution of the normal Gibbs
sampling; as a result, we can observe in Figure 4a and
4b that they have the same convergence speed in terms
of number of iterations. On the other hand, Alias LDA
converges slightly slower than other approaches because it
does not sample from the exact same distribution. Note
that we found that this phenomenon becomes more clear
when T is large. In terms of efficiency, Figures 4c and 4d
indicate that F+LDA(doc) is faster than Sparse-LDA and
Alias-LDA, which confirms our analysis in Section 3.

Next we compare the performance of document-wise and
word-wise sampling for F+LDA. Figure 4a and 4b indi-
cate that both orderings give similar convergence speed.
As discussed in Section 3.2, using the F+tree sampling ap-
proach, the word-wise ordering is expected to be faster than
document-wise ordering as the number of documents in-
creases. This phenomenon is confirmed by our experimental
results in Figures 4c, 4d, and 5a as F+LDA(word) is faster
than F+LDA(doc) on the NyTimes dataset, which has a
larger number of documents comparing to Enron. The ex-
perimental results also justify our use of word-wise sampling
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Figure 7: The comparison between F+Nomad LDA and Yahoo! LDA on 32 machines with 20 cores per machine.

when applying the Nomad approach in multi-core and dis-
tributed systems.

Figure 5 shows the results for even larger T . As the length
of the computing time is limited to 12 hours by the Maverick
system, the number of iterations is different for all methods.
We first observe that when T ≥ 10, 000, AliasLDA starts
to outperform SparseLDA in Figures 5a and 5b. However,
F+LDA(word) still outperforms these two methods signifi-
cantly. In 5c, we can see that when T is increased from 1, 000
to 100, 000, the sampling time required by F+LDA(word) in-
creases only by a factor of two. This can be explained by
the logarithmic time complexity of F+LDA(word).

5.2 Multi-core and Distributed Experiments
Now we combine our proposed F+tree sampling strategy

with the nomadic parallelization framework. This leads to a
new F+Nomad LDA sampler that can handle huge problems
in multi-core and distributed systems.

5.2.1 Competing Implementations.
We compare our algorithm against Yahoo! LDA for three

reasons: a) It is one of the most efficient open source imple-
mentations of CGS for LDA, which scales to large datasets.
b) [16] claims that Yahoo! LDA outperforms other open source
implementation such as AD-LDA [13] and PLDA [20]. c)
Yahoo! LDA uses a parameter server, which has become a
generic approach for distributing large-scale learning prob-
lems. It is therefore interesting to see if a different asyn-
chronous approach can outperform the parameter server on
this specific problem. Yahoo! LDA is a disk-based imple-
mentation that assumes the latent variables associated with
tokens in the documents are streamed from disk at each it-
eration. To have a fair comparison, in addition to running
the disk-based Yahoo! LDA (denoted by Yahoo! LDA(D)), we
further ran it on the tmpfs file system [17] which resides on
RAM for the intermediate storage used by Yahoo! LDA. This
way we eliminate the cost of disk I/O, and can make a fair
comparison with our own code which does not stream data
from disk; we use Yahoo! LDA(M) to denote this version.

5.2.2 Multi-core Experiments
Both F+Nomad LDA and Yahoo! LDA support parallel

computation on a single machine with multiple cores. Here
we conduct experiments on two datasets, Pubmed and Ama-
zon, and the comparisons are presented in Figure 6. As can

be seen from Figures 6a and 6b, F+Nomad LDA handsomely
outperforms both memory and disk version of Yahoo! LDA,
and gets to a better quality solution within the same time
budget. Given a desired log-likelihood level, F+Nomad LDA
is approximately 4 times faster than Yahoo! LDA.

Next we turn out attention to the scaling of F+Nomad
LDA as a function of the number of cores. In Figure 6c we
plot the convergence of F+Nomad LDA as the number of
cores is varied. Clearly, as the number of cores increases the
convergence speed is faster.

5.2.3 Distributed Memory Experiments
In this section, we compare the performance of F+Nomad

LDA and Yahoo! LDA on two huge datasets, Amazon and
UMBC, in a distributed memory setting. The number of
machines is set to 32, and the number of cores per machine
is 20. As can be seen from Figure 7, F+Nomad LDA dra-
matically outperforms both memory and disk version of Ya-
hoo! LDA and obtains significantly better quality solution
(in terms of log-likelihood) within the same wall clock time.

6. CONCLUSIONS
In this paper, we present a novel F+Nomad LDA algo-

rithm that can handle large number of topics as well as
large number of documents. In order to handle large num-
ber of topics we use an appropriately modified Fenwick tree.
This data structure allows us to sample from and update
a T -dimensional multinomial distribution in O(log T ) time.
In order to handle large number of documents, we propose
a novel asynchronous and non-locking parallel framework,
which leads to impressive speedups in multi-core and dis-
tributed systems. The resulting algorithm is faster than
Yahoo! LDA and is able to handle datasets with billions of
words. In future work we would like to include the ability to
stream documents from disk, just like Yahoo! LDA does. It
is also interesting to study how our ideas can be transferred
to other sampling schemes such as CVB0.
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