
A Fast Sampling Algorithm for Maximum Inner Product Search

Qin Ding Hsiang-Fu Yu Cho-Jui Hsieh
University of California, Davis Amazon University of California, Los Angeles

Abstract

Maximum Inner Product Search (MIPS) has been
recognized as an important operation for the
inference phase of many machine learning al-
gorithms, including matrix factorization, multi-
class/multi-label prediction and neural networks.
In this paper, we propose Sampling-MIPS, which
is the first sampling based algorithm that can be
applied to the MIPS problem on a set of gen-
eral vectors with both positive and negative val-
ues. Our Sampling-MIPS algorithm is efficient
in terms of both time and sample complexity. In
particular, by designing a two-step sampling with
alias table, Sampling-MIPS only requires con-
stant time to draw a candidate. In addition, we
show that the probability of candidate generation
in our algorithm is consistent with the true rank-
ing induced by the value of the corresponding
inner products, and derive the sample complex-
ity of Sampling-MIPS to obtain the true candi-
date. Furthermore, the algorithm can be easily
extended to large problems with sparse candidate
vectors. Experimental results on real and syn-
thetic datasets show that Sampling-MIPS is con-
sistently better than other previous approaches
such as LSH-MIPS, PCA-MIPS and Diamond
sampling approach.

1 Introduction

Maximum Inner Product Search (MIPS) has been recog-
nized as the main computational bottleneck of the infer-
ence phase of many machine learning algorithms, includ-
ing matrix factorization for recommender systems (Koren
et al., 2009), multi-class/multi-label classification (Babbar
and Schölkopf, 2017; Yu et al., 2014b), and recurrent neural
networks when the output vocabulary size is big (Sutskever

Proceedings of the 22nd International Conference on Artificial In-
telligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan.
PMLR: Volume 89. Copyright 2019 by the author(s).

et al., 2014). Given a set of d-dimensional candidate vec-
tors H = {h1, . . . ,hn} and a query vector w ∈ Rd, the
problem of MIPS is to find the vector in H with the maxi-
mum inner product value with w:

argmax
j=1,...,n

wThj .

For instance, in matrix completion model for recommender
systems, H is the latent features for items, w is the latent
feature for a particular user, and the inner product wThj
reflects the user’s interest in the j-th item. Therefore rec-
ommending top items is equivalent to solving the MIPS
problem.

A naive linear search procedure that computes the inner
product between w and all {hj}nj=1 would require O(nd)
time, which is too slow for problems with large n. For ex-
ample, in recommender systems, n (number of items) could
easily go beyond a million and the number of features can
also be very large. To solve this problem, many approx-
imate algorithms have been proposed in the past to speed
up MIPS, including LSH-based approaches and tree-based
approaches (Bachrach et al., 2014; Neyshabur and Srebro,
2014; Ram and Gray, 2012; Shrivastava and Li, 2014a,b).

We study the sampling-based algorithm for speeding up the
computation of MIPS. The main idea is to estimate the val-
ues of wThj using a fast sampling approach, and then rank
the estimated scores to get the final candidates. Although
sampling approach sounds reasonable for this task, it has
not been successfully applied to MIPS due to the follow-
ing reasons: 1) the hardness of handling negative values,
2) each sample has to be drawn efficiently without explic-
itly computing wThj , and 3) lack of theoretical guarantee.
By Cohen and Lewis (1999), a sampling-based approach
was first discussed, but their algorithm only works for non-
negative data matrices and so could not be used in most of
the real applications. Recently Ballard et al. (2015) pro-
posed a similar sampling approach for Maximum All-pairs
Dot-Product (MAD) search problem, but also due to the
hardness of handling negative values, they are only able to
rank inner products based on absolute value of inner prod-
uct |wThj |. Moreover, their analysis works only for posi-
tive matrices.

In this paper, we propose a novel Sampling-MIPS algo-



A Fast Sampling Algorithm for Maximum Inner Product Search

rithm which can be used in not only non-negative cases,
but also general cases with both positive and negative val-
ues. Our algorithm only requires O(1) time for generating
each sample, and we prove that the algorithm will output
the correct ranking when sample size is large enough. Fur-
thermore, our algorithm can be used for sparse data with
still O(1) time complexity per sample and space complex-
ity proportional to number of nonzero elements in H. Ex-
perimental results show that our proposed algorithm is su-
perior compared to other state-of-the-art methods.

Notations: Throughout the paper, w ∈ Rd is the query
vector, H = {h1, . . . ,hn} are the n vectors in the
database. For simplicity, we use a n-by-d matrix H =
[h1 . . .hn]T to denote the database, and hjt = (hj)t is
the t-th feature of j-th vector.

2 Related Work

2.1 Previous MIPS Algorithms

It has been shown by Bachrach et al. (2014) that the MIPS
problem can be reduced to Nearest Neighbor Search (NNS)
by adding one more dimension to the features. Based on
this reduction, NNS algorithms such as Locality Sensitive
Hashing (LSH) (Indyk and Motwani, 1998) and PCA-tree
(a modification of KD-tree) (Bachrach et al., 2014; Ram
and Gray, 2012) can be used for solving MIPS. Neyshabur
and Srebro (2014); Shrivastava and Li (2014a,b) proposed
similar ways to reduce MIPS to NNS and solve the re-
sulting problem using LSH. In the experiments, we show
our proposed algorithm is better than both LSH and tree
based approaches. Furthermore, as pointed out by Yu et al.
(2017), these algorithms have to pre-specify number of
hashings and tree splits, thus cannot control the trade-off
between speedup and precision in run time. In comparison,
our algorithm can easily control this trade-off by changing
number of samples used in run time.

Concurrent to this work there are some other recent meth-
ods proposed for MIPS. Zhang et al. (2018) also applied
the same MIPS-to-NNS reduction and then solve the re-
sulting NNS problem by a graph-based approach (Malkov
and Yashunin, 2018). Chen et al. (2019) proposed another
gumbel clustering approach for MIPS in NLP applications.

2.2 Greedy-MIPS

Most recently, Yu et al. (2017) developed a deterministic
algorithm called Greedy-MIPS. Their algorithm is mainly
based on the following assumption:

wThj > wThi ⇔ max
t=1,...,d

wthjt > max
t=1,...,d

wthit, (1)

which means when wThj =
∑d
t=1 wthjt is large, at least

one element in the summation will also be large. Based

on this assumption they proposed a fast way to construct
candidate set based on the ranking of maxt=1,...,d wthjt for
each j, and then use a linear search to get the final ranking
among candidate set.

Clearly, Assumption (1) does not hold for general cases
and Greedy-MIPS does not have performance guarantee in
general. Nevertheless, Yu et al. (2017) showed that this
Greedy-MIPS algorithm is quite powerful on real datasets.
In Section 5.4, we conduct a comparison with Greedy-
MIPS under different scenarios, showing that although
Greedy-MIPS performs well on real datasets, when as-
sumption (1) is violated it will produce poor results. This
suggests that using Greedy-MIPS is unsafe. In contrary,
our algorithm is guaranteed to output the correct top-K el-
ements when the sample size is large enough.

2.3 Sampling-based approaches for Maximum
Squared Inner Product Search

Our algorithm is the first sampling-based algorithm de-
signed for MIPS with general input matrices. All the pre-
vious approaches are either restricted to non-negative input
matrices or designed for another problem called Maximum
Squared Inner Product Search (MSIPS).

Idea of sampling method for inner product search was
firstly proposed by (Cohen and Lewis, 1999). The intu-
ition behind this idea is to sample index j with probability
P (j|w) ∝ wThj . Unfortunately, this approach requires
all the elements of w and H to be non-negative in order to
define such a probability distribution, thus the applicabil-
ity of (Cohen and Lewis, 1999) is very limited. Recently,
a similar approach called diamond sampling was extended
by Ballard et al. (2015). However, also due to the need
of defining a valid probability distribution, this method can
only identify indices with the largest |wThj | or (wThj)

2,
which is called MSIPS problem. If both w and H have
non-negative entries or more generally, wThj ≥ 0, ∀j,
MSIPS can be reduced to MIPS problem. But in reality,
we frequently have matrices and queries with both positive
and negative values. Thus to develop a proper sampling
approach for MIPS with negative values with well-founded
theory remains a challenge.

3 Proposed Algorithm

Similar to many previous methods, our algorithm has two
phases. Before observing any query, we pre-process the
database H and construct some data structure to facili-
tate the later sampling procedure. This is called the pre-
preocessing phase and the time will not be counted into the
per-query cost. In the query-dependent phase, the MIPS
algorithm is conducted using both query w and the pre-
constructed data structure, and our main goal is to reduce
the per-query cost in this phase.



Qin Ding, Hsiang-Fu Yu, Cho-Jui Hsieh

Without loss of generality, in the paper, we assume that
none of {hj} and w is the zero vector. In the following
we first present Sampling-MIPS algorithm for non-negative
values and then show how to handle problems with both
positive and negative values.

3.1 Sampling-MIPS for non-negative values

First we assume the database H and query w only have
non-negative values. The main idea is to draw samples
from the marginal distribution, where each index j is sam-
pled with probability

P (j|w) ∝ wThj .

If we can draw samples according to the above distribution,
then with high probability the candidate with the maximum
inner product value will be drawn most frequently. More-
over, we have total freedom to control the search quality in
query time, since the quality can keep being improved by
drawing more samples.

However, computing the distribution of P (j|w) for all
j = 1, . . . , n will be extremely time-consuming. In order
to sample from this marginal distribution without explic-
itly forming them, we define a joint distribution for the pair
(j, t) over the region {1, 2, · · · , n} × {1, 2, · · · , d}. Let
P (j, t|w) ∝ wthjt, then the marginal distribution of j can
be expressed as

P (j|w) =

d∑
t=1

P (j, t|w) =

d∑
t=1

P (t|w)P (j|t,w), (2)

where

P (t|w) =

n∑
j=1

P (j, t|w) ∝
n∑
j=1

wthjt = wtst, (3)

P (j|t,w) =
P (j, t|w)

P (t|w)

∝ wthjt∑n
j=1 wthjt

=
hjt∑n
j=1 hjt

=
hjt
st
. (4)

Note that we define st =
∑n
j=1 hjt to simplify the no-

tation and we assume st 6= 0,∀t. From equation (4), we
can see that P (j|t,w) is irrelevant to w, so we can rewrite
P (j|t,w) as P (j|t).

Based on (3) and (4), to draw a sample from P (j|w), we
can first draw t from a multinomial distribution, P (t|w) =
multinomial([ w1s1∑d

t=1 wtst
, · · · , wdsd∑d

t=1 wtst
]), and then draw

a sample for j from multinomial distribution P (j|t) =
multinomial([h1t

st
, · · · , hntst ]). The procedure is illustrated

in Figure 1. In Figure 1, sampling t ∼ P (t|w) gives us
t = 4, so we focus on the 4-th column of matrix H and
sample j ∼ P (j|t = 4) which gives us j = 2, and this
sampling procedure is equivalent to sampling j from the
marginal distribution P (j|w).

Figure 1: Illustration of the sampling procedure.

In order to quickly draw samples, we use alias method pro-
posed by Walker (1977). For a given k-dimensional multi-
nomial distribution, constructing an alias table requires
O(k) time and O(k) space, and the alias table will allow
us to draw each sample with only O(1) time. From the
above definitions, we can see that the distribution for sam-
pling index j is irrelevant to w, which means we can con-
struct the alias table for P (j|t) in the pre-processing phase.
We present our algorithm for pre-processing phase in Al-
gorithm 1.

Algorithm 1 Query-independent pre-processing
1: st ←

∑n
j=1 hjt, ∀t ∈ {1, · · · , d}

2: Use alias table to construct
P (j|t)← multinomial([h1t, · · · , hnt]),∀t

In the query-dependent phase, we should first construct the
alias table for P (t|w), which requires O(d) time. This will
allow us to draw samples from P (t|w) in constant time
later. We show the procedure of query-dependent candidate
screening in Algorithm 2. We use a vector of length n to
count how many times each index is sampled. From line 3
to line 7 in Algorithm 2, we draw B samples and for each
one we sample j using the two-step procedure mentioned
above. Each time an index j is sampled, we increase the
count of index j by 1.

After the sampling process, we sort all the n candidates
according to the ranking of xj’s and take top-C of them.
We perform a naive-MIPS on these selected C candidates,
i.e., we compute these C inner products and find which
candidates have the maximum or top-K values. Details are
shown in Algorithm 3.

Since this method is built on the fact that we sample in-
dex j with probability proportional to wThj , we know that
the algorithm will succeed (output the real top-K elements)



A Fast Sampling Algorithm for Maximum Inner Product Search

Algorithm 2 Query-dependent candidate screening
1: Use alias table to construct · · ·O(d)
P (t|w)← multinomial([w1s1, · · · , wdsd])

2: x = [x1, x2, · · · , xn]← [0, . . . , 0]
3: for b = 1, · · · , B do · · ·O(B)
4: Use alias method to sample t ∼ P (t|w)
5: Use alias method to sample j ∼ P (j|t)
6: xj ← xj + 1
7: end for
8: Pass x to Algorithm 3

Algorithm 3 Final Prediction Phase
1: Find the top-C elements in x, i.e., |C(w)| = C and
C(w)← {j|xj ≥ xj′ ,∀j′ 6∈ C(w)} · · ·O(B)

2: for j ∈ C(w) do · · ·O(Cd)
3: Compute inner product wThj
4: end for
5: Output: indexes of the top-K elements of
{wThj1 , · · · ,wThjC} · · ·O(C)

with high probability if the sample size B is sufficiently
large. We will provide the detailed theoretical analysis in
Section 4.

3.2 Handling both positive and negative values

Next we discuss how to handle the case when both H and
w can be negative. To extend our approach to the general
case, we need to make sure that we don’t violate the princi-
ple of getting larger xj for index j with larger inner prod-
uct. In order to achieve this goal, we keep the probability
distribution to be non-negative by taking absolute values of
all the elements of H and w, that is, P (j, t|w) ∝ |wthjt|.
We then use the following sampling procedure to estimate
the expectation of EP (j,t|w)[sgn(wthjt)], which is propor-
tional to wThj (see Lemma 1 in Section 4). In the pre-
processing phase, we build alias tables for the probability
distribution P (j|t) =

|hjt|∑n
j=1 |hjt|

for each t ∈ {1, . . . , d}.
Then in the query-dependent phase, we construct alias table
with P (t|w) ∝

∑n
j=1 |wthjt| to sample t given the current

query. The marginal distribution then becomes

P (j|w) =

d∑
t=1

P (j, t|w)

=

d∑
t=1

P (j|t)P (t|w)

∝
d∑
t=1

|wthjt|. (5)

We sample t and then j for B times, but each time a pair
of index (j, t) is sampled, we increase xj by sgn(wthjt)

instead of 1 for non-negative cases. The detailed procedure
and time complexity of each step are shown in Algorithm
4. The total time complexity is then O(d+B+Cd), while
the naive time complexity is O(nd). Usually, the budget
size C is much smaller than n and in practice B ≈ n gives
good results, so the proposed algorithm is much faster than
the naive search approach.

Algorithm 4 Sampling-MIPS for general cases
Pre-processing:

1: st ←
∑n
j=1 |hjt|, ∀t = 1, · · · , d

2: Use alias table to construct
P (j|t)← multinomial([|h1t|, · · · , |hnt|]),∀t
Candidate Screening:

3: Use alias table to construct · · ·O(d)
P (t|w)← multinomial([|w1s1|, · · · , |wdsd|])

4: x = [x1, x2, · · · , xn]← [0, . . . , 0]
5: Specify sample size B
6: for b = 1, · · · , B do · · ·O(B)
7: Use alias method to sample t ∼ P (t|w)
8: Use alias method to sample j ∼ P (j|t)
9: xj ← xj + sgn(wthjt)

10: end for
Final Prediction Phase: · · ·O(B + Cd)

11: See Algorithm 3.

The key idea of Sampling-MIPS is to construct the “scores”
(xj) to estimate the n inner products. Index with larger in-
ner product will have larger “score” after the entire sam-
pling procedure. Yet directly sampling j is hard, we define
a probability distribution for (j, t) and sample indexes us-
ing the two-step procedure. This method is expected to suc-
ceed with high probability if sampled enough times. When
B is large enough, the result won’t change a lot. Intuitively,
we know that the required best sample size B to achieve
certain accuracy relies on the relative gap between the n
inner products. We will give a detailed analysis of the error
bound for Sampling-MIPS in Section 4.

4 Mathematical Analysis of Sampling-MIPS

In the following we analyze the Sampling-MIPS algorithm
for general case (with both positive and negative values).
Due to the space limits, the proofs are deferred to the sup-
plementary material. Recall that for the general case, the
marginal distribution of j is P (j|w) ∝

∑d
t=1 |wthjt|,

and our goal is to prove that E[xj ] will be proportional
to wThj . For convenience, we define xjb = sgn(wthjt)
if index pair (j, t) is sampled in the b-th sampling step,
and xjb = 0 otherwise. Based on this definition, we have
xj =

∑B
b=1 xjb. The mean and variance of xjb and xj can

be established by the following lemmas.

Lemma 1. Define S =
∑d
t=1

∑n
j=1 |wthjt| and cj =

wThj , then E[xjb] =
cj
S and E[xj ] =

Bcj
S .



Qin Ding, Hsiang-Fu Yu, Cho-Jui Hsieh

Lemma 2. Define aj =
∑d
t=1 |wthjt|, then E[(xjb −

xmb)
2] =

aj+am
S ,∀j 6= m. Therefore, from Lemma 1, we

have

Var(xjb − xmb) =
aj + am

S
− (cj − cm)2

S2

and Var(xj − xm) = BVar(xjb − xmb).

Theorem 1. If index m has the maximum inner product,
we define for j ∈ {j : cj < cm}

λj =
cm − cj
S

,

Tj =
(S + cm − cj)(cm − cj)

S2
,

Mj =
S2

(S + cm − cj)2
,

σ2
j = Var(xjb − xmb).

Also let λ = minj∈{cj<cm} λj , n
′ = #{j : cj < cm}

and assume n′ 6= 0. If sample size B satisfies the following
equation for all j ∈ {j : cj < cm},

B ≥
log n′

δ

Mjσ2
j

[
(1 +

Tj
σ2
j
) log(1 +

Tj
σ2
j
)− Tj

σ2
j

] , (6)

implying that whenB ∼ O( dλ log n′), then with error prob-
ability δ ∈ (0, 1) we have

P (xm > xj ,∀j ∈ {cj < cm}) ≥ 1− δ.

This Theorem states that when number of samples B =
O( dλ log n′), Sampling-MIPS will be able to distinguish
candidate vector m from the rest candidates with smaller
inner products. When candidate vector m has the maxi-
mum inner product, n′ can be replaced by n, so Theorem 1
suggests that Sampling-MIPS can get precise results when
B = O( dλ log n). Also, when the probability for sampling
different indexes are very close, we need larger sample size
to distinguish them. This is reflected in Theorem 1 via the
numerator of λ, min{j:cj<cm}(cm − cj). Note that λ < 1
here.

Theorem 2. Assume wthjt ≥ 0,∀(j, t) ∈ {1, . . . , n} ×
{1, . . . , d} and cj

iid∼ Exp(β). In Sampling-MIPS algo-
rithm, if we takeC = B, whereC means we calculate inner
products of indexes with top-C scores, then whenB ≥ ρ

αn,
where α ∈ (0, 1

2 ) and ρ ∈ (0, αd(n−1)
(d+1)n ),

P (not identifying maximum inner product) ≤ O
(

1

nρ

)
.

This result can also be generalized to inner products i.i.d.
sampled from heavy-tailed distributions.

Definition 1. The distribution of a random variable X with
c.d.f. F (x) is said to have a heavy (right) tail if

lim
x→+∞

eµx(1− F (x)) = +∞, ∀µ > 0. (7)

Note: Heavy-tailed distribution includes many common
distributions like log-normal, log-cauchy, Lévy and Pareto
distribution, etc.

Corollary 1. Assume wthjt ≥ 0,∀(j, t) ∈ {1, . . . , n} ×
{1, . . . , d}. If F is a continuous, non-negative, heavy-

tailed distribution, cj
iid∼ F and E[c2j ] < ∞, then when

B ≥ ρ
αn, where α ∈ (0, 1) and ρ ∈ (0, αd(n−1)

(d+1)n ), take
C = B in Sampling-MIPS algorithm, we have

P (not identifying maximum inner product) ≤ O
(

1

nρ

)
.

Theorem 2 and Corollary 1 imply that we only need sam-
ple size B to be ρ

αn to make sure that the maximum in-
ner product to be identified. The total time complexity of
Sampling-MIPS isO(d+B+Bd) and the time complexity
of Naive-MIPS is O(nd). When B = ρ

αn,

d+B+Bd = d+
ρ

α
(d+1)n < d+

d(n− 1)

(d+ 1)n
n(d+1) = nd.

Therefore, the conditions of parameter α and ρ ensures that
Sampling-MIPS is more efficient than Naive-MIPS.

Note that in Theorem 2, α can be any number in (0, 1
2 ), but

Corollary 1 only requires α ∈ (0, 1). ρ can be any number
in (0, αd(n−1)

(d+1)n ). Sampling-MIPS algorithm is faster with
smaller ρ, but can also yield larger error probability. So ρ
should be chosen according to the trade-off between effi-
ciency and tolerance of error.

5 Experimental Results

In this section, we compare the performance of Sampling-
MIPS with other state-of-the-art algorithms. In order to
have a fair comparison, all the algorithms are implemented
in highly optimized C++ code using the platform provided
by Yu et al. (2017). We also follow the same evaluation cri-
teria used in (Yu et al., 2017) to measure the precision and
speedup of MIPS algorithms. To compute the precision, we
randomly select 2,000 queries and compute the average of
prec@K for K = 1, 5, 10, where prec@K is defined as:

prec@K =
#{selected top-K} ∩ {true top-20}

K
.

The true top-20 candidates are identified by naive MIPS
approach, and the selected top-K candidates are identified
by approximate MIPS algorithms. For the speed of MIPS
algorithms, we report the speedup of each algorithm over
the naive linear search approach (computing all the inner



A Fast Sampling Algorithm for Maximum Inner Product Search

products). All the experiments are conducted on a server
with Intel Xeon E5-2640 CPU and only one core is used
for the experiments.

5.1 Datasets and parameter settings

We compare the results on several real recommender sys-
tem datasets, including MovieLens-20M (Harper and Kon-
stan, 2016) and Netflix. MovieLens-20M contains 27, 278
movies and 138, 493 users while Netflix contains 17, 770
items and 480, 189 users. For each dataset, we obtain
the low-rank matrices W and H by matrix factorization
model using the open source matrix factorization package
LIBPMF (Yu et al., 2014a). We use λ = 0.05 for both
MovieLens-20M and Netflix datasets to get latent features
W and H with rank d = 50, 100, 200.

To test the performance of algorithms under different sce-
narios, we also conduct experiments on synthetic datasets.
The candidate matrix H and query vector w are generated
from N (0, 10), with n = 200000 and d ∈ {50, 100, 200}
(used in Figure 3).

Figure 2: Comparison of four different parameter settings
of Sampling-MIPS on MovieLens data.

5.2 Sampling-MIPS with different parameters

In Sampling-MIPS, there are two parameters that deter-
mine the trade-off between speedup and precision: sample
size B and the size of budget C(w) denoted as C. We de-
scribe four methods of choosing B and C in this paper:

• SampleB: Set C = B and B ranges from 0.95n to
0.001n.

• Sample1: Fix sample size B = 0.1n and set C =
r ×B, where r ranges from 1 to 0.06.
• Sample2: Fix sample size B = 0.2n and set C =
r ×B, where r ranges from 1 to 0.06.

• Sample3: Fix sample size B = 0.3n and set C =
r ×B, where r ranges from 1 to 0.06.

The comparison of SampleB, Sample1, Sample2 and Sam-
ple3 on MovieLens-20M data are shown in Figure 2. In
general we found that they are similar in most cases, but the
approach of SampleB is the most stable one, so we choose
SampleB and compare it with other MIPS algorithms in the
following subsections.

5.3 Experimental results on real datasets

We report the comparisons on MovieLens-20M, Netflix
and synthetic data with different dimensionality in Fig-
ure 3. It is easy to see that Sampling-MIPS outperforms
PCA-MIPS, LSH-MIPS and Diamond-MSIPS in most of
the cases. It is worthwhile to mention that on MovieLens-
20M data with d = 50, 100, when speedup is 10, Sampling-
MIPS yields prec@1 ≈ 100% and prec@5 ≈ 80%, while
none of the other methods can reach prec@1 ≥ 50% and
prec@5 ≥ 20%. See tables in the supplementary material
for more details.

5.4 Comparison to Greedy-MIPS

Greedy-MIPS is the most competitive algorithm among all
the previous approaches in practice. Although it does not
have a theoretical guarantee, it usually yields better results
than Sampling-MIPS and all the other approaches on real
datasets (see second row of Figure 4). This means Assump-
tion (1), although clearly not true in general, is valid to
some extent on real datasets. However, as we will show in
the following experiments, when Assumption (1) does not
hold, Greedy-MIPS will perform poorly.

In the first row of Figure 4, we construct the synthetic
data with irregular pattern which violates Assumption (1).
The i-th row of candidate matrix H is generated from
N ( 200000

i , i10 ) and query vector w is generated from
N (1, 0.1), with n = 200000 and d = 2000. The re-
sults are shown in the first row of Figure 4. Clearly, in
this setting Assumption (1) does not hold, so prec@10 of
Greedy-MIPS drops to 40% even when speedup ≤ 5. In
comparison, our algorithm still gets almost perfect preci-
sion under the same speedup. In comparison, if we gen-
erate synthetic datasets with all the rows in H follow the
same uniform distribution, the results in the third row of
Figure 4 shows Greedy-MIPS performs well in this case
since Assumption (1) is mostly satisfied.



Qin Ding, Hsiang-Fu Yu, Cho-Jui Hsieh

5.5 Implementation for sparse matrices

Sampling-MIPS draws samples based on a probability dis-
tribution of each entry. As zero entries will never be sam-
pled, we can improve the efficiency of sampling and re-
duce the memory cost by only considering the non-zeros.
Therefore, it is nature that Sampling-MIPS will work espe-
cially good when dealing with sparse matrices. We utilize
Eigen (version 3) (Guennebaud et al., 2010) to input data
and implement Sampling-MIPS algorithm in a smarter way
by only dealing with non-zero entries.

To test our implementation, we generate sparse candidate
matrices H ∼ Uniform(0, 1) and sparse query vectors
w ∼ N (0, 10) with n = 20000 and d ∈ {200, 1000}. The
experimental results in Figure 5 demonstrate that our algo-
rithm performs well on sparse data, while many existing
methods such as Greedy-MIPS cannot handle sparse data.

Figure 4: Comparison of Sampling-MIPS and Greedy-
MIPS on Netflix and synthetic datasets.

6 Conclusion

We propose a Sampling-MIPS algorithm for approximate
maximum inner product search. The core idea is to de-
velop a novel way to sample from the distribution accord-
ing to the magnitude of inner product, but without explic-
itly constructing such distribution. Each sample only costs
constant time, and we show that the algorithm can recover
the true ranking of inner products when sample size is
large enough. Experimental results on real and synthetic
datasets show that our algorithm significantly outperforms
most of previous approaches including PCA-MIPS, LSH-

MIPS and Diamond-MSIPS. Compared to Greedy-MIPS,
our algorithm does not rely on any vulnerable assumptions
and is safer to be applied to all kinds of datasets. Moreover,
our algorithm can be perfectly adapted to data of sparse for-
mat.

Figure 5: Results of Sampling-MIPS for data of sparse for-
mat with n = 20000 and d ∈ {200, 1000}.

7 Acknowledgement

We are grateful to Xiaodong Li and James Sharpnack for
helpful comments. This work was partially supported by
NSF IIS-1719097, Intel, Google Cloud and AITRICS.



A Fast Sampling Algorithm for Maximum Inner Product Search

Figure 3: Comparison of Sampling-MIPS to PCA-MIPS, LSH-MIPS, Diamond-MSIPS on MovieLens, Netflix and syn-
thetic datasets. The synthetic datasets have their H and w generated from N (0, 10).



Qin Ding, Hsiang-Fu Yu, Cho-Jui Hsieh

References
Rohit Babbar and Bernhard Schölkopf. Dismec: dis-

tributed sparse machines for extreme multi-label classi-
fication. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, pages 721–
729. ACM, 2017.

Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-
Bachrach, Liran Katzir, Noam Koenigstein, Nir Nice,
and Ulrich Paquet. Speeding up the xbox recom-
mender system using a euclidean transformation for
inner-product spaces. In Proceedings of the 8th ACM
Conference on Recommender systems, pages 257–264.
ACM, 2014.

Grey Ballard, Tamara G Kolda, Ali Pinar, and C Seshadhri.
Diamond sampling for approximate maximum all-pairs
dot-product (mad) search. In Data Mining (ICDM), 2015
IEEE International Conference on, pages 11–20. IEEE,
2015.

George Bennett. Probability inequalities for the sum of in-
dependent random variables. Journal of the American
Statistical Association, 57(297):33–45, 1962.

Patrick H Chen, Si Si, Sanjiv Kumar, Yang Li, and Cho-Jui
Hsieh. Learning to screen for fast softmax inference on
large vocabulary neural networks. In ICLR, 2019.

Edith Cohen and David D Lewis. Approximating matrix
multiplication for pattern recognition tasks. Journal of
Algorithms, 30(2):211–252, 1999.

Gaël Guennebaud, Benoît Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

F Maxwell Harper and Joseph A Konstan. The movielens
datasets: History and context. ACM Transactions on In-
teractive Intelligent Systems (TiiS), 5(4):19, 2016.

Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: Towards removing the curse of dimension-
ality. In Proceedings of the Thirtieth Annual ACM Sym-
posium on Theory of Computing, pages 604–613, 1998.

Yehuda Koren, Robert Bell, and Chris Volinsky. Ma-
trix factorization techniques for recommender systems.
Computer, 42(8), 2009.

Yury A Malkov and Dmitry A Yashunin. Efficient and ro-
bust approximate nearest neighbor search using hierar-
chical navigable small world graphs. IEEE transactions
on pattern analysis and machine intelligence, 2018.

Behnam Neyshabur and Nathan Srebro. On symmetric and
asymmetric lshs for inner product search. arXiv preprint
arXiv:1410.5518, 2014.

Parikshit Ram and Alexander G Gray. Maximum inner-
product search using cone trees. In Proceedings of the
18th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 931–939. ACM,
2012.

Anshumali Shrivastava and Ping Li. Asymmetric lsh
(alsh) for sublinear time maximum inner product search
(mips). In Advances in Neural Information Processing
Systems, pages 2321–2329, 2014a.

Anshumali Shrivastava and Ping Li. Improved asymmet-
ric locality sensitive hashing (alsh) for maximum inner
product search (mips). arXiv preprint arXiv:1410.5410,
2014b.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104–
3112, 2014.

Alastair J Walker. An efficient method for generating dis-
crete random variables with general distributions. ACM
Transactions on Mathematical Software (TOMS), 3(3):
253–256, 1977.

Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon.
Parallel matrix factorization for recommender systems.
Knowledge and Information Systems, 41(3):793–819,
2014a.

Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit
Dhillon. Large-scale multi-label learning with missing
labels. In International conference on machine learning,
pages 593–601, 2014b.

Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, and Inderjit S
Dhillon. A greedy approach for budgeted maximum in-
ner product search. In Advances in Neural Information
Processing Systems, pages 5459–5468, 2017.

Minjia Zhang, Wenhan Wang, Xiaodong Liu, Jianfeng
Gao, and Yuxiong He. Navigating with graph represen-
tations for fast and scalable decoding of neural language
models. In Advances in Neural Information Processing
Systems, pages 6311–6322, 2018.



A Fast Sampling Algorithm for Maximum Inner Product Search

8 Supplementary Materials

8.1 Proofs

8.1.1 Proof of Lemma 1

Proof. We use law of iterated expectation to prove the con-
clusion. We first compute

E[xjb|t] = sgn(wthjt)P (j|t)

= sgn(wthjt)
|hjt|∑n
j=1 |hjt|

= sgn(wthjt)
|wthjt|∑n
j=1 |wthjt|

=
wthjt∑n

j=1 |wthjt|
.

This gives us:

E[xjb] = E[E[xjb|t]] = E[
wthjt∑n

j=1 |wthjt|
]

=

d∑
t=1

wthjt∑n
j=1 |wthjt|

P (t|w)

=

d∑
t=1

wthjt∑n
j=1 |wthjt|

∑n
j=1 |wthjt|∑d

t=1

∑n
j=1 |wthjt|

=

∑d
t=1 wthjt∑d

t=1

∑n
j=1 |wthjt|

=
wThj∑d

t=1

∑n
j=1 |wthjt|

=
cj
S
.

Therefore, E[xj ] = E[
∑B
b=1 xjb] =

Bcj
S .

8.1.2 Proof of Lemma 2

Proof. We still use law of iterated expectation to prove the
conclusion and it is basically very similar to the proof of
Lemma 1.

E[(xjb − xmb)2|t]
= [sgn(wthjt)− 0]2P (j|t) + [0− sgn(wthmt)]

2P (m|t)

= [sgn(wthjt)]
2 |hjt|∑n

j=1 |hjt|

+[sgn(wthmt)]
2 |hmt|∑n

j=1 |hjt|

= [sgn(wthjt)]
2 |wthjt|∑n

j=1 |wthjt|

+[sgn(wthmt)]
2 |wthmt|∑n

j=1 |wthjt|

=
|wthjt|+ |wthmt|∑n

j=1 |wthjt|
.

This gives us:

E[(xjb − xmb)2] = E{E[(xjb − xmb)2|t]}

=

d∑
t=1

|wthjt|+ |wthmt|∑n
j=1 |wthjt|

P (t|w)

=

∑d
t=1(|wthjt|+ |wthmt|)∑d

t=1

∑n
j=1 |wthjt|

=
aj + am

S
.

Note that for each iteration b, xjb − xmb is independently
and identically distributed, so we have

Var(xj − xm) = BVar(xjb − xmb)
= B

{
E[(xjb − xmb)2]− [E(xjb − xmb)]2

}
= B

[
aj + am

S
− (cj − cm)2

S2

]
.

8.1.3 Proof of Theorem 1

Proof. For some j, we know that xjb and xmb cannot be
non-zero simultaneously. Therefore, all (xjb − xmb)’s in-
dependently take values in [−1, 1]. We use Bennett’s In-
equality in (Bennett, 1962) to bound the probability of
P (xj ≥ xm) for some j ∈ {cj < cm}.

P (xj ≥ xm) = P (xj − xm ≥ 0)

= P

{
B∑
b=1

(xjb − xmb) ≥ 0

}
= P (Y ≥ y), (8)

where Yb = xjb − xmb − cj−cm
S , Y =

∑B
b=1 Yb and y =

B(cm−cj)
S . It is obvious that Yb ≤ 1− cj−cm

S almost surely.
We denote q = 1− cj−cm

S and we compute a few quantities
needed in Bennett’s Inequality below:

Σ2
j := BEY 2

b = Var(xj − xm) = Bσ2
j ,

qy = B
(S + cm − cj)(cm − cj)

S2
= BTj ,

qy

Σ2
j

=
Tj
σ2
j

,

Tj
σ2
j

=
(S + cm − cj)(cm − cj)
S(aj + am)− (cm − cj)2

. (9)

From Bennett’s Inequality, we can bound Equation (8):

P (Y ≥ y)

≤ exp

{
−

Σ2
j

q2

[
(1 +

qy

Σ2
j

) log(1 +
qy

Σ2
j

)− qy

Σ2
j

]}

= exp

{
−BMjσ

2
j

[
(1 +

Tj
σ2
j

) log(1 +
Tj
σ2
j

)− Tj
σ2
j

]}



Qin Ding, Hsiang-Fu Yu, Cho-Jui Hsieh

If we want P (Y ≥ y) ≤ δ
n′ , then it is equivalent to

BMjσ
2
j

[
(1 +

Tj
σ2
j

) log(1 +
Tj
σ2
j

)− Tj
σ2
j

]
≥ log

n′

δ
.

Before proceeding to the result, we need to show that (1 +
Tj
σ2
j
) log(1 +

Tj
σ2
j
) − Tj

σ2
j
> 0. Denote v =

Tj
σ2
j

and g1(v) =

(1 + v) log(1 + v)− v. Then g′1(v) = 1 + log(1 + v)−1 =
log(1 + v) > 0 when v > 0. So g1(v) > g1(0) = 0 when
v > 0. It is not hard to see that Tj

σ2
j
> 0 from (9) for all

j ∈ {cj < cm}. Therefore,

B ≥ 1

Mjσ2
j

[
(1 +

Tj
σ2
j
) log(1 +

Tj
σ2
j
)− Tj

σ2
j

] log
n′

δ
. (10)

So far, we have proved that when B satisfies equation (6),
P (xj ≥ xm) ≤ δ

n′ for some j ∈ {j : cj < cm}. Since
#{j : cj < cm} = n′, we have when B satisfies equation
(6) for all j ∈ {j : cj < cm}, the following holds:

P (xm > xj ,∀j ∈ {cj < cm})
= 1− P (xm ≤ xj ,∃j ∈ {cj < cm})

≥ 1− n′ δ
n′

= 1− δ.

It is worthwhile to notice that Mj ∼ O(1), Tj ∼ O(λ)
and O(λ) ≤ σ2

j ≤ O(dλ) for all j ∈ {j : cj < cm}.
Denote g2(σ2

j , Tj) = (σ2
j + Tj) log(1 +

Tj
σ2
j
) − Tj , then

∂g2
∂σ2

j
= log(1 +

Tj
σ2
j
) − Tj

σ2
j

< 0. So g2(σ2
j , Tj) ≥

O (g2(dλ, Tj)) = O(λd ). Therefore, the r.h.s. of Equation
(10) is 1

Mjg2(σ2
j ,Tj)

log n′

δ ≤ O( dλ log n′

δ ). This implies

B ∼ O( dλ log n′) is sufficient.

8.1.4 Proof of Theorem 2

Proof. Take m = arg maxi=1,...,n ci. Since wthjt ≥
0,∀j, t, so S =

∑n
i=1 ci.

Since C = B, not identifying maximum inner product is
equivalent to index m not sampled within B samples. And
we know that P (index m sampled in a step) = cm

S . De-
note A = {index m not sampled within B samples}, then

for any α ∈ (0, 1
2 ),

P (not identifying maximum inner product)

= E[1(A)] = E[E[1(A)|cm
S

]]

= E[
(

1− cm
S

)B
] ≤ E[exp

(
−Bcm

S

)
]

= E[exp

(
−Bcm

S

)
1(
cm
S

> n−1α log n)]

+E[exp

(
−Bcm

S

)
1(
cm
S
≤ n−1α log n)]

≤ E[exp
(
−Bn−1α log n

)
] + P (

cm
S
≤ n−1α log n)

≤ n−ρ + P (
cm
S
≤ n−1α log n). (11)

For any α ∈ (0, 1
2 ) and ∀ε > 0,

P (
cm
S

> n−1α log n) = P (cm > n−1Sα log n)

≥ P (cm > n−1Sα log n, n−1S ≤ β−1 + ε)

= P (cm > n−1Sα log n|n−1S ≤ β−1 + ε)

P (n−1S ≤ β−1 + ε)

≥ P (cm > (β−1 + ε)α log n)P (n−1S ≤ β−1 + ε)

Since cj
iid∼ Exp(β), E[S] = nE[cj ] = nβ−1, Var[S] =

nVar[ci] = n
β2 . According to Chebyshev’s Inequality, ∀ε >

0,

P (n−1S ≤ β−1 + ε) = 1− P (n−1S − β−1 ≥ ε)
≥ 1− P (|n−1S − β−1| ≥ ε)

≥ 1− Var[n−1S]

ε2
= 1− 1

nβ2ε2
. (12)

Since cj
iid∼ Exp(β), we have for α ∈ (0, 1

2 ),

P (cm > (β−1 + ε)α log n)

= 1− P (cm ≤ (β−1 + ε)α log n)

= 1− [1− e−β(β−1+ε)α logn]n

= 1− (1− 1

n(1+βε)α
)n

∼ 1− e−n
1−(1+βε)α

. (13)

Since it holds for any ε > 0, we can take ε = β−1, then
from Equation (12, 13), we have

P (
cm
S

> n−1α log n)

≥
(

1− 1

nβ2ε2

)(
1− e−n

1−(1+βε)α
)

= (1− 1

n
)(1− e−n

1−2α

). (14)



A Fast Sampling Algorithm for Maximum Inner Product Search

From Equation (11), we know:

P (not identifying maximum inner product)

≤ n−ρ + 1− (1− 1

n
)(1− e−n

1−2α

)

∼ O

(
1

nρ

)
.

8.1.5 Proof of Corollary 1

Proof. Assume E(cj) = β−1 > 0 and Var[cj ] = γ−2,
then for any ε > 0, the following equation still holds.

P (n−1S ≤ β−1 + ε) = 1− P (n−1S − β−1 ≥ ε)
≥ 1− P (|n−1S − β−1| ≥ ε)

≥ 1− Var[n−1S]

ε2
= 1− 1

nγ2ε2
. (15)

Take ε = γ−1 in the above equation, we have

P (n−1S ≤ β−1 + ε) > 1− 1

n
. (16)

Since ci is heavy-tailed, so for all µ > 0, there exists x0 >
0, such that for all x ≥ x0,

P (ci ≥ x) ≥ e−µx. (17)

Take µ = 1
β−1+ε , when (β−1 + ε)α log n ≥ x0, we have

P (cm > (β−1 + ε)α log n)

= 1− P (cm ≤ (β−1 + ε)α log n)

= 1−
(
P (ci ≤ (β−1 + ε)α log n)

)n
≥ 1−

(
1− e−µ(β−1+ε)α logn

)n
= 1−

(
1− e−α logn

)n
∼ 1− e−n

1−α
. (18)

From Equation (12, 16, 18), we know that

P (
cm
S

> n−1α log n) ≥ (1− 1

n
)(1− e−n

1−α
).

From the proof of Theorem 2, we know the result of Corol-
lary 1 holds.

8.2 More comparison of experimental results

In order to get more informative comparisons, we sum-
marize the results from Figure 3 in the following tables.
Prec@1 and Prec@5 of MovieLens with d = 50 are
shown in Table 1 and 2 respectively. From the results, we
can see that Sampling-MIPS algorithm outperforms PCA-
MIPS, LSH-MIPS and Diamond-MSIPS consistently on

this dataset. Prec@1 and Prec@5 of Netflix with d = 50
are shown in Table 3 and 4 respectively. Note that the
speedup of PCA-tree method depends on the depth of the
PCA tree, which is corresponding to the number of can-
didates in each leaf node. A deeper PCA tree leads to a
higher speedup with a tradeoff of a lower precision. The
maximum depth in our experiment is too small to generate
a point with a speedup greater than 5. This is the reason that
in Table 3 and 4, there are no results shown for PCA-MIPS.
But we can see from Figure 3 that with the current maxi-
mum depth chosen, the precision of PCA-MIPS is drasti-
cally reduced to almost 0 when speedup is less than 5. So
with a bigger maximum depth, the result of PCA-MIPS will
get even worst.

Table 1: Result of prec@1 for MovieLens (d = 50)

Speedup (prec@1) 5 10 20

Sampling-MIPS 99.95% 99.65% 65%
Diamond 68.35% 42.25% 25.85%
PCA 0.15% 0.00% 0.00%
LSH 4.75% 18.9% 0.05%

Table 2: Result of prec@5 for MovieLens (d = 50)

Speedup (prec@5) 5 10 20

Sampling-MIPS 87.38% 72% 13%
Diamond 11.65% 5.41% 1.52%
PCA 0.00% 0.00% 0.00%
LSH 9.73% 4.81% 0.00%

Table 3: Result of prec@1 for Netflix (d = 50)

Speedup (prec@1) 5 10 20

Sampling-MIPS 97.30% 77.15% 29.80%
Diamond 51.85% 31.4% 15.2%
PCA NA NA NA
LSH 23% 1.05% NA%

Table 4: Result of prec@5 for Netflix (d = 50)

Speedup (prec@5) 5 10 20

Sampling-MIPS 58.87% 28.7% 7.98%
Diamond 14.47% 7.26% 3.29%
PCA NA NA NA
LSH 9.25% 0.29% NA%



Qin Ding, Hsiang-Fu Yu, Cho-Jui Hsieh

8.3 Extension to Maximum All-pair Dot-product
(MAD) Search

8.3.1 Proposed algorithm for MAD Search

Our Sampling-MIPS algorithm can also be extended to
solve the Maximum All-pair Dot-product (MAD) search
problem. Instead of finding the maximum inner prod-
uct for a specific query, MAD aims to find the maxi-
mum inner product over a set of m queries and n vec-
tors in the database. More specifically, given two groups
of d-dimensional vectors W = {w1,w2, . . . ,wm} and
H = {h1,h2, . . . ,hn}, the goal of MAD problem is to
find the index pairs (i, j) ∈ {1, . . . ,m} × {1, . . . , n} who
have the maximum or top-K dot products. When m = 1,
MAD problem reduces to the MIPS problem. MAD is also
used in many recommender systems when we aim to find
the best (user, item) among all the possible pairs.

We can use the same idea in Sampling-MIPS to solve the
MAD problem. The only difference is the sampling pro-
cedure. In MIPS problem, we first sample t, then sam-
ple j conditioned on t. In MAD problem, we simply add
one more step. We still sample t first, but then we sam-
ple i and j independently. We use a m-by-d matrix W =
[w1 . . .wm]T to denote the set of m queries and use wit to
denote the t-th feature of the i-th query. Define P (t|W ) ∝∑m
i=1 |wit|

∑n
j=1 |hjt|, P (i|t) = |wit|∑m

i=1 |wit|
, and P (j|t) =

|hjt|∑n
j=1 |hjt|

. We also assume that
∑m
i=1 |wit| 6= 0 and∑n

j=1 |hjt| 6= 0 for all t. So we have

P (i, j|W ) =

d∑
t=1

P (i, j, t|W )

=
d∑
t=1

P (i|t)P (j|t)P (t|W )

∝
d∑
t=1

|withjt|.

Here, the distribution for sampling (i, j) is very similar to
the distribution for sampling j in MIPS problem.

Similarly, alias table for sampling j can be constructed in
pre-processing phase. In query-dependent phase, we only
need to construct alias table for sampling t and i. Details
are shown in Algorithm 5. The time complexity of each
step of is also shown in Algorithm 5. The total time com-
plexity is O(md + B + Cd), while the naive time com-
plexity is O(mnd). We expect this algorithm to perform as
well as it does in MIPS problem. The theoretical guarantee
of this sampling MAD algorithm can also be proved in a
similar manner as Sampling-MIPS.

Algorithm 5 Sampling-MAD
Pre-processing:

1: st ←
∑n
j=1 |hjt|, ∀t = 1, · · · , d

2: kt ←
∑m
i=1 |wit|, ∀t = 1, · · · , d

3: Use alias table to construct
P (j|t)← multinomial([|h1t|, . . . , |hnt|]),∀t
Candidate Screening:

4: Use alias table to construct · · ·O(md)
P (t|W )← multinomial([|k1s1|, . . . , |kdsd|])
P (i|t)← multinomial([|w1t|, . . . , |wmt|]),∀t

5: x = [x11 . . . , xmn]← [0, . . . , 0]
6: Specify sample size B
7: for b = 1, . . . , B do · · ·O(B)
8: Use alias method to sample t ∼ P (t|W )
9: Use alias method to sample i ∼ P (i|t)

10: Use alias method to sample j ∼ P (j|t)
11: xij ← xij + sgn(withjt)
12: end for

Prediction Phase:
13: Find the biggest C elements in x, i.e., |C(W )| = C

and C(W ) ← {(i, j)|xij ≥ xi′j′ ,∀(i′, j′) 6∈ C(W )}
· · ·O(B)

14: for (i, j) ∈ C(W ) do · · ·O(Cd)
15: Compute inner product wT

i hj
16: end for
17: Output: indexes of the top-K elements of
{wT

i hj |(i, j) ∈ C(W )} · · ·O(C)

8.3.2 Mathematical analysis of Sampling-MAD

We also have the similar theoretical results for MAD prob-
lem. We omit the proofs since they are very similar to
Lemma 1, 2, Theorem 1, 2 and Corollary 1 for the MIPS
case.

Lemma 3. Define xij,b = sgn(withjt) if index pair (i, j, t)
is sampled in the b-th sampling step, xij,b = 0 otherwise.
Note that xij =

∑B
b=1 xij,b. Define

S =

d∑
t=1

m∑
i=1

n∑
j=1

|withjt|,

then we have

E[xij,b] =
wT
i hj
S

and

E[xij ] =
BwT

i hj
S

.

We can then show the ranking of xij’s will be correct when
we have enough samples.

Lemma 4. Define Aij =
∑d
t=1 |withjt|, then E[(xij,b −

xi′j′,b)
2] =

Aij+Ai′j′

S ,∀(i, j) 6= (i′, j′). Therefore, from



A Fast Sampling Algorithm for Maximum Inner Product Search

Lemma 3, we have

Var(xij,b − xi′j′,b)

=
Aij +Ai′j′

S
− (wT

i hj −wT
i′hj′)

2

S2

and Var(xij − xi′j′) = BVar(xij,b − xi′j′,b).

Theorem 3. For some index pair (I, J), define for (i, j) ∈
{(i, j) : wT

i hj < wT
I hJ}:

N = #{(i, j) : wT
i hj < wT

I hJ} (assume N 6= 0),

Λij =
wT
I hJ −wT

i hj
S

,

Λ = min
{(i,j):wTi hj<wTI hJ}

Λij ,

Tij =
(S + wT

I hJ −wT
i hj)(w

T
I hJ −wT

i hj)

S2
,

Mij =
S2

(S + wT
I hJ −wT

i hj)
2
,

σ2
ij = Var(xij,b − xIJ,b).

If sample size B satisfies the following equation for all
(i, j) 6= (I, J),

B ≥
log N

δ

Mijσ2
ij

[
(1 +

Tij
σ2
ij

) log(1 +
Tij
σ2
ij

)− Tij
σ2
ij

] , (19)

implying that B ∼ O( 1
Λ log(N)), then with error proba-

bility δ ∈ (0, 1), we have

P (xIJ > xij ,∀(i, j) ∈ {wT
i hj < wT

I hJ}) ≥ 1− δ.

Similar to MIPS problem, when wT
I hJ has the maximum

inner product, N in the theorem above can be replaced by
mn. That means that sample size B = O( 1

Λ log(mn))
is sufficient for identifying the maximum inner product in
MAD problem and Λ < 1 here.

Theorem 4. Assume withjt ≥ 0, for all (i, j, t) ∈
{1, . . . ,m} × {1, . . . , n} × {1, . . . , d} and wT

i hj
iid∼

Exp(β). In Sampling-MAD algorithm, if we take C = B,
whereC means we calculate inner products of indexes with
top-C scores, then when B ≥ ρ

αmn, where α ∈ (0, 1
2 ) and

ρ ∈ (0, αd(n−1)
(d+1)n ),

P (not identifying maximum inner product) ≤ O
(

1

(mn)ρ

)
.

Therefore, the overall time complexity of Sampling-MAD is
O(md+B +Bd) = O(md+ ρ

α (d+ 1)mn) < O(mnd).

Corollary 2. Assume withjt ≥ 0, for all (i, j, t) ∈
{1, . . . ,m} × {1, . . . , n} × {1, . . . , d}. If F is a continu-

ous, non-negative, heavy-tailed distribution, wT
i hj

iid∼ F
and E[(wT

i hj)
2] < ∞, then when B ≥ ρ

αmn, where

α ∈ (0, 1) and ρ ∈ (0, αd(n−1)
(d+1)n ), take C = B in Sampling-

MIPS algorithm, we have

P (not identifying maximum inner product) ≤ O
(

1

(mn)ρ

)
.


