
Language-level
Concurrency Support:

Go
Chris Rossbach

Outline for Today
• Questions?
• Administrivia
• Lab 3 looms large: Go go go!

• Agenda
• Message Passing background
• Concurrency in Go
• Thoughts and guidance on Lab 3

• Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and I borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Faux Quiz questions

• How are promises and futures different or the same as goroutines
• What is the difference between a goroutine and a thread?
• What is the difference between a channel and a lock?
• How is a channel different from a concurrent FIFO?
• What is the CSP model?
• What are the tradeoffs between explicit vs implicit naming in

message passing?
• What are the tradeoffs between blocking vs. non-blocking

send/receive in a shared memory environment? In a distributed one?

Event-based Programming: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks à

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• Events: restructure programming model to have no threads!

Remember
this slide?

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks à

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• Events: restructure programming model to have no threads!

Event-based Programming: Motivation

Remember
this slide?

Message Passing: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks à

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• Message passing:
• Threads aren’t the problem, shared memory is
• restructure programming model to avoid communication through shared memory

(and therefore locks)

Message Passing: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks à

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• Message passing:
• Threads aren’t the problem, shared memory is
• restructure programming model to avoid communication through shared memory

(and therefore locks)

Message Passing: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks à

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• Message passing:
• Threads aren’t the problem, shared memory is
• restructure programming model to avoid communication through shared memory

(and therefore locks)

Message Passing: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks à

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• Message passing:
• Threads aren’t the problem, shared memory is
• restructure programming model to avoid communication through shared memory

(and therefore locks)

Message Passing

• Threads/Processes send/receive messages
• Three design dimensions

• Naming/Addressing: how do processes refer to each other?
• Synchronization: how to wait for messages (block/poll/notify)?
• Buffering/Capacity: can messages wait in some intermediate structure?

Message Passing

• Threads/Processes send/receive messages
• Three design dimensions

• Naming/Addressing: how do processes refer to each other?
• Synchronization: how to wait for messages (block/poll/notify)?
• Buffering/Capacity: can messages wait in some intermediate structure?

Message Passing

• Threads/Processes send/receive messages
• Three design dimensions
• Naming/Addressing: how do processes refer to each other?
• Synchronization: how to wait for messages (block/poll/notify)?
• Buffering/Capacity: can messages wait in some intermediate structure?

Naming: Explicit vs Implicit
Also: Direct vs Indirect

• Explicit Naming
• Each process must explicitly name the other party
• Primitives:

• send(receiver, message)
• receive(sender, message)

• Implicit Naming
• Messages sent/received to/from mailboxes
• Mailboxes may be named/shared
• Primitives:

• send(mailbox, message)
• receive(mailbox, message)

Naming: Explicit vs Implicit
Also: Direct vs Indirect

• Explicit Naming
• Each process must explicitly name the other party
• Primitives:

• send(receiver, message)
• receive(sender, message)

• Implicit Naming
• Messages sent/received to/from mailboxes
• Mailboxes may be named/shared
• Primitives:

• send(mailbox, message)
• receive(mailbox, message)

Q P

Naming: Explicit vs Implicit
Also: Direct vs Indirect

• Explicit Naming
• Each process must explicitly name the other party
• Primitives:

• send(receiver, message)
• receive(sender, message)

• Implicit Naming
• Messages sent/received to/from mailboxes
• Mailboxes may be named/shared
• Primitives:

• send(mailbox, message)
• receive(mailbox, message)

Q P

Q P

Synchronization

• Synchronous vs. Asynchronous
• Blocking send: sender blocks until received
• Nonblocking send: send resumes before message received
• Blocking receive: receiver blocks until message available
• Non-blocking receive: receiver gets a message or null

• If both send and receive block
• “Rendezvouz”
• Operation acts as an ordering primitive
• Sender knows receiver succeded
• Receiver knows sender succeeded
• Particularly appealing in distributed environment

Synchronization

• Synchronous vs. Asynchronous
• Blocking send: sender blocks until received
• Nonblocking send: send resumes before message received
• Blocking receive: receiver blocks until message available
• Non-blocking receive: receiver gets a message or null

• If both send and receive block
• “Rendezvouz”
• Operation acts as an ordering primitive
• Sender knows receiver succeded
• Receiver knows sender succeeded
• Particularly appealing in distributed environment

Synchronization

• Synchronous vs. Asynchronous
• Blocking send: sender blocks until received
• Nonblocking send: send resumes before message received
• Blocking receive: receiver blocks until message available
• Non-blocking receive: receiver gets a message or null

• If both send and receive block
• “Rendezvouz”
• Operation acts as an ordering primitive
• Sender knows receiver succeded
• Receiver knows sender succeeded
• Particularly appealing in distributed environment

Blocking:
+ simple
+ avoids wasteful spinning
- Inflexible
- Can hide concurrency
Non-blocking:
+ maximal flexibility
- error handling/detection tricky
- interleaving useful work non-trivial

Synchronization

• Synchronous vs. Asynchronous
• Blocking send: sender blocks until received
• Nonblocking send: send resumes before message received
• Blocking receive: receiver blocks until message available
• Non-blocking receive: receiver gets a message or null

• If both send and receive block
• “Rendezvouz”
• Operation acts as an ordering primitive
• Sender knows receiver succeded
• Receiver knows sender succeeded
• Particularly appealing in distributed environment

Blocking:
+ simple
+ avoids wasteful spinning
- Inflexible
- Can hide concurrency
Non-blocking:
+ maximal flexibility
- error handling/detection tricky
- interleaving useful work non-trivial

Communicating Sequential Processes
Hoare 1978

CSP: language for multi-processor machines
• Non-buffered message passing

• No shared memory
• Send/recv are blocking

• Explicit naming of src/dest processes
• Also called direct naming
• Receiver specifies source process
• Alternatives: indirect

• Port, mailbox, queue, socket
• Guarded commands to let processes wait

Communicating Sequential Processes
Hoare 1978

CSP: language for multi-processor machines
• Non-buffered message passing

• No shared memory
• Send/recv are blocking

• Explicit naming of src/dest processes
• Also called direct naming
• Receiver specifies source process
• Alternatives: indirect

• Port, mailbox, queue, socket
• Guarded commands to let processes wait

ß Transputer!

An important problem in the CSP model:
• Processes need to receive messages from different senders
• Only primitive: blocking receive(<name>, message)

An important problem in the CSP model:
• Processes need to receive messages from different senders
• Only primitive: blocking receive(<name>, message)

An important problem in the CSP model:
• Processes need to receive messages from different senders
• Only primitive: blocking receive(<name>, message)

An important problem in the CSP model:
• Processes need to receive messages from different senders
• Only primitive: blocking receive(<name>, message)

Q

R

S

P

An important problem in the CSP model:
• Processes need to receive messages from different senders
• Only primitive: blocking receive(<name>, message)

Q

R

S

P recv_multi(Q) {
 receive(Q, message)
 receive(R, message)
 receive(S, message)
}

An important problem in the CSP model:
• Processes need to receive messages from different senders
• Only primitive: blocking receive(<name>, message)

Q

R

S

P recv_multi(Q) {
 receive(Q, message)
 receive(R, message)
 receive(S, message)
}

Is there a problem
with this?

An important problem in the CSP model:
• Processes need to receive messages from different senders
• Only primitive: blocking receive(<name>, message)

Q

R

S

P recv_multi(Q) {
 receive(Q, message)
 receive(R, message)
 receive(S, message)
}

Is there a problem
with this?

X
X

Blocking with Indirect Naming
• Processes need to receive messages from different senders
• blocking receive with indirect naming

• Process waits on port, gets first message first message arriving at that port

Blocking with Indirect Naming
• Processes need to receive messages from different senders
• blocking receive with indirect naming

• Process waits on port, gets first message first message arriving at that port

Q

R

S

P receive(port, message)

Blocking with Indirect Naming
• Processes need to receive messages from different senders
• blocking receive with indirect naming

• Process waits on port, gets first message first message arriving at that port

Q

R

S

P receive(port, message)

OK to block (good)
Requires indirection (less good)

Non-blocking with Direct Naming
• Processes need to receive messages from different senders
• Non-blocking receive with direct naming

• Requires receiver to poll senders

Non-blocking with Direct Naming
• Processes need to receive messages from different senders
• Non-blocking receive with direct naming

• Requires receiver to poll senders

Q

R

S

P

Non-blocking with Direct Naming
• Processes need to receive messages from different senders
• Non-blocking receive with direct naming

• Requires receiver to poll senders

Q

R

S

P

while(…) {
 try_receive(Q, message)
 try_receive(R, message)
 try_receive(S, message)
}

Non-blocking with Direct Naming
• Processes need to receive messages from different senders
• Non-blocking receive with direct naming

• Requires receiver to poll senders

Q

R

S

P

Polling (bad)
No indirection (good)

while(…) {
 try_receive(Q, message)
 try_receive(R, message)
 try_receive(S, message)
}

Blocking and Direct Naming
• How to achieve it?
• CSP provides abstractions/primitives for it

Q

R

S

P

Blocking and Direct Naming
• How to achieve it?
• CSP provides abstractions/primitives for it

Q

R

S

P

Blocking and Direct Naming
• How to achieve it?
• CSP provides abstractions/primitives for it

Q

R

S

P

Alternative / Guarded Commands
Guarded command is delayed until either
• guard succeeds à cmd executes or
• guard fails àcommand aborts

Alternative command:
• list of one or more guarded commands
• separated by ”||”
• surrounded by square brackets

 [x ³ y -> max:= x || y ³ x -> max:= y]

Alternative / Guarded Commands
Guarded command is delayed until either
• guard succeeds à cmd executes or
• guard fails àcommand aborts

Alternative command:
• list of one or more guarded commands
• separated by ”||”
• surrounded by square brackets

 [x ³ y -> max:= x || y ³ x -> max:= y]

• Enable choice preserving concurrency
• Hugely influential
• goroutines, channels, select, defer:

• Trying to achieve the same thing

Go Concurrency

• CSP: the root of many languages
• Occam, Erlang, Newsqueak, Concurrent ML, Alef, Limbo

• Go is a Newsqueak-Alef-Limbo derivative
• Distinguished by first class channel support
• Program: goroutines communicating through channels
• Guarded and alternative-like constructs in select and defer

A boring function

A boring function

Ignoring a boring function

• Go statement runs the function
• Doesn’t make the caller wait
• Launches a goroutine
• Analagous to & on shell command

Ignoring a boring function

• Go statement runs the function
• Doesn’t make the caller wait
• Launches a goroutine
• Analagous to & on shell command

• Keep main() around a while
• See goroutine actually running

Ignoring a boring function

• Go statement runs the function
• Doesn’t make the caller wait
• Launches a goroutine
• Analagous to & on shell command

• Keep main() around a while
• See goroutine actually running

Goroutines
• Independently executing function launched by go statement
• Has own call stack
• Cheap: Ok to have 1000s…100,000s of them
• Not a thread

• One thread may have 1000s of go routines!

• Multiplexed onto threads as needed to ensure forward progress
• Deadlock detection built in

Goroutines
• Independently executing function launched by go statement
• Has own call stack
• Cheap: Ok to have 1000s…100,000s of them
• Not a thread

• One thread may have 1000s of go routines!

• Multiplexed onto threads as needed to ensure forward progress
• Deadlock detection built in

Goroutines
• Independently executing function launched by go statement
• Has own call stack
• Cheap: Ok to have 1000s…100,000s of them
• Not a thread

• One thread may have 1000s of go routines!

• Multiplexed onto threads as needed to ensure forward progress
• Deadlock detection built in

Goroutines
• Independently executing function launched by go statement
• Has own call stack
• Cheap: Ok to have 1000s…100,000s of them
• Not a thread

• One thread may have 1000s of go routines!

• Multiplexed onto threads as needed to ensure forward progress
• Deadlock detection built in

Goroutines
• Independently executing function launched by go statement
• Has own call stack
• Cheap: Ok to have 1000s…100,000s of them
• Not a thread
• One thread may have 1000s of go routines!

• Multiplexed onto threads as needed to ensure forward progress
• Deadlock detection built in

Goroutines
• Independently executing function launched by go statement
• Has own call stack
• Cheap: Ok to have 1000s…100,000s of them
• Not a thread
• One thread may have 1000s of go routines!

• Multiplexed onto threads as needed to ensure forward progress
• Deadlock detection built in

Channels
• Connect goroutines allowing them to communicate

Channels
• Connect goroutines allowing them to communicate

Channels
• Connect goroutines allowing them to communicate

Channels
• Connect goroutines allowing them to communicate

Channels
• Connect goroutines allowing them to communicate

• When main executes <-c, it blocks
• When boring executes c <- value it blocks
• Channels communicate and synchronize

Select: Handling Multiple Channels
• All channels are evaluated
• Select blocks until one communication can proceed

• Cf. Linux select system call, Windows WaitForMultipleObjectsEx
• Cf. Alternatives and guards in CPS

• If multiple can proceed select chooses randomly
• Default clause executes immediately if no ready channel

Select: Handling Multiple Channels
• All channels are evaluated
• Select blocks until one communication can proceed

• Cf. Linux select system call, Windows WaitForMultipleObjectsEx
• Cf. Alternatives and guards in CPS

• If multiple can proceed select chooses randomly
• Default clause executes immediately if no ready channel

select {
case v1 := <-c1:
 fmt.Printf(…)
case v2 := <-c2:
 fmt.Printf(…)
}

Without default clause becomes rendezvous!

Google Search

• Workload:
• Accept query
• Return page of results (with ugh, ads)
• Get search results by sending query to
• Web Search
• Image Search
• YouTube
• Maps
• News, etc

• How to implement this?

Search 1.0

• Google function takes query and returns a slice of results (strings)
• Invokes Web, Image, Video search serially

Search 2.0

• Run Web, Image, Video searches concurrently, wait for results
• No locks, conditions, callbacks

Search 2.1
• Don’t wait for slow servers: No locks, conditions, callbacks!

Search 3.0

• Reduce tail latency with replication. No locks, conditions, callbacks!

Other tools in Go

• Goroutines and channels are the main primitives
• Sometimes you just need a reference counter or lock
• “sync” and “sync/atomic” packages
• Mutex, condition, atomic operations

• Sometimes you need to wait for a go routine to finish
• Didn’t happen in any of the examples in the slides
• WaitGroups are key

WaitGroups
func testQ() {

var wg sync.WaitGroup
wg.Add(4)
ch := make(chan int)
for i:=0; i<4; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

fmt.Printf("reader #%d got %d value\n", id, aval)
} else {

fmt.Printf("channel reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()

}

WaitGroups
func testQ() {

var wg sync.WaitGroup
wg.Add(4)
ch := make(chan int)
for i:=0; i<4; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

fmt.Printf("reader #%d got %d value\n", id, aval)
} else {

fmt.Printf("channel reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()

}

Go: magic or threadpools and concurrent Qs?

• We’ve seen several abstractions for
• Control flow/exection
• Communication

• Lots of discussion of pros and cons
• Ultimately still CPUs + instructions
• Go: just sweeping issues under the language interface?
• Why is it OK to have 100,000s of goroutines?
• Why isn’t composition an issue?

Go implementation details

• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling is cooperative

Go implementation details

• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling is cooperative

Go implementation details

• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling is cooperative

Go implementation details

• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling is cooperative

Go implementation details

• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling is cooperative

Go implementation details

• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling is cooperative

Go implementation details

• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling is cooperative
• Go routine scheduling was cooperative
• Switch out on complete or block
• Very light weight (fibers!)
• Scheduler does work-stealing

Go implementation details
• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling was cooperative
• Switch out on complete or block
• Very light weight (fibers!)
• Scheduler does work-stealing

Go implementation details
• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling was cooperative
• Switch out on complete or block
• Very light weight (fibers!)
• Scheduler does work-stealing

Go implementation details
• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling was cooperative
• Switch out on complete or block
• Very light weight (fibers!)
• Scheduler does work-stealing

Go implementation details
• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling was cooperative
• Switch out on complete or block
• Very light weight (fibers!)
• Scheduler does work-stealing

Go implementation details
• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling was cooperative
• Switch out on complete or block
• Very light weight (fibers!)
• Scheduler does work-stealing

Go implementation details
• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling was cooperative
• Switch out on complete or block
• Very light weight (fibers!)
• Scheduler does work-stealing

Go implementation details
• M = “machine” à OS thread
• P = (processing) context
• G = goroutines
• Each ‘M’ has a queue of goroutines
• Goroutine scheduling was cooperative
• Switch out on complete or block
• Very light weight (fibers!)
• Scheduler does work-stealing

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

}

1000s of go routines?

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

}

1000s of go routines? • Creates a channel
• Creates “consumers” goroutines
• Each of them tries to read from the channel
• Main either:

• Sleeps for 1 second, closes the channel
• sends “consumers” values

func testQ(consumers int) {
startTimes["testQ"] = time.Now()
var wg sync.WaitGroup
wg.Add(consumers)
ch := make(chan int)
for i:=0; i<consumers; i++ {

go func(id int) {
aval, amore := <- ch
if(amore) {

info("reader #%d got %d value\n", id, aval)
} else {

info("channel reader #%d terminated with nothing.\n", id)
}
wg.Done()

}(i)
}
time.Sleep(1000 * time.Millisecond)
close(ch)
wg.Wait()
stopTimes["testQ"] = time.Now()

}

1000s of go routines? • Creates a channel
• Creates “consumers” goroutines
• Each of them tries to read from the channel
• Main either:

• Sleeps for 1 second, closes the channel
• sends “consumers” values

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

Race detection! Cool!

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights

Transputers did this in hardware in the 90s btw.

https://golang.org/src/runtime/chan.go

Channel implementation

• You can just read it:
• https://golang.org/src/runtime/chan.go

• Some highlights:
• Race detection built in
• Fast path just write to receiver stack
• Often has no capacity à scheduler hint!
• Buffered channel implementation fairly standard

https://golang.org/src/runtime/chan.go

35

Go: Sliced Bread 2.0?
• Lacks compile-time generics

• Results in code duplication
• Metaprogramming cannot be statically checked
• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

35

Go: Sliced Bread 2.0?
• Lacks compile-time generics

• Results in code duplication
• Metaprogramming cannot be statically checked
• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

35

Go: Sliced Bread 2.0?
• Lacks compile-time generics

• Results in code duplication
• Metaprogramming cannot be statically checked
• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

35

Go: Sliced Bread 2.0?
• Lacks compile-time generics

• Results in code duplication
• Metaprogramming cannot be statically checked
• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

35

Go: Sliced Bread 2.0?
• Lacks compile-time generics

• Results in code duplication
• Metaprogramming cannot be statically checked
• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

35

Go: Sliced Bread 2.0?
• Lacks compile-time generics

• Results in code duplication
• Metaprogramming cannot be statically checked
• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

35

Go: Sliced Bread 2.0?
• Lacks compile-time generics

• Results in code duplication
• Metaprogramming cannot be statically checked
• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

35

Go: Sliced Bread 2.0?
• Lacks compile-time generics

• Results in code duplication
• Metaprogramming cannot be statically checked
• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

35

Go: Sliced Bread 2.0?
• Lacks compile-time generics

• Results in code duplication
• Metaprogramming cannot be statically checked
• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

35

Go: Sliced Bread 2.0?
• Lacks compile-time generics

• Results in code duplication
• Metaprogramming cannot be statically checked
• Standard library cannot offer generic algorithms

• Lack of language extensibility makes certain tasks more verbose
• Lacks operator overloading (Java)

• Pauses and overhead of garbage collection
• Limit Go’s use in systems programming compared to languages with manual memory

management

• Right tradeoffs? None of these problems have to do with concurrency!

36

Questions?

