
Consistency
Transactions

Transactional Memory
Chris Rossbach

Outline for Today
• Questions?
• Administrivia

• Have you started the next lab yet? J

• Agenda
• Consistency
• Transactions
• Transactional Memory

• Acks: Yoav Cohen for some STM slides

Faux Quiz questions

• How are promises and futures related? Since there is disagreement
on the nomenclature, don’t worry about which is which—just
describe what the different objects are and how they function.
• How does HTM resemble or differ from Load-linked Stored-

Conditional?
• What are some pros and cons of HTM vs STM?
• What is Open Nesting? Closed Nesting? Flat Nesting?
• How does 2PL differ from 2PC?
• Define ACID properties: which, if any, of these properties does TM

relax?

Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave with multiple CPUs
• Ordering of reads and writes

• Memory Consistency != Cache Coherence
• Coherence: propagate updates to cached copies

• Invalidate vs. Update
• Coherence vs. Consistency?

• Coherence: ordering of ops. at a single location
• Consistency: ordering of ops. at multiple locations

4

Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave with multiple CPUs
• Ordering of reads and writes

• Memory Consistency != Cache Coherence
• Coherence: propagate updates to cached copies

• Invalidate vs. Update
• Coherence vs. Consistency?

• Coherence: ordering of ops. at a single location
• Consistency: ordering of ops. at multiple locations

4

Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave with multiple CPUs
• Ordering of reads and writes

• Memory Consistency != Cache Coherence
• Coherence: propagate updates to cached copies

• Invalidate vs. Update
• Coherence vs. Consistency?

• Coherence: ordering of ops. at a single location
• Consistency: ordering of ops. at multiple locations

4

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor

• Operations on each processor
are totally ordered in the
sequence and respect program
order for each processor

5

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor

• Operations on each processor
are totally ordered in the
sequence and respect program
order for each processor

P1 P2 P3 Pn…

Memory

5

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor

• Operations on each processor
are totally ordered in the
sequence and respect program
order for each processor

P1 P2 P3 Pn…

Memory

5

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor
• Operations on each processor

are totally ordered in the
sequence and respect program
order for each processor

P1 P2 P3 Pn…

Memory

5

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor
• Operations on each processor

are totally ordered in the
sequence and respect program
order for each processor

P1 P2 P3 Pn…

Memory

5

Trying to mimic Uniprocessor semantics:
• Memory operations occur:

• One at a time
• In program order

• Read returns value of last write

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor
• Operations on each processor

are totally ordered in the
sequence and respect program
order for each processor

P1 P2 P3 Pn…

Memory

5

Trying to mimic Uniprocessor semantics:
• Memory operations occur:

• One at a time
• In program order

• Read returns value of last write

• How is this different from coherence?
• Why do modern CPUs not implement SC?
• Requirements: program order, write atomicity

Sequential Consistency

• All operations are executed in some sequential order
• each process issues operations in program order

• Any valid interleaving is allowed
• All agree on the same interleaving
• Each process preserves its program order

Sequential Consistency

• All operations are executed in some sequential order
• each process issues operations in program order

• Any valid interleaving is allowed
• All agree on the same interleaving
• Each process preserves its program order

Are either of these SC?

Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2
Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
 enter CS enter CS

7

Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2
Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
 enter CS enter CS

7

Can both P1 and P2 wind up in the
critical section at the same time?

Do we need Sequential Consistency?

Initially, Flag1 = Flag2 = 0

P1 P2
Flag1 = 1
 Flag2 = 1
 if(Flag1 == 0)
 data++
if(Flag2 == 0)
 data++

8

Do we need Sequential Consistency?

Initially, Flag1 = Flag2 = 0

P1 P2
Flag1 = 1
 Flag2 = 1
 if(Flag1 == 0)
 data++
if(Flag2 == 0)
 data++

8

Key issue:
• P1 and P2 may not see each other’s writes in the same order
• Implication: both in critical section, which is incorrect
• Why would this happen?

Do we need Sequential Consistency?

Initially, Flag1 = Flag2 = 0

P1 P2
Flag1 = 1
 Flag2 = 1
 if(Flag1 == 0)
 data++
if(Flag2 == 0)
 data++

8

Key issue:
• P1 and P2 may not see each other’s writes in the same order
• Implication: both in critical section, which is incorrect
• Why would this happen?

Write Buffers
• P_0 write à queue op in write buffer, proceed
• P_0 read à look in write buffer,
• P_(x != 0) read à old value: write buffer hasn’t drained

Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs
• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

9

Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs
• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

9

Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs
• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

9

Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs
• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

9

Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs
• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

9

Disadvantages:
• Difficult to implement!

• Coherence to (e.g.) write buffers is hard
• Sacrifices many potential optimizations

• Hardware (cache) and software (compiler)
• Major performance hit

Why Relax Consistency?
• Motivation, originally

• Allow in-order processors to overlap store latency with other work
• “Other work” depends on loads, so loads bypass stores using a store queue

• PC (processor consistency), SPARC TSO, IBM/370
• Just relax read-to-write program order requirement

• Subsequently
• Hide latency of one store with latency of other stores
• Stores to be performed OOO with respect to each other
• Breaks SC even further

• This led to definition of SPARC PSO/RMO, WO, PowerPC WC, Itanium
• What’s the problem with relaxed consistency?

• Shared memory programs can break if not written for specific cons. model

Relaxed Consistency Models
• Program Order relaxations (different locations)

• W à R; W à W; R à R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Relaxed Consistency Models
• Program Order relaxations (different locations)

• W à R; W à W; R à R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Relaxed Consistency Models
• Program Order relaxations (different locations)

• W à R; W à W; R à R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Relaxed Consistency Models
• Program Order relaxations (different locations)

• W à R; W à W; R à R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Relaxed Consistency Models
• Program Order relaxations (different locations)

• W à R; W à W; R à R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Read others’ write early

Read own write early

Relaxation

Relax Write to Read program order

Relax Write to Write program order

Relax Read to Read and Read to Write program orders

Figure 7: Relaxations allowed by memory models. The first three (program order) relaxations apply only to
operation pairs accessing different locations.

Relaxation W R W W R RW Read Others’ Read Own Safety net
Order Order Order Write Early Write Early

SC [16]
IBM 370 [14] serialization instructions

TSO [20] RMW
PC [13, 12] RMW
PSO [20] RMW, STBAR
WO [5] synchronization

RCsc [13, 12] release, acquire, nsync,
RMW

RCpc [13, 12] release, acquire, nsync,
RMW

Alpha [19] MB, WMB
RMO [21] various MEMBAR’s

PowerPC [17, 4] SYNC

Figure 8: Simple categorization of relaxed models. A indicates that the corresponding relaxation is allowed by
straightforward implementations of the corresponding model. It also indicates that the relaxation can be detected
by the programmer (by affecting the results of the program) except for the following cases. The “Read Own Write
Early” relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The “Read Others’ Write Early”
relaxation is possible and detectable with complex implementations of RCsc.

Relaxation Example Commercial Systems Providing the Relaxation
W R Order AlphaServer 8200/8400, Cray T3D, Sequent Balance, SparcCenter1000/2000
W W Order AlphaServer 8200/8400, Cray T3D
R RW Order AlphaServer 8200/8400, Cray T3D
Read Others’ Write Early Cray T3D
Read Own Write Early AlphaServer 8200/8400, Cray T3D, SparcCenter1000/2000

Figure 9: Some commercial systems that relax sequential consistency.

12

Relaxed Consistency Models
• Program Order relaxations (different locations)

• W à R; W à W; R à R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Read others’ write early

Read own write early

Relaxation

Relax Write to Read program order

Relax Write to Write program order

Relax Read to Read and Read to Write program orders

Figure 7: Relaxations allowed by memory models. The first three (program order) relaxations apply only to
operation pairs accessing different locations.

Relaxation W R W W R RW Read Others’ Read Own Safety net
Order Order Order Write Early Write Early

SC [16]
IBM 370 [14] serialization instructions

TSO [20] RMW
PC [13, 12] RMW
PSO [20] RMW, STBAR
WO [5] synchronization

RCsc [13, 12] release, acquire, nsync,
RMW

RCpc [13, 12] release, acquire, nsync,
RMW

Alpha [19] MB, WMB
RMO [21] various MEMBAR’s

PowerPC [17, 4] SYNC

Figure 8: Simple categorization of relaxed models. A indicates that the corresponding relaxation is allowed by
straightforward implementations of the corresponding model. It also indicates that the relaxation can be detected
by the programmer (by affecting the results of the program) except for the following cases. The “Read Own Write
Early” relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The “Read Others’ Write Early”
relaxation is possible and detectable with complex implementations of RCsc.

Relaxation Example Commercial Systems Providing the Relaxation
W R Order AlphaServer 8200/8400, Cray T3D, Sequent Balance, SparcCenter1000/2000
W W Order AlphaServer 8200/8400, Cray T3D
R RW Order AlphaServer 8200/8400, Cray T3D
Read Others’ Write Early Cray T3D
Read Own Write Early AlphaServer 8200/8400, Cray T3D, SparcCenter1000/2000

Figure 9: Some commercial systems that relax sequential consistency.

12

static inline void arch_write_lock(arch_rwlock_t *rw) {
 asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
 "jz 1f\n"
 "call __write_lock_failed\n\t"
 "1:\n"
 ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS) : "memory"); }

x86

https://elixir.bootlin.com/linux/v3.13/C/ident/arch_write_lock
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_rwlock_t
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/volatile
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PREFIX
https://elixir.bootlin.com/linux/v3.13/C/ident/WRITE_LOCK_SUB
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PTR_REG
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/write
https://elixir.bootlin.com/linux/v3.13/C/ident/RW_LOCK_BIAS

Relaxed Consistency Models
• Program Order relaxations (different locations)

• W à R; W à W; R à R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Read others’ write early

Read own write early

Relaxation

Relax Write to Read program order

Relax Write to Write program order

Relax Read to Read and Read to Write program orders

Figure 7: Relaxations allowed by memory models. The first three (program order) relaxations apply only to
operation pairs accessing different locations.

Relaxation W R W W R RW Read Others’ Read Own Safety net
Order Order Order Write Early Write Early

SC [16]
IBM 370 [14] serialization instructions

TSO [20] RMW
PC [13, 12] RMW
PSO [20] RMW, STBAR
WO [5] synchronization

RCsc [13, 12] release, acquire, nsync,
RMW

RCpc [13, 12] release, acquire, nsync,
RMW

Alpha [19] MB, WMB
RMO [21] various MEMBAR’s

PowerPC [17, 4] SYNC

Figure 8: Simple categorization of relaxed models. A indicates that the corresponding relaxation is allowed by
straightforward implementations of the corresponding model. It also indicates that the relaxation can be detected
by the programmer (by affecting the results of the program) except for the following cases. The “Read Own Write
Early” relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The “Read Others’ Write Early”
relaxation is possible and detectable with complex implementations of RCsc.

Relaxation Example Commercial Systems Providing the Relaxation
W R Order AlphaServer 8200/8400, Cray T3D, Sequent Balance, SparcCenter1000/2000
W W Order AlphaServer 8200/8400, Cray T3D
R RW Order AlphaServer 8200/8400, Cray T3D
Read Others’ Write Early Cray T3D
Read Own Write Early AlphaServer 8200/8400, Cray T3D, SparcCenter1000/2000

Figure 9: Some commercial systems that relax sequential consistency.

12

Relaxed Consistency Models
• Program Order relaxations (different locations)

• W à R; W à W; R à R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Read others’ write early

Read own write early

Relaxation

Relax Write to Read program order

Relax Write to Write program order

Relax Read to Read and Read to Write program orders

Figure 7: Relaxations allowed by memory models. The first three (program order) relaxations apply only to
operation pairs accessing different locations.

Relaxation W R W W R RW Read Others’ Read Own Safety net
Order Order Order Write Early Write Early

SC [16]
IBM 370 [14] serialization instructions

TSO [20] RMW
PC [13, 12] RMW
PSO [20] RMW, STBAR
WO [5] synchronization

RCsc [13, 12] release, acquire, nsync,
RMW

RCpc [13, 12] release, acquire, nsync,
RMW

Alpha [19] MB, WMB
RMO [21] various MEMBAR’s

PowerPC [17, 4] SYNC

Figure 8: Simple categorization of relaxed models. A indicates that the corresponding relaxation is allowed by
straightforward implementations of the corresponding model. It also indicates that the relaxation can be detected
by the programmer (by affecting the results of the program) except for the following cases. The “Read Own Write
Early” relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The “Read Others’ Write Early”
relaxation is possible and detectable with complex implementations of RCsc.

Relaxation Example Commercial Systems Providing the Relaxation
W R Order AlphaServer 8200/8400, Cray T3D, Sequent Balance, SparcCenter1000/2000
W W Order AlphaServer 8200/8400, Cray T3D
R RW Order AlphaServer 8200/8400, Cray T3D
Read Others’ Write Early Cray T3D
Read Own Write Early AlphaServer 8200/8400, Cray T3D, SparcCenter1000/2000

Figure 9: Some commercial systems that relax sequential consistency.

12

static inline unsigned long
__arch_spin_trylock(arch_spinlock_t *lock)
{
 unsigned long tmp, token;
 token = LOCK_TOKEN;
 __asm__ __volatile__(
 "1: " PPC_LWARX(%0,0,%2,1) "\n\
 cmpwi 0,%0,0\n\
 bne- 2f\n\
 stwcx. %1,0,%2\n\
 bne- 1b\n"
 PPC_ACQUIRE_BARRIER
 "2:“ : "=&r" (tmp)
 : "r" (token), "r" (&lock->slock)
 : "cr0", "memory");
 return tmp;
} PowerPC

Relaxed Consistency Models
• Program Order relaxations (different locations)

• W à R; W à W; R à R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Read others’ write early

Read own write early

Relaxation

Relax Write to Read program order

Relax Write to Write program order

Relax Read to Read and Read to Write program orders

Figure 7: Relaxations allowed by memory models. The first three (program order) relaxations apply only to
operation pairs accessing different locations.

Relaxation W R W W R RW Read Others’ Read Own Safety net
Order Order Order Write Early Write Early

SC [16]
IBM 370 [14] serialization instructions

TSO [20] RMW
PC [13, 12] RMW
PSO [20] RMW, STBAR
WO [5] synchronization

RCsc [13, 12] release, acquire, nsync,
RMW

RCpc [13, 12] release, acquire, nsync,
RMW

Alpha [19] MB, WMB
RMO [21] various MEMBAR’s

PowerPC [17, 4] SYNC

Figure 8: Simple categorization of relaxed models. A indicates that the corresponding relaxation is allowed by
straightforward implementations of the corresponding model. It also indicates that the relaxation can be detected
by the programmer (by affecting the results of the program) except for the following cases. The “Read Own Write
Early” relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The “Read Others’ Write Early”
relaxation is possible and detectable with complex implementations of RCsc.

Relaxation Example Commercial Systems Providing the Relaxation
W R Order AlphaServer 8200/8400, Cray T3D, Sequent Balance, SparcCenter1000/2000
W W Order AlphaServer 8200/8400, Cray T3D
R RW Order AlphaServer 8200/8400, Cray T3D
Read Others’ Write Early Cray T3D
Read Own Write Early AlphaServer 8200/8400, Cray T3D, SparcCenter1000/2000

Figure 9: Some commercial systems that relax sequential consistency.

12

Some Key Consistency Models
TSO
• x86
• Stores are totally ordered, reads not
• Differs from PC by allowing early reads of processor’s own writes

RC: Release Consistency
• Key insight: only synchronization references need to be ordered
• Hence, relax memory for all other references

• Enable high-performance OOO implementation
• Programmer labels synchronization references

• Hardware must carefully order these labeled references
• Labeling schemes:

• Explicit synchronization ops (acquire/release)
• Memory fence or memory barrier ops:

• All preceding ops must finish before following ones begin

• Fence ops drain pipeline

Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc.
• Mostly about how to express control

• Transactions
• Mostly about how to deal with shared state

Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc.
• Mostly about how to express control

• Transactions
• Mostly about how to deal with shared state

Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc.
• Mostly about how to express control

• Transactions
• Mostly about how to deal with shared state

Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc.
• Mostly about how to express control

• Transactions
• Mostly about how to deal with shared state

Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc.
• Mostly about how to express control

• Transactions
• Mostly about how to deal with shared state

Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc.
• Mostly about how to express control

• Transactions
• Mostly about how to deal with shared state

co
m
m
un

ic
at
io
n

com
put

ati
on

coordination

Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc.
• Mostly about how to express control

• Transactions
• Mostly about how to deal with shared state

co
m
m
un

ic
at
io
n

com
put

ati
on

coordination

Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc.
• Mostly about how to express control

• Transactions
• Mostly about how to deal with shared state

co
m
m
un

ic
at
io
n

com
put

ati
on

coordination

Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)
add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problems: crash in the middle / visibility of intermediate state
• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates

Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)
add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problems: crash in the middle / visibility of intermediate state
• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates

Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)
add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problems: crash in the middle / visibility of intermediate state
• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates

Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost

Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost

Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost

Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost Can we use messages? E.g.
with retries over unreliable
medium to synchronize with
guarantees?

Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost Can we use messages? E.g.
with retries over unreliable
medium to synchronize with
guarantees?

No.
Not even if all messages get
through!

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn.
General A à General B: Check. Dawn it is.
General B à General A: Alright already—dawn.

…

• Even if all messages
delivered, can’t assume–
maybe some message
didn’t get through.

• No solution: one of the
few CS impossibility
results.

Transactions can help
(but can’t solve it)

• Solves weaker problem:
• 2 things will either happen or not
• not necessarily at the same time

• Core idea: one entity has the power to say yes or no for all
• Local txn: one final update (TxEND) irrevocably triggers several
• Distributed transactions

• 2 phase commit
• One machine has final say for all machines
• Other machines bound to comply

Transactions can help
(but can’t solve it)

• Solves weaker problem:
• 2 things will either happen or not
• not necessarily at the same time

• Core idea: one entity has the power to say yes or no for all
• Local txn: one final update (TxEND) irrevocably triggers several
• Distributed transactions

• 2 phase commit
• One machine has final say for all machines
• Other machines bound to comply

Transactions can help
(but can’t solve it)

• Solves weaker problem:
• 2 things will either happen or not
• not necessarily at the same time

• Core idea: one entity has the power to say yes or no for all
• Local txn: one final update (TxEND) irrevocably triggers several
• Distributed transactions

• 2 phase commit
• One machine has final say for all machines
• Other machines bound to comply

Transactions can help
(but can’t solve it)

• Solves weaker problem:
• 2 things will either happen or not
• not necessarily at the same time

• Core idea: one entity has the power to say yes or no for all
• Local txn: one final update (TxEND) irrevocably triggers several
• Distributed transactions

• 2 phase commit
• One machine has final say for all machines
• Other machines bound to comply

What is the role of
synchronization here?

Transactional Programming Model

begin transaction;
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
commit transaction;

Transactional Programming Model

begin transaction;
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
commit transaction;

What has changed from
previous programming
models?

ACID Semantics

• Atomic – all updates happen or none do
• Consistent – system invariants maintained across updates
• Isolated – no visibility into partial updates
• Durable – once done, stays done
• Are subsets ever appropriate?

• When would ACI be useful?
• ACD?
• Isolation only?

ACID Semantics

• Atomic – all updates happen or none do
• Consistent – system invariants maintained across updates
• Isolated – no visibility into partial updates
• Durable – once done, stays done
• Are subsets ever appropriate?

• When would ACI be useful?
• ACD?
• Isolation only?

What are they?
• A
• C
• I
• D

ACID Semantics

• Atomic – all updates happen or none do
• Consistent – system invariants maintained across updates
• Isolated – no visibility into partial updates
• Durable – once done, stays done
• Are subsets ever appropriate?

• When would ACI be useful?
• ACD?
• Isolation only?

ACID Semantics

• Atomic – all updates happen or none do
• Consistent – system invariants maintained across updates
• Isolated – no visibility into partial updates
• Durable – once done, stays done
• Are subsets ever appropriate?

• When would ACI be useful?
• ACD?
• Isolation only?

begin transaction;
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
commit transaction;

ACID Semantics

• Atomic – all updates happen or none do
• Consistent – system invariants maintained across updates
• Isolated – no visibility into partial updates
• Durable – once done, stays done
• Are subsets ever appropriate?

• When would ACI be useful?
• ACD?
• Isolation only?

begin transaction;
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
commit transaction;

ACID Semantics

• Atomic – all updates happen or none do
• Consistent – system invariants maintained across updates
• Isolated – no visibility into partial updates
• Durable – once done, stays done
• Are subsets ever appropriate?

• When would ACI be useful?
• ACD?
• Isolation only?

begin transaction;
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
commit transaction;

ACID Semantics

• Atomic – all updates happen or none do
• Consistent – system invariants maintained across updates
• Isolated – no visibility into partial updates
• Durable – once done, stays done
• Are subsets ever appropriate?

• When would ACI be useful?
• ACD?
• Isolation only?

begin transaction;
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
commit transaction;

ACID Semantics

• Atomic – all updates happen or none do
• Consistent – system invariants maintained across updates
• Isolated – no visibility into partial updates
• Durable – once done, stays done
• Are subsets ever appropriate?

• When would ACI be useful?
• ACD?
• Isolation only?

begin transaction;
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
commit transaction;

ACID Semantics

• Atomic – all updates happen or none do
• Consistent – system invariants maintained across updates
• Isolated – no visibility into partial updates
• Durable – once done, stays done
• Are subsets ever appropriate?

• When would ACI be useful?
• ACD?
• Isolation only?

begin transaction;
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
commit transaction;

Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques

• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions

Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques

• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions

Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques

• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions

Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques

• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions

Key problems:
• output commit
• synchronization

Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques

• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions

Key problems:
• output commit
• synchronization

Implementing Transactions

BEGIN_TXN();
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
COMMIT_TXN();

Implementing Transactions

BEGIN_TXN();
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

Implementing Transactions

BEGIN_TXN();
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
 LOCK(single-global-lock);
}

COMMIT_TXN() {
 UNLOCK(single-global-lock);
}

Implementing Transactions

BEGIN_TXN();
 x = read(“x-values”,);
 y = read(“y-values”,);
 z = x+y;
 write(“z-values”, z,);
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
 LOCK(single-global-lock);
}

COMMIT_TXN() {
 UNLOCK(single-global-lock);
}

Pros/Cons?

Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
 rwset = Union(rset, wset);
 rwset = sort(rwset);
 forall x in rwset
 LOCK(x);
}

COMMIT_TXN() {
 forall x in rwset
 UNLOCK(x);
}

Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
 rwset = Union(rset, wset);
 rwset = sort(rwset);
 forall x in rwset
 LOCK(x);
}

COMMIT_TXN() {
 forall x in rwset
 UNLOCK(x);
}

Pros/Cons?

Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
 rwset = Union(rset, wset);
 rwset = sort(rwset);
 forall x in rwset
 LOCK(x);
}

COMMIT_TXN() {
 forall x in rwset
 UNLOCK(x);
}

Pros/Cons?
What happens on failures?

Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
 rwset = Union(rset, wset);
 rwset = sort(rwset);
 forall x in rwset
 LOCK(x);
}

COMMIT_TXN() {
 forall x in rwset
 UNLOCK(x);
}

Pros/Cons?

A: grab locks
A: modify x, y,
A: unlock y, x
B: grab locks
B: update x, y
B: unlock y, x
B: COMMIT
A: CRASH

What happens on failures?

Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
 rwset = Union(rset, wset);
 rwset = sort(rwset);
 forall x in rwset
 LOCK(x);
}

COMMIT_TXN() {
 forall x in rwset
 UNLOCK(x);
}

Pros/Cons?

A: grab locks
A: modify x, y,
A: unlock y, x
B: grab locks
B: update x, y
B: unlock y, x
B: COMMIT
A: CRASH

What happens on failures?

B commits
changes that
depend on A’s
updates

Two-phase commit

• N participants agree or don’t (atomicity)
• Phase 1: everyone “prepares”
• Phase 2: Master decides and tells everyone to actually commit
• What if the master crashes in the middle?

2PC: Phase 1

1. Coordinator sends REQUEST to all participants
2. Participants receive request and
3. Execute locally
4. Write VOTE_COMMIT or VOTE_ABORT to local log
5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Example—move: CàS1: delete foo from /, CàS2: add foo to /

Failure case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 decides permission problem
S2 writes/sends VOTE_ABORT

Success case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 writes add foo to /
S2 writes/sends VOTE_COMMIT

2PC: Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log
• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log
• send GLOBAL_COMMIT to participants

• Participants receive decision, write GLOBAL_* to log

2PC corner cases
Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log
• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log
• send GLOBAL_COMMIT to participants

• Participants recv decision, write GLOBAL_* to log

• What if participant crashes at X?
• Coordinator crashes at Y?
• Participant crashes at Z?
• Coordinator crashes at W?

Z

X
Y

W

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of:
• actions on unprotected objects
• protected actions that my be undone or redone
• real actions that may be deferred but not undone
• nested transactions that may be undone

• Open Nesting details:
• Nested transaction returns name and parameters of compensating transaction
• Parent includes compensating transaction in log of parent transaction
• Invoke compensating transactions from log if parent transaction aborted
• Consistent, atomic, durable, but not isolated

Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of:
• actions on unprotected objects
• protected actions that my be undone or redone
• real actions that may be deferred but not undone
• nested transactions that may be undone

• Open Nesting details:
• Nested transaction returns name and parameters of compensating transaction
• Parent includes compensating transaction in log of parent transaction
• Invoke compensating transactions from log if parent transaction aborted
• Consistent, atomic, durable, but not isolated

Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of:
• actions on unprotected objects
• protected actions that my be undone or redone
• real actions that may be deferred but not undone
• nested transactions that may be undone

• Open Nesting details:
• Nested transaction returns name and parameters of compensating transaction
• Parent includes compensating transaction in log of parent transaction
• Invoke compensating transactions from log if parent transaction aborted
• Consistent, atomic, durable, but not isolated

Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of:
• actions on unprotected objects
• protected actions that my be undone or redone
• real actions that may be deferred but not undone
• nested transactions that may be undone

• Open Nesting details:
• Nested transaction returns name and parameters of compensating transaction
• Parent includes compensating transaction in log of parent transaction
• Invoke compensating transactions from log if parent transaction aborted
• Consistent, atomic, durable, but not isolated

3 basic flavors:
* Flat: subsume inner transactions
* Closed: subsume w partial rollback
* Open: pause transactional context

Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of:
• actions on unprotected objects
• protected actions that my be undone or redone
• real actions that may be deferred but not undone
• nested transactions that may be undone

• Open Nesting details:
• Nested transaction returns name and parameters of compensating transaction
• Parent includes compensating transaction in log of parent transaction
• Invoke compensating transactions from log if parent transaction aborted
• Consistent, atomic, durable, but not isolated

3 basic flavors:
* Flat: subsume inner transactions
* Closed: subsume w partial rollback
* Open: pause transactional context

Nesting Semantics Exercise

1 BeginTX()
2 X = read(x)
3 Y = read(y)
4 write(x, X+1+Y)
5 BeginTX()
6 Z = read(z)+X+Y
7 write(z)
8 EndTX()
9 EndTX()

ß abort

What if TX aborts btw 7,8
• Under flat nesting?
• Under closed nesting?
• Under open nesting?

Transactional Memory: ACI

Transactional Memory :
• Make multiple memory accesses atomic
• All or nothing – Atomicity
• No interference – Isolation
• Correctness – Consistency
• No durability, for obvious reasons

Keywords :
 Commit, Abort,
 Speculative access, Checkpoint

Transactional Memory: ACI

Transactional Memory :
• Make multiple memory accesses atomic
• All or nothing – Atomicity
• No interference – Isolation
• Correctness – Consistency
• No durability, for obvious reasons

Keywords :
 Commit, Abort,
 Speculative access, Checkpoint

remove(list, x) {
 lock(list);
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 unlock(list);
}

Transactional Memory: ACI

Transactional Memory :
• Make multiple memory accesses atomic
• All or nothing – Atomicity
• No interference – Isolation
• Correctness – Consistency
• No durability, for obvious reasons

Keywords :
 Commit, Abort,
 Speculative access, Checkpoint

remove(list, x) {
 lock(list);
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 unlock(list);
}

remove(list, x) {
 TXBEGIN();
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 TXEND();
}

The Real Goal remove(list, x) {
 lock(list);
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 unlock(list);
}

remove(list, x) {
 TXBEGIN();
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 TXEND();
}

The Real Goal remove(list, x) {
 lock(list);
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 unlock(list);
}

remove(list, x) {
 TXBEGIN();
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 TXEND();
}

The Real Goal remove(list, x) {
 lock(list);
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 unlock(list);
}

remove(list, x) {
 TXBEGIN();
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 TXEND();
}

remove(list, x) {
 atomic {
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 }
}

The Real Goal remove(list, x) {
 lock(list);
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 unlock(list);
}

remove(list, x) {
 TXBEGIN();
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 TXEND();
}

remove(list, x) {
 atomic {
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 }
}

• Transactions: super-awesome
• Transactional Memory: also super-awesome, but:
• Transactions != TM
• TM is an implementation technique
• Often presented as programmer abstraction
• Remember Optimistic Concurrency Control

A Simple TM

A Simple TM

remove(list, x) {
 begin_tx();
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 end_tx();
}

A Simple TM

remove(list, x) {
 begin_tx();
 pos = find(list, x);
 if(pos)
 erase(list, pos);
 end_tx();
}

Actually, this
works fine…

But how can we
improve it?

Concurrency Control Revisited

Consider a hash-table

Concurrency Control Revisited

Consider a hash-table

Concurrency Control Revisited

Consider a hash-table

Concurrency Control Revisited

ht.add();

if(ht.contains())

 ht.del();

thread T1
ht.add();

if(ht.contains())
 ht.del();

thread T2

Concurrency Control Revisited

ht.add();

if(ht.contains())

 ht.del();

thread T1
ht.add();

if(ht.contains())
 ht.del();

thread T2

Concurrency Control Revisited

ht.lock()

ht.add();

if(ht.contains())

 ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())
 ht.del();

ht.unlock();

thread T2
lock

Pessimistic concurrency control

ht.lock();

ht.add();

if(ht.contains())
 ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())
 ht.del();

ht.unlock();

thread T2
lock

Pessimistic concurrency control

ht.lock();

ht.add();

if(ht.contains())
 ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())
 ht.del();

ht.unlock();

thread T2
lock

Optimistic concurrency control

ht.lock();

ht.add();

if(ht.contains())
 ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())
 ht.del();

ht.unlock();

thread T2
lock

Optimistic concurrency control

ht.lock();

ht.add();

if(ht.contains())
 ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())
 ht.del();

ht.unlock();

thread T2

Optimistic concurrency control

ht.lock();

ht.add();

if(ht.contains())
 ht.del();

ht.unlock();

thread T1
ht.lock();

ht.add();

if(ht.contains())
 ht.del();

ht.unlock();

thread T2

What do we do when
same data is accessed?

Key Ideas:
} Critical sections

execute concurrently
} Conflicts are

detected dynamically
} If conflict

serializability is
violated, rollback

Key Abstractions:
• Primitives

• xbegin, xend, xabort

• Conflict
• Φ != {W_A} {W_B U W_R}

• Contention Manager
• Need flexible policy

TM Primer

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 0

TM basics: example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0

TM basics: example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1

TM basics: example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{ }

W{}
A

TM basics: example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{ }

W{}
A

PC: 2

Working Set
R{ }
W{}

A

TM basics: example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{ }

W{}
A

PC: 2

Working Set
R{ }
W{}

A

PC: 3

Working Set
R{ }

W{}
A,B

TM basics: example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{ }

W{}
A

PC: 2

Working Set
R{ }
W{}

A

PC: 3

Working Set
R{ }

W{}
A,B

PC: 3

Working Set
R{ }

W{}
A,B

TM basics: example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{ }

W{}
A

PC: 2

Working Set
R{ }
W{}

A

PC: 3

Working Set
R{ }

W{}
A,B

PC: 3

Working Set
R{ }

W{}
A,B

PC: 6

TM basics: example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{ }

W{}
A

PC: 2

Working Set
R{ }
W{}

A

PC: 3

Working Set
R{ }

W{}
A,B

PC: 3

Working Set
R{ }

W{}
A,B

PC: 6 PC: 4

TM basics: example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{ }

W{}
A

PC: 2

Working Set
R{ }
W{}

A

PC: 3

Working Set
R{ }

W{}
A,B

PC: 3

Working Set
R{ }

W{}
A,B

PC: 6 PC: 4PC: 7

Working Set
R{ }

W{}
A,B,C

TM basics: example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{ }

W{}
A

PC: 2

Working Set
R{ }
W{}

A

PC: 3

Working Set
R{ }

W{}
A,B

PC: 3

Working Set
R{ }

W{}
A,B

PC: 6 PC: 4PC: 7

Working Set
R{ }

W{}
A,B,C

PC: 7

Working Set
R{ }
W{ }

A,B
C

CONFLICT:
C is in the read set of
cpu0, and in the write
set of cpu1

TM basics: example

0: xbegin
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

cpu 0 cpu 1

0: xbegin;
1: read A
2: read B
3: if(cpu % 2)
4: write C
5: else
6: read C
7: …
8: xend

PC: 0

Working Set
R{}
W{}

PC: 0

Working Set
R{}
W{}

PC: 1 PC: 0PC: 1PC: 2

Working Set
R{ }

W{}
A

PC: 2

Working Set
R{ }
W{}

A

PC: 3

Working Set
R{ }

W{}
A,B

PC: 3

Working Set
R{ }

W{}
A,B

PC: 6 PC: 4PC: 7

Working Set
R{ }

W{}
A,B,C

PC: 7

Working Set
R{ }
W{ }

A,B
C

Assume contention
manager decides cpu1
wins:

cpu0 rolls back

cpu1 commits

PC: 0

Working Set
R{}
W{}

PC: 8

Working Set
R{}
W{}

TM basics: example

TM Implementation

TM Implementation

Data Versioning
• Eager Versioning
• Lazy Versioning

TM Implementation

Data Versioning
• Eager Versioning
• Lazy Versioning

Conflict Detection and Resolution
• Eager Detection (Pessimistic)
• Lazy Detection (Optimistic)

TM Implementation

Data Versioning
• Eager Versioning
• Lazy Versioning

Conflict Detection and Resolution
• Eager Detection (Pessimistic)
• Lazy Detection (Optimistic)

Conflict Detection Granularity
• Object Granularity
• Word Granularity
• Cache line Granularity

TM Design Alternatives
• Hardware (HTM)

• Caches track RW set, HW speculation/checkpoint

• Software (STM)
• Instrument RW
• Inherit TX Object

Hardware

Memory

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Hardware

Memory

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

STM

Hardware Transactional Memory

• Idea: Track read / write sets in HW
• commit / rollback in hardware as well

• Cache coherent hardware already manages much of this
• Basic idea: cache == speculative storage

• HTM ~= smarter cache

• Can support many different TM paradigms
• Eager, lazy
• optimistic, pessimistic

Hardware TM

• “Small” modification to cache

Hardware TM

• “Small” modification to cache

Core

Regular
Accesses

L1 $

Ta
g

Da
ta

L1 $

Hardware TM

• “Small” modification to cache

Core

Regular
Accesses

L1 $

Ta
g

Da
ta

L1 $

Core

Regular
Accesses

Transactional $L1 $

Ta
g

Da
ta Ta
g

Ad
dl

. T
ag

O
ld

 D
at

a

N
ew

 D
at

a

Transactional
Accesses

L1 $

Hardware TM

• “Small” modification to cache

Core

Regular
Accesses

L1 $

Ta
g

Da
ta

L1 $

Core

Regular
Accesses

Transactional $L1 $

Ta
g

Da
ta Ta
g

Ad
dl

. T
ag

O
ld

 D
at

a

N
ew

 D
at

a

Transactional
Accesses

L1 $

Key ideas
• Checkpoint architectural state
• Caches: ‘versioning’ for memory
• Change coherence protocol

• Conflict detection in hardware

• ‘Commit’ transactions if no conflict
• ‘Abort’ on conflict (or special cond)
• ‘Retry’ aborted transaction

Coherence for Conflict Detection and Versioning

Coherence for Conflict Detection and Versioning

• Lines in TMI state are speculative
• Lines in TS, TE have been read
• Invalidations/Upgrades for T* à

transactional conflicts
• Commit: T* -> *
• Abort: T* à I, rollback registers

Coherence for Conflict Detection and Versioning

• Lines in TMI state are speculative
• Lines in TS, TE have been read
• Invalidations/Upgrades for T* à

transactional conflicts
• Commit: T* -> *
• Abort: T* à I, rollback registers

Pros/Cons?

Case Study: SUN Rock

• Major challenge: diagnosing cause of Transaction aborts
• Necessary for intelligent scheduling of transactions
• Also for debugging code
• debugging the processor architecture / µarchitecture

• Many unexpected causes of aborts
• Rock v1 diagnostics unable to distinguish distinct failure modes

Case Study: SUN Rock

• Major challenge: diagnosing cause of Transaction aborts
• Necessary for intelligent scheduling of transactions
• Also for debugging code
• debugging the processor architecture / µarchitecture

• Many unexpected causes of aborts
• Rock v1 diagnostics unable to distinguish distinct failure modes

HTM: Strong Isolation vs Weak Isolation

1 atomic {
2 r1 = x;
3 r2 = x;
4 }

 x = 1;

Thread 1 Thread 2

HTM: Strong Isolation vs Weak Isolation

1 atomic {
2 r1 = x;
3 r2 = x;
4 }

 x = 1;

Thread 1 Thread 2

Can r1 != r2?

HTM: Strong Isolation vs Weak Isolation

1 atomic {
2 r1 = x;
3 r2 = x;
4 }

 x = 1;

Thread 1 Thread 2

Can r1 != r2?
Non-repeatable reads

HTM: Strong Isolation vs Weak Isolation

1 atomic {
2 r1 = x;
3 r2 = x;
4 }

 x = 1;

Thread 1 Thread 2

Can r1 != r2?
Non-repeatable reads

1 atomic {
2 r = x;
3 x = r+1;
4 }

 x = 10;

Thread 1 Thread 2

Initially, x == 0

HTM: Strong Isolation vs Weak Isolation

1 atomic {
2 r1 = x;
3 r2 = x;
4 }

 x = 1;

Thread 1 Thread 2

Can r1 != r2?
Non-repeatable reads

1 atomic {
2 r = x;
3 x = r+1;
4 }

 x = 10;

Thread 1 Thread 2

Can x==1?

Initially, x == 0

HTM: Strong Isolation vs Weak Isolation

1 atomic {
2 r1 = x;
3 r2 = x;
4 }

 x = 1;

Thread 1 Thread 2

Can r1 != r2?
Non-repeatable reads

1 atomic {
2 r = x;
3 x = r+1;
4 }

 x = 10;

Thread 1 Thread 2

Can x==1?
Lost Updates

Initially, x == 0

HTM: Strong Isolation vs Weak Isolation

1 atomic {
2 r1 = x;
3 r2 = x;
4 }

 x = 1;

Thread 1 Thread 2

Can r1 != r2?
Non-repeatable reads

1 atomic {
2 r = x;
3 x = r+1;
4 }

 x = 10;

Thread 1 Thread 2

Can x==1?
Lost Updates

Initially, x == 0

1 atomic {
2 x++;
3 x++;
4 }

 r = x;

Thread 1 Thread 2

Initially, x is even

HTM: Strong Isolation vs Weak Isolation

1 atomic {
2 r1 = x;
3 r2 = x;
4 }

 x = 1;

Thread 1 Thread 2

Can r1 != r2?
Non-repeatable reads

1 atomic {
2 r = x;
3 x = r+1;
4 }

 x = 10;

Thread 1 Thread 2

Can x==1?
Lost Updates

Initially, x == 0

1 atomic {
2 x++;
3 x++;
4 }

 r = x;

Thread 1 Thread 2

Can r be odd?

Initially, x is even

HTM: Strong Isolation vs Weak Isolation

1 atomic {
2 r1 = x;
3 r2 = x;
4 }

 x = 1;

Thread 1 Thread 2

Can r1 != r2?
Non-repeatable reads

1 atomic {
2 r = x;
3 x = r+1;
4 }

 x = 10;

Thread 1 Thread 2

Can x==1?
Lost Updates

Initially, x == 0

1 atomic {
2 x++;
3 x++;
4 }

 r = x;

Thread 1 Thread 2

Can r be odd?
Dirty reads

Initially, x is even

TM Tricks

• Lock Elision
• In many data structures, accesses are contention free in the common case
• But need locks for the uncommon case where contention does occur
• For example, double ended queue
• Can replace lock with atomic section, default to lock when needed
• Allows extra parallelism in the average case

Lock Elision

hashTable.lock()
var = hashTable.lookup(X);
if (!var) hashTable.insert(X);
hashTable.unlock();

hashTable.lock()
var = hashTable.lookup(Y);
if (!var) hashTable.insert(Y);
hashTable.unlock();

Lock Elision

hashTable.lock()
var = hashTable.lookup(X);
if (!var) hashTable.insert(X);
hashTable.unlock();

hashTable.lock()
var = hashTable.lookup(Y);
if (!var) hashTable.insert(Y);
hashTable.unlock();

Hardware notices lock
Instruction sequence!

Lock Elision

hashTable.lock()
var = hashTable.lookup(X);
if (!var) hashTable.insert(X);
hashTable.unlock();

hashTable.lock()
var = hashTable.lookup(Y);
if (!var) hashTable.insert(Y);
hashTable.unlock();

atomic {
 if (!hashTable.isUnlocked()) abort;
 var = hashTable.lookup(X);
 if (!var) hashTable.insert(X);
} orElse …

atomic {
 if (!hashTable.isUnlocked()) abort;
 var = hashTable.lookup(X);
 if (!var) hashTable.insert(X);
} orElse …

Parallel Execution

Hardware notices lock
Instruction sequence!

Privatization
atomic {
 var = getWorkUnit();
 do_long_compution(var);
}

 VS

atomic {
 var = getWorkUnit();
}
do_long_compution(var);

Privatization
atomic {
 var = getWorkUnit();
 do_long_compution(var);
}

 VS

atomic {
 var = getWorkUnit();
}
do_long_compution(var);

Privatization
atomic {
 var = getWorkUnit();
 do_long_compution(var);
}

 VS

atomic {
 var = getWorkUnit();
}
do_long_compution(var);

 may only work correctly in TMs that support strong isolation.
(why?)

Work Deferral
atomic {
 do_lots_of_work();
 update_global_statistics();
}

Work Deferral
atomic {
 do_lots_of_work();
 update_global_statistics();
}

Work Deferral
atomic {
 do_lots_of_work();
 update_global_statistics();
}
atomic {
 do_lots_of_work();
 atomic open {
 update_global_statistics();
 }
}

Work Deferral
atomic {
 do_lots_of_work();
 update_global_statistics();
}

Work Deferral
atomic {
 do_lots_of_work();
 update_global_statistics();
}
atomic {
 do_lots_of_work();
 atomic open {
 update_global_statistics();
 }
}

Work Deferral
atomic {
 do_lots_of_work();
 update_global_statistics();
}

atomic {
 do_lots_of_work();
 update_local_statistics(); //effectively serializes transactions
}
atomic{
 update_global_statististics_using_local_statistics()
}

atomic {
 do_lots_of_work();
 atomic open {
 update_global_statistics();
 }
}

STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i.
§ Otherwise it returns failure.

Memory

STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i.
§ Otherwise it returns failure.

Memory

STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i.
§ Otherwise it returns failure.

Memory

STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i.
§ Otherwise it returns failure.

Memory

STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i.
§ Otherwise it returns failure.

Memory

STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i.
§ Otherwise it returns failure.

Memory

STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i.
§ Otherwise it returns failure.

Memory

STM Design Overview

Memory

Ownerships

status
version
size
locs[]
oldValues[]

Rec1

status
version
size
locs[]
oldValues[]

Rec2

status
version
size
locs[]
oldValues[]

Recn

STM Design Overview

Memory

Ownerships

status
version
size
locs[]
oldValues[]

Rec1

status
version
size
locs[]
oldValues[]

Rec2

status
version
size
locs[]
oldValues[]

Recn

This is the
shared memory,
(STM Object)

STM Design Overview

Memory

Ownerships

status
version
size
locs[]
oldValues[]

Rec1

status
version
size
locs[]
oldValues[]

Rec2

status
version
size
locs[]
oldValues[]

Recn

This is the
shared memory,
(STM Object)

Pointers to
threads
(Rec
Objects)

Threads: Rec Objects

class Rec {
boolean stable = false;
boolean, int status= (false,0); //can have two values…
boolean allWritten = false;
int version = 0;
int size = 0;
int locs[] = {null};
int oldValues[] = {null};

}

Each thread à
instance of Rec class
(short for record).

Rec instance defines
current transaction on thread

Memory: STM Object
public class STM {

int memory[];
Rec ownerships[];

public boolean, int[] startTranscation(Rec rec, int[] dataSet){...};

private void initialize(Rec rec, int[] dataSet)
private void transaction(Rec rec, int version, boolean isInitiator) {...};
private void acquireOwnerships(Rec rec, int version) {...};
private void releaseOwnershipd(Rec rec, int version) {...};
private void agreeOldValues(Rec rec, int version) {...};
private void updateMemory(Rec rec, int version, int[] newvalues) {...};

}

Flow of a transaction
ThreadsSTM

Flow of a transaction

Thread i

ThreadsSTM

Flow of a transaction

Thread i

ThreadsSTM

Flow of a transaction

startTransaction Thread i

ThreadsSTM

Flow of a transaction

startTransaction Thread i

ThreadsSTM

Flow of a transaction

startTransaction Thread i

initialize

ThreadsSTM

Flow of a transaction

startTransaction Thread i

initialize

ThreadsSTM

Flow of a transaction

startTransaction Thread i

initialize

transaction

ThreadsSTM

Flow of a transaction

startTransaction Thread i

initialize

transaction

ThreadsSTM

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

updateMemory

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

updateMemory

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

updateMemory

release
Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

updateMemory

release
Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

updateMemory

release
Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

updateMemory

release
Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

updateMemory

release
Ownerships

release
Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

updateMemory

release
Ownerships

release
Ownerships

ThreadsSTM

(Failure,failed loc)(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

updateMemory

release
Ownerships

release
Ownerships

isInitiator?

ThreadsSTM

(Failure,failed loc)

FT

(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

updateMemory

release
Ownerships

release
Ownerships

isInitiator?

ThreadsSTM

(Failure,failed loc)

FT

Initiate
helping

transaction
to failed loc

(isInitiator:=F)

(Null, 0)

Success

Flow of a transaction

startTransaction Thread i

initialize

transaction

acquire
OwnershipsagreeOldValues

calcNewValues

updateMemory

release
Ownerships

release
Ownerships

isInitiator?

ThreadsSTM

(Failure,failed loc)

FT

Initiate
helping

transaction
to failed loc

(isInitiator:=F)

(Null, 0)

Success

Failure

Implementation
public boolean, int[] startTranscation(Rec rec, int[] dataSet) {

initialize(rec, dataSet);
rec.stable = true;
transaction(rec, rec.version, true);
rec.stable = false;
rec.version++;
if (rec.status) return (true, rec.oldValues);
else return false;

}

Implementation
public boolean, int[] startTranscation(Rec rec, int[] dataSet) {

initialize(rec, dataSet);
rec.stable = true;
transaction(rec, rec.version, true);
rec.stable = false;
rec.version++;
if (rec.status) return (true, rec.oldValues);
else return false;

}

rec – The thread that
executes this
transaction.
dataSet – The
location in memory it
needs to own.

Implementation
public boolean, int[] startTranscation(Rec rec, int[] dataSet) {

initialize(rec, dataSet);
rec.stable = true;
transaction(rec, rec.version, true);
rec.stable = false;
rec.version++;
if (rec.status) return (true, rec.oldValues);
else return false;

}

This notifies
other threads
that I can be
helped

rec – The thread that
executes this
transaction.
dataSet – The
location in memory it
needs to own.

Implementation

private void transaction(Rec rec, int version, boolean isInitiator) {
acquireOwnerships(rec, version); // try to own locations

(status, failedLoc) = LL(rec.status);
if (status == null) { // success in acquireOwnerships

if (versoin != rec.version) return;
SC(rec.status, (true,0));

}

(status, failedLoc) = LL(rec.status);
if (status == true) { // execute the transaction

agreeOldValues(rec, version);
int[] newVals = calcNewVals(rec.oldvalues);
updateMemory(rec, version);
releaseOwnerships(rec, version);

}
else { // failed in acquireOwnerships

releaseOwnerships(rec, version);
if (isInitiator) {

Rec failedTrans = ownerships[failedLoc];
if (failedTrans == null) return;
else { // execute the transaction that owns the location you want

int failedVer = failedTrans.version;
if (failedTrans.stable) transaction(failedTrans, failedVer, false);

}
}

}

}

Implementation

private void transaction(Rec rec, int version, boolean isInitiator) {
acquireOwnerships(rec, version); // try to own locations

(status, failedLoc) = LL(rec.status);
if (status == null) { // success in acquireOwnerships

if (versoin != rec.version) return;
SC(rec.status, (true,0));

}

(status, failedLoc) = LL(rec.status);
if (status == true) { // execute the transaction

agreeOldValues(rec, version);
int[] newVals = calcNewVals(rec.oldvalues);
updateMemory(rec, version);
releaseOwnerships(rec, version);

}
else { // failed in acquireOwnerships

releaseOwnerships(rec, version);
if (isInitiator) {

Rec failedTrans = ownerships[failedLoc];
if (failedTrans == null) return;
else { // execute the transaction that owns the location you want

int failedVer = failedTrans.version;
if (failedTrans.stable) transaction(failedTrans, failedVer, false);

}
}

}

}

rec – The thread that
executes this
transaction.
version – Serial
number of the
transaction.
isInitiator – Am I the
initiating thread or
the helper?

Implementation

private void transaction(Rec rec, int version, boolean isInitiator) {
acquireOwnerships(rec, version); // try to own locations

(status, failedLoc) = LL(rec.status);
if (status == null) { // success in acquireOwnerships

if (versoin != rec.version) return;
SC(rec.status, (true,0));

}

(status, failedLoc) = LL(rec.status);
if (status == true) { // execute the transaction

agreeOldValues(rec, version);
int[] newVals = calcNewVals(rec.oldvalues);
updateMemory(rec, version);
releaseOwnerships(rec, version);

}
else { // failed in acquireOwnerships

releaseOwnerships(rec, version);
if (isInitiator) {

Rec failedTrans = ownerships[failedLoc];
if (failedTrans == null) return;
else { // execute the transaction that owns the location you want

int failedVer = failedTrans.version;
if (failedTrans.stable) transaction(failedTrans, failedVer, false);

}
}

}

}

rec – The thread that
executes this
transaction.
version – Serial
number of the
transaction.
isInitiator – Am I the
initiating thread or
the helper?

Another thread own
the locations I need
and it hasn’t finished
its transaction yet.

So I go out and
execute its
transaction in order
to help it.

Implementation
private void acquireOwnerships(Rec rec, int version) {

for (int j=1; j<=rec.size; j++) {
while (true) do {

int loc = locs[j];
if LL(rec.status) != null return; // transaction completed by some other thread
Rec owner = LL(ownerships[loc]);
if (rec.version != version) return;
if (owner == rec) break; // location is already mine
if (owner == null) { // acquire location

if (SC(rec.status, (null, 0))) {
 if (SC(ownerships[loc], rec)) {
 break;
 }
}

}
else {// location is taken by someone else
 if (SC(rec.status, (false, j))) return;
}

}

}
}

If I’m not the last one to
read this field, it means that
another thread is trying to
execute this transaction.
Try to loop until I succeed
or until the other thread
completes the transaction

Implementation

private void agreeOldValues(Rec rec, int version) {
for (int j=1; j<=rec.size; j++) {

int loc = locs[j];
if (LL(rec.oldvalues[loc]) != null) {

if (rec.version != version) return;
SC(rec.oldvalues[loc], memory[loc]);

}
}

}

private void updateMemory(Rec rec, int version, int[] newvalues) {
for (int j=1; j<=rec.size; j++) {

int loc = locs[j];
int oldValue = LL(memory[loc]);
if (rec.allWritten) return; // work is done
if (rec.version != version) return;
if (oldValue != newValues[j]) SC(memory[loc], newValues[j]);

}
if (! LL(rec.allWritten)) {
 if (rec.version != version) SC(rec.allWritten, true);
}

}

Copy the dataSet
to my private
space

Selectively update
the shared
memory

HTM vs. STM

Hardware Software

Fast (due to hardware operations) Slow (due to software validation/commit)

Light code instrumentation Heavy code instrumentation

HW buffers keep amount of metadata low Lots of metadata

No need of a middleware Runtime library needed

Only short transactions allowed (why?) Large transactions possible

HTM vs. STM

Hardware Software

Fast (due to hardware operations) Slow (due to software validation/commit)

Light code instrumentation Heavy code instrumentation

HW buffers keep amount of metadata low Lots of metadata

No need of a middleware Runtime library needed

Only short transactions allowed (why?) Large transactions possible

How would you get the best of both?

Hybrid-TM
• Best-effort HTM (use STM for long trx)
• Possible conflicts between HW,SW and HW-SW Trx

• What kind of conflicts do SW-Trx care about?
• What kind of conflicts do HW-Trx care about?

• Some initial proposals:
• HyTM: uses an ownership record per memory location

(overhead?)
• PhTM: HTM-only or (heavy) STM-only, low instrumentation

Questions?

