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Outline for Today
• Questions?
• Administrivia 

• Have you started the next lab yet? J

• Agenda
• Consistency
• Transactions
• Transactional Memory

• Acks: Yoav Cohen for some STM slides



Faux Quiz questions

• How are promises and futures related? Since there is disagreement 
on the nomenclature, don’t worry about which is which—just 
describe what the different objects are and how they function.
• How does HTM resemble or differ from Load-linked Stored-

Conditional?
• What are some pros and cons of HTM vs STM?
• What is Open Nesting? Closed Nesting? Flat Nesting? 
• How does 2PL differ from 2PC?
• Define ACID properties: which, if any, of these properties does TM 

relax?



Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave  with multiple CPUs
• Ordering of reads and writes

• Memory Consistency != Cache Coherence
• Coherence: propagate updates to cached copies

• Invalidate vs. Update
• Coherence vs. Consistency? 

• Coherence: ordering of ops. at a single location
• Consistency: ordering of ops. at multiple locations

4
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Sequential Consistency

• Result of any execution is same 
as if all operations execute on a 
uniprocessor

• Operations on each processor 
are totally ordered in the 
sequence and respect program 
order for each processor
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• Result of any execution is same 
as if all operations execute on a 
uniprocessor
• Operations on each processor 

are totally ordered in the 
sequence and respect program 
order for each processor

P1 P2 P3 Pn…

Memory

5

Trying to mimic Uniprocessor semantics:
• Memory operations occur:

• One at a time
• In program order 

• Read returns value of last write

• How is this different from coherence?
• Why do modern CPUs not implement SC?
• Requirements: program order, write atomicity



Sequential Consistency

• All operations are executed in some sequential order 
• each process issues operations in program order

• Any valid interleaving is allowed 
• All  agree on the same interleaving
• Each process preserves its program order



Sequential Consistency

• All operations are executed in some sequential order 
• each process issues operations in program order

• Any valid interleaving is allowed 
• All  agree on the same interleaving
• Each process preserves its program order

Are either of these SC?



Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1    P2
Flag1 = 1   Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
  enter CS    enter CS 
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  enter CS    enter CS 
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Can both P1 and P2 wind up in the 
critical section at the same time?



Do we need Sequential Consistency?

Initially, Flag1 = Flag2 = 0

P1   P2   
Flag1  = 1      
   Flag2 = 1
   if(Flag1 == 0)
       data++
if(Flag2 == 0)
 data++
  

8
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Key issue: 
• P1 and P2 may not see each other’s writes in the same order
• Implication: both in critical section, which is incorrect
• Why would this happen?



Do we need Sequential Consistency?

Initially, Flag1 = Flag2 = 0

P1   P2   
Flag1  = 1      
   Flag2 = 1
   if(Flag1 == 0)
       data++
if(Flag2 == 0)
 data++
  

8

Key issue: 
• P1 and P2 may not see each other’s writes in the same order
• Implication: both in critical section, which is incorrect
• Why would this happen?

Write Buffers
• P_0 write à queue op in write buffer, proceed
• P_0 read à look in  write buffer, 
• P_(x != 0) read à old value: write buffer hasn’t drained



Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs
• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system
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Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs
• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

9

Disadvantages:
• Difficult to implement!

• Coherence to (e.g.) write buffers is hard
• Sacrifices many potential optimizations 

• Hardware (cache) and software (compiler)
• Major performance hit



Why Relax Consistency?
• Motivation, originally

• Allow in-order processors to overlap store latency with other work
• “Other work” depends on loads, so loads bypass stores using a store queue

• PC (processor consistency), SPARC TSO, IBM/370
• Just relax read-to-write program order requirement

• Subsequently
• Hide latency of one store with latency of other stores
• Stores to be performed OOO with respect to each other
• Breaks SC even further

• This led to definition of SPARC PSO/RMO, WO, PowerPC WC, Itanium
• What’s the problem with relaxed consistency?

• Shared memory programs can break if not written for specific cons. model



Relaxed Consistency Models
• Program Order  relaxations    (different locations)

• W à R;       W à W;       R à R/W

• Write Atomicity  relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc
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Read others’ write early

Read own write early

Relaxation

Relax Write to Read program order

Relax Write to Write program order

Relax Read to Read and Read to Write  program orders

Figure 7: Relaxations allowed by memory models. The first three (program order) relaxations apply only to
operation pairs accessing different locations.

Relaxation W R W W R RW Read Others’ Read Own Safety net
Order Order Order Write Early Write Early

SC [16]
IBM 370 [14] serialization instructions

TSO [20] RMW
PC [13, 12] RMW
PSO [20] RMW, STBAR
WO [5] synchronization

RCsc [13, 12] release, acquire, nsync,
RMW

RCpc [13, 12] release, acquire, nsync,
RMW

Alpha [19] MB, WMB
RMO [21] various MEMBAR’s

PowerPC [17, 4] SYNC

Figure 8: Simple categorization of relaxed models. A indicates that the corresponding relaxation is allowed by
straightforward implementations of the corresponding model. It also indicates that the relaxation can be detected
by the programmer (by affecting the results of the program) except for the following cases. The “Read Own Write
Early” relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The “Read Others’ Write Early”
relaxation is possible and detectable with complex implementations of RCsc.

Relaxation Example Commercial Systems Providing the Relaxation
W R Order AlphaServer 8200/8400, Cray T3D, Sequent Balance, SparcCenter1000/2000
W W Order AlphaServer 8200/8400, Cray T3D
R RW Order AlphaServer 8200/8400, Cray T3D
Read Others’ Write Early Cray T3D
Read Own Write Early AlphaServer 8200/8400, Cray T3D, SparcCenter1000/2000

Figure 9: Some commercial systems that relax sequential consistency.
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static inline void arch_write_lock(arch_rwlock_t *rw) { 
   asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t" 
       "jz 1f\n" 
         "call __write_lock_failed\n\t" 
        "1:\n" 
        ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS) : "memory"); } 

x86

https://elixir.bootlin.com/linux/v3.13/C/ident/arch_write_lock
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_rwlock_t
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/volatile
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PREFIX
https://elixir.bootlin.com/linux/v3.13/C/ident/WRITE_LOCK_SUB
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PTR_REG
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/write
https://elixir.bootlin.com/linux/v3.13/C/ident/RW_LOCK_BIAS
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static inline unsigned long 
__arch_spin_trylock(arch_spinlock_t *lock) 
{
  unsigned long tmp, token;
  token = LOCK_TOKEN; 
  __asm__ __volatile__(
    "1: "  PPC_LWARX(%0,0,%2,1) "\n\
           cmpwi 0,%0,0\n\
           bne- 2f\n\  
           stwcx. %1,0,%2\n\
           bne- 1b\n"
           PPC_ACQUIRE_BARRIER
    "2:“ : "=&r" (tmp)
         : "r" (token), "r" (&lock->slock)
         : "cr0", "memory");
    return tmp;
} PowerPC



Relaxed Consistency Models
• Program Order  relaxations    (different locations)

• W à R;       W à W;       R à R/W

• Write Atomicity  relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Read others’ write early

Read own write early

Relaxation

Relax Write to Read program order

Relax Write to Write program order

Relax Read to Read and Read to Write  program orders

Figure 7: Relaxations allowed by memory models. The first three (program order) relaxations apply only to
operation pairs accessing different locations.

Relaxation W R W W R RW Read Others’ Read Own Safety net
Order Order Order Write Early Write Early

SC [16]
IBM 370 [14] serialization instructions

TSO [20] RMW
PC [13, 12] RMW
PSO [20] RMW, STBAR
WO [5] synchronization

RCsc [13, 12] release, acquire, nsync,
RMW

RCpc [13, 12] release, acquire, nsync,
RMW

Alpha [19] MB, WMB
RMO [21] various MEMBAR’s

PowerPC [17, 4] SYNC

Figure 8: Simple categorization of relaxed models. A indicates that the corresponding relaxation is allowed by
straightforward implementations of the corresponding model. It also indicates that the relaxation can be detected
by the programmer (by affecting the results of the program) except for the following cases. The “Read Own Write
Early” relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The “Read Others’ Write Early”
relaxation is possible and detectable with complex implementations of RCsc.

Relaxation Example Commercial Systems Providing the Relaxation
W R Order AlphaServer 8200/8400, Cray T3D, Sequent Balance, SparcCenter1000/2000
W W Order AlphaServer 8200/8400, Cray T3D
R RW Order AlphaServer 8200/8400, Cray T3D
Read Others’ Write Early Cray T3D
Read Own Write Early AlphaServer 8200/8400, Cray T3D, SparcCenter1000/2000

Figure 9: Some commercial systems that relax sequential consistency.

12



Some Key Consistency Models
TSO
• x86
• Stores are totally ordered, reads not
• Differs from PC by allowing early reads of processor’s own writes

RC: Release Consistency
• Key insight: only synchronization references need to be ordered
• Hence, relax memory for all other references

• Enable high-performance OOO implementation
• Programmer labels synchronization references

• Hardware must carefully order these labeled references
• Labeling schemes:

• Explicit synchronization ops (acquire/release)
• Memory fence or memory barrier ops:

• All preceding ops must finish before following ones begin

• Fence ops drain pipeline



Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc. 
• Mostly about how to express control

• Transactions 
• Mostly about how to deal with shared state
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Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)
add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problems: crash in the middle / visibility of intermediate state
• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates
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Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost
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Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost Can we use messages? E.g. 
with retries over unreliable 
medium to synchronize with 
guarantees?

No. 
Not even if all messages get 
through!



General’s paradox
• Two generals on separate mountains
• Can only communicate via messengers
• Messengers can get lost or captured
• Need to coordinate attack

• attack at same time good, different times bad!

General A à General B: let’s attack at dawn
General B à General A: OK, dawn. 
General A à General B: Check. Dawn it is. 
General B à General A: Alright already—dawn. 

…
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• Even if all messages 
delivered, can’t assume– 
maybe some message 
didn’t get through.

• No solution: one of the 
few CS impossibility 
results.
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• Core idea: one entity has the power to say yes or no for all
• Local txn: one final update (TxEND) irrevocably triggers several
• Distributed transactions

• 2 phase commit
• One machine has final say for all machines
• Other machines bound to comply

What is the role of 
synchronization here?
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What has changed from 
previous programming 
models?
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Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {
  

}

COMMIT_TXN() {
  

}

BEGIN_TXN() {
  rwset = Union(rset, wset);
  rwset = sort(rwset);
  forall x in rwset    
     LOCK(x);
}

COMMIT_TXN() {
  forall x in rwset    
     UNLOCK(x);
}

Pros/Cons?

A: grab locks
A: modify x, y,
A: unlock y, x
B: grab locks
B: update x, y
B: unlock y, x
B: COMMIT
A: CRASH

What happens on failures?

B commits 
changes that 
depend on A’s 
updates



Two-phase commit

• N participants agree or don’t (atomicity)
• Phase 1: everyone “prepares”
• Phase 2: Master decides and tells everyone to actually commit
• What if the master crashes in the middle?



2PC: Phase 1

1. Coordinator sends REQUEST to all participants
2. Participants receive request and
3. Execute locally
4. Write VOTE_COMMIT or VOTE_ABORT to local log
5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Example—move: CàS1: delete foo from /, CàS2: add foo to /

Failure case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 decides permission problem
S2 writes/sends VOTE_ABORT

Success case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 writes add foo to /
S2 writes/sends VOTE_COMMIT



2PC: Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log
• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log
• send GLOBAL_COMMIT to participants

• Participants receive decision, write GLOBAL_* to log



2PC corner cases
Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log
• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log
• send GLOBAL_COMMIT to participants

• Participants recv decision, write GLOBAL_* to log

• What if participant crashes at X?
• Coordinator crashes at Y?
• Participant crashes at Z?
• Coordinator crashes at W?

Z

X
Y

W



2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice



2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice



2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice



2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice



2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice



2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice



Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of: 
• actions on unprotected objects 
• protected actions that my be undone or redone 
• real actions that may be deferred but not undone 
• nested transactions that may be undone 

• Open Nesting details:
• Nested transaction returns name and parameters of compensating transaction 
• Parent includes compensating transaction in log of parent transaction 
• Invoke compensating transactions from log if parent transaction aborted 
• Consistent, atomic, durable, but not isolated



Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of: 
• actions on unprotected objects 
• protected actions that my be undone or redone 
• real actions that may be deferred but not undone 
• nested transactions that may be undone 

• Open Nesting details:
• Nested transaction returns name and parameters of compensating transaction 
• Parent includes compensating transaction in log of parent transaction 
• Invoke compensating transactions from log if parent transaction aborted 
• Consistent, atomic, durable, but not isolated



Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of: 
• actions on unprotected objects 
• protected actions that my be undone or redone 
• real actions that may be deferred but not undone 
• nested transactions that may be undone 

• Open Nesting details:
• Nested transaction returns name and parameters of compensating transaction 
• Parent includes compensating transaction in log of parent transaction 
• Invoke compensating transactions from log if parent transaction aborted 
• Consistent, atomic, durable, but not isolated



Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of: 
• actions on unprotected objects 
• protected actions that my be undone or redone 
• real actions that may be deferred but not undone 
• nested transactions that may be undone 

• Open Nesting details:
• Nested transaction returns name and parameters of compensating transaction 
• Parent includes compensating transaction in log of parent transaction 
• Invoke compensating transactions from log if parent transaction aborted 
• Consistent, atomic, durable, but not isolated

3 basic flavors: 
* Flat: subsume inner transactions
* Closed: subsume w partial rollback
* Open: pause transactional context 



Nested Transactions

• Composition of transactions
• E.g. interact with multiple organizations, each supporting txns
• Travel agency: canonical example

• Nesting: view transaction as collection of: 
• actions on unprotected objects 
• protected actions that my be undone or redone 
• real actions that may be deferred but not undone 
• nested transactions that may be undone 

• Open Nesting details:
• Nested transaction returns name and parameters of compensating transaction 
• Parent includes compensating transaction in log of parent transaction 
• Invoke compensating transactions from log if parent transaction aborted 
• Consistent, atomic, durable, but not isolated

3 basic flavors: 
* Flat: subsume inner transactions
* Closed: subsume w partial rollback
* Open: pause transactional context 



Nesting Semantics Exercise

1 BeginTX()
2 X = read(x)
3 Y = read(y)
4 write(x, X+1+Y)
5 BeginTX()
6  Z = read(z)+X+Y
7  write(z)
8 EndTX()
9 EndTX()

ß abort

What if TX aborts btw 7,8
• Under flat nesting?
• Under closed nesting?
• Under open nesting?



Transactional Memory: ACI

Transactional Memory : 
• Make multiple memory accesses atomic
• All or nothing – Atomicity
• No interference – Isolation
• Correctness – Consistency
• No durability, for obvious reasons

Keywords : 
 Commit, Abort, 
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The Real Goal remove(list, x) {
  lock(list);
  pos = find(list, x);
  if(pos) 
     erase(list, pos);
  unlock(list);
}

remove(list, x) {
  TXBEGIN();
  pos = find(list, x);
  if(pos) 
     erase(list, pos);
  TXEND();
}

remove(list, x) {
  atomic {
    pos = find(list, x);
    if(pos) 
      erase(list, pos);
  }
}

• Transactions: super-awesome
• Transactional Memory: also super-awesome, but:
• Transactions != TM
• TM is an implementation technique
• Often presented as programmer abstraction
• Remember Optimistic Concurrency Control
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A Simple TM

remove(list, x) {
  begin_tx();
  pos = find(list, x);
  if(pos) 
     erase(list, pos);
  end_tx();
}

Actually, this 
works fine…

But how can we 
improve it?
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ht.lock()

ht.add(   );

if(ht.contains(   ))

   ht.del(   );

ht.unlock();

thread T1
ht.lock();
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ht.unlock();

thread T2
lock



Pessimistic concurrency control

ht.lock();

ht.add(   );

if(ht.contains(   ))
   ht.del(   );

ht.unlock();

thread T1
ht.lock();

ht.add(   );

if(ht.contains(   ))
   ht.del(   );

ht.unlock();

thread T2
lock



Pessimistic concurrency control

ht.lock();

ht.add(   );

if(ht.contains(   ))
   ht.del(   );

ht.unlock();

thread T1
ht.lock();

ht.add(   );

if(ht.contains(   ))
   ht.del(   );

ht.unlock();

thread T2
lock



Optimistic concurrency control

ht.lock();

ht.add(   );

if(ht.contains(   ))
   ht.del(   );

ht.unlock();

thread T1
ht.lock();

ht.add(   );

if(ht.contains(   ))
   ht.del(   );

ht.unlock();

thread T2
lock



Optimistic concurrency control

ht.lock();

ht.add(   );

if(ht.contains(   ))
   ht.del(   );

ht.unlock();

thread T1
ht.lock();

ht.add(   );

if(ht.contains(   ))
   ht.del(   );

ht.unlock();

thread T2



Optimistic concurrency control

ht.lock();

ht.add(   );

if(ht.contains(   ))
   ht.del(   );

ht.unlock();

thread T1
ht.lock();

ht.add(   );

if(ht.contains(   ))
   ht.del(   );

ht.unlock();

thread T2

What do we do when 
same data is accessed?





Key Ideas:
} Critical sections 

execute concurrently
} Conflicts are 

detected dynamically
} If conflict 

serializability is 
violated, rollback

Key Abstractions:
• Primitives

• xbegin, xend, xabort

• Conflict
• Φ != {W_A}     {W_B U W_R}

• Contention Manager
• Need flexible policy

TM Primer
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TM Implementation

Data Versioning
• Eager Versioning
• Lazy Versioning

Conflict Detection and Resolution
• Eager Detection (Pessimistic)
• Lazy Detection (Optimistic)

Conflict Detection Granularity
• Object Granularity
• Word Granularity
• Cache line Granularity



TM Design Alternatives
• Hardware (HTM)

• Caches track RW set, HW speculation/checkpoint

• Software (STM)
• Instrument RW 
• Inherit TX Object
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Hardware Transactional Memory

• Idea: Track read / write sets in HW
• commit / rollback in hardware as well

• Cache coherent hardware already manages much of this
• Basic idea: cache == speculative storage

• HTM ~= smarter cache

• Can support many different TM paradigms
• Eager, lazy
• optimistic, pessimistic
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Key ideas
• Checkpoint architectural state
• Caches: ‘versioning’ for memory
• Change coherence protocol 

• Conflict detection in hardware

• ‘Commit’ transactions if no conflict
• ‘Abort’ on conflict (or special cond)
• ‘Retry’ aborted transaction
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• Lines in TMI state are speculative
• Lines in TS, TE have been read
• Invalidations/Upgrades for T* à 

transactional conflicts
• Commit: T* -> *
• Abort: T* à I, rollback registers



Coherence for Conflict Detection and Versioning

• Lines in TMI state are speculative
• Lines in TS, TE have been read
• Invalidations/Upgrades for T* à 

transactional conflicts
• Commit: T* -> *
• Abort: T* à I, rollback registers

Pros/Cons?



Case Study: SUN Rock

• Major challenge: diagnosing cause of Transaction aborts
• Necessary for intelligent scheduling of transactions
• Also for debugging code
• debugging the processor architecture / µarchitecture

• Many unexpected causes of aborts
• Rock v1 diagnostics unable to distinguish distinct failure modes
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HTM: Strong Isolation vs Weak Isolation

1 atomic {
2 r1 = x;
3  r2 = x;
4 } 

   x = 1;

Thread 1 Thread 2

Can r1 != r2?
Non-repeatable reads

1 atomic {
2 r = x;
3  x = r+1;
4 } 

   x = 10;

Thread 1 Thread 2

Can x==1?
Lost Updates

Initially, x == 0

1 atomic {
2 x++;
3  x++;
4 } 

   r = x;

Thread 1 Thread 2

Can r be odd?
Dirty reads

Initially, x is even



TM Tricks

• Lock Elision
• In many data structures, accesses are contention free in the common case
• But need locks for the uncommon case where contention does occur
• For example, double ended queue
• Can replace lock with atomic section, default to lock when needed 
• Allows extra parallelism in the average case 
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Lock Elision

hashTable.lock()
var = hashTable.lookup(X);
if (!var) hashTable.insert(X);
hashTable.unlock();

hashTable.lock()
var = hashTable.lookup(Y);
if (!var) hashTable.insert(Y);
hashTable.unlock();

atomic {
 if (!hashTable.isUnlocked()) abort;
 var = hashTable.lookup(X);
 if (!var) hashTable.insert(X);
} orElse …

atomic {
 if (!hashTable.isUnlocked()) abort;
 var = hashTable.lookup(X);
 if (!var) hashTable.insert(X);
} orElse …

Parallel Execution 

Hardware notices lock 
Instruction sequence!
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Privatization
atomic {
 var = getWorkUnit();
 do_long_compution(var);
}

  VS

atomic {
 var = getWorkUnit();
}
do_long_compution(var);

  may only work correctly in TMs that support strong isolation.
(why?)
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Work Deferral
atomic {
  do_lots_of_work();
  update_global_statistics();
} 

atomic {
  do_lots_of_work();
  update_local_statistics(); //effectively serializes transactions
}
atomic{
 update_global_statististics_using_local_statistics()
}

atomic {
  do_lots_of_work();
  atomic open {
   update_global_statistics();
 }
}



STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i. 
§ Otherwise it returns failure.

Memory



STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i. 
§ Otherwise it returns failure.

Memory



STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i. 
§ Otherwise it returns failure.

Memory



STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i. 
§ Otherwise it returns failure.

Memory



STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i. 
§ Otherwise it returns failure.

Memory



STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i. 
§ Otherwise it returns failure.

Memory



STM: System Model

System == <threads, memory>
Memory cell support 4 operations:

§ Writei(L,v) - thread i writes v to L
§ Readi(L,v) - thread i reads v from L
§ LLi(L,v) - thread i reads v from L, marks L read by I
§ SCi(L,v) - thread i writes v to L

§ returns success if L is marked as read by i. 
§ Otherwise it returns failure.

Memory



STM Design Overview

Memory

Ownerships

status
version
size
locs[]
oldValues[]

Rec1

status
version
size
locs[]
oldValues[]

Rec2

status
version
size
locs[]
oldValues[]

Recn



STM Design Overview

Memory

Ownerships

status
version
size
locs[]
oldValues[]

Rec1

status
version
size
locs[]
oldValues[]

Rec2

status
version
size
locs[]
oldValues[]

Recn

This is the 
shared memory,
(STM Object)



STM Design Overview

Memory

Ownerships

status
version
size
locs[]
oldValues[]

Rec1

status
version
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oldValues[]

Rec2

status
version
size
locs[]
oldValues[]

Recn

This is the 
shared memory,
(STM Object)

Pointers to 
threads
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Objects)



Threads: Rec Objects

class Rec {
boolean stable = false;
boolean, int status= (false,0);  //can have two values…
boolean allWritten = false;
int version = 0;
int size = 0;
int locs[] = {null};
int oldValues[] = {null};

}

Each thread à
instance of Rec class
(short for record).

Rec instance defines
current transaction on thread



Memory: STM Object
public class STM {

int memory[];
Rec ownerships[];

  
public boolean, int[] startTranscation(Rec rec, int[] dataSet){...};

private void initialize(Rec rec, int[] dataSet)
private void transaction(Rec rec, int version, boolean isInitiator) {...};
private void acquireOwnerships(Rec rec, int version) {...};
private void releaseOwnershipd(Rec rec, int version) {...};
private void agreeOldValues(Rec rec, int version) {...};
private void updateMemory(Rec rec, int version, int[] newvalues) {...};

}
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Implementation
public boolean, int[] startTranscation(Rec rec, int[] dataSet) {

initialize(rec, dataSet);
rec.stable = true;
transaction(rec, rec.version, true);
rec.stable = false;
rec.version++;
if (rec.status) return (true, rec.oldValues);
else return false;

}
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other threads 
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Implementation

private void transaction(Rec rec, int version, boolean isInitiator) {
acquireOwnerships(rec, version); // try to own locations

(status, failedLoc) = LL(rec.status); 
if (status == null) {  // success in acquireOwnerships

if (versoin != rec.version) return;
SC(rec.status, (true,0)); 

}

(status, failedLoc) = LL(rec.status);
if (status == true) {  // execute the transaction

agreeOldValues(rec, version);
int[] newVals = calcNewVals(rec.oldvalues); 
updateMemory(rec, version);
releaseOwnerships(rec, version);

}
else {   // failed in acquireOwnerships

releaseOwnerships(rec, version);
if (isInitiator) {

Rec failedTrans = ownerships[failedLoc];
if (failedTrans == null) return;
else {  // execute the transaction that owns the location you want

int failedVer = failedTrans.version;
if (failedTrans.stable) transaction(failedTrans, failedVer, false);

}
}

}

}
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initiating thread or 
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Implementation
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(status, failedLoc) = LL(rec.status); 
if (status == null) {  // success in acquireOwnerships

if (versoin != rec.version) return;
SC(rec.status, (true,0)); 

}
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if (status == true) {  // execute the transaction
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updateMemory(rec, version);
releaseOwnerships(rec, version);

}
else {   // failed in acquireOwnerships

releaseOwnerships(rec, version);
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Rec failedTrans = ownerships[failedLoc];
if (failedTrans == null) return;
else {  // execute the transaction that owns the location you want

int failedVer = failedTrans.version;
if (failedTrans.stable) transaction(failedTrans, failedVer, false);

}
}

}

}

rec – The thread that 
executes this 
transaction.
version – Serial 
number of the 
transaction.
isInitiator – Am I the 
initiating thread or 
the helper?

Another thread own 
the locations I need 
and it hasn’t finished 
its transaction yet.

So I go out and 
execute its 
transaction in order 
to help it. 



Implementation
private void acquireOwnerships(Rec rec, int version) {

for (int j=1; j<=rec.size; j++) {
while (true) do {

int loc = locs[j];
if LL(rec.status) != null return;     // transaction completed by some other thread
Rec owner = LL(ownerships[loc]);      
if (rec.version != version) return; 
if (owner == rec) break; // location is already mine
if (owner == null) { // acquire location

if ( SC(rec.status, (null, 0)) ) {
   if ( SC(ownerships[loc], rec) ) {
      break;
   }
}

}
else {// location is taken by someone else
  if ( SC(rec.status, (false, j)) ) return;
}

}

}
}

If I’m not the last one to 
read this field, it means that 
another thread is trying to 
execute this transaction. 
Try to loop until I succeed 
or until the other thread 
completes the transaction



Implementation

private void agreeOldValues(Rec rec, int version) {
for (int j=1; j<=rec.size; j++) {

int loc = locs[j];
if ( LL(rec.oldvalues[loc]) != null ) {

if (rec.version != version) return;
SC(rec.oldvalues[loc], memory[loc]);

}
}

}

private void updateMemory(Rec rec, int version, int[] newvalues) {
for (int j=1; j<=rec.size; j++) {

int loc = locs[j];
int oldValue = LL(memory[loc]);
if (rec.allWritten) return;     // work is done
if (rec.version != version) return;
if (oldValue != newValues[j]) SC(memory[loc], newValues[j]);

}
if (! LL(rec.allWritten) ) {
 if (rec.version != version) SC(rec.allWritten, true);
}

}

Copy the dataSet 
to my private 
space

Selectively update  
the shared 
memory



HTM vs. STM

Hardware Software

Fast (due to hardware operations) Slow (due to software validation/commit)

Light code instrumentation Heavy code instrumentation

HW buffers keep amount of metadata low Lots of metadata

No need of a middleware Runtime library needed

Only short transactions allowed (why?) Large transactions possible



HTM vs. STM

Hardware Software

Fast (due to hardware operations) Slow (due to software validation/commit)

Light code instrumentation Heavy code instrumentation

HW buffers keep amount of metadata low Lots of metadata

No need of a middleware Runtime library needed

Only short transactions allowed (why?) Large transactions possible

How would you get the best of both?



Hybrid-TM
• Best-effort HTM (use STM for long trx)
• Possible conflicts between HW,SW and HW-SW Trx

• What kind of conflicts do  SW-Trx care about?
• What kind of conflicts do  HW-Trx care about?

• Some initial proposals:
• HyTM: uses an ownership record per memory location 

(overhead?)
• PhTM: HTM-only or (heavy) STM-only, low instrumentation



Questions?


