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}

Ownership/Borrowing
fn helper(name: String) {

  println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

Pass by reference takes “ownership implicitly” in other languages like Java

What kinds of problems might this prevent?
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Shared Borrowing
fn helper(name: &String) {

  println!(“{}”, name);

}

Lend the string

Take a reference to a String

Why does this fix the problem?
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  let name = format!("...");

  helper(&name);

  helper(&name);

}

Shared Borrowing with Concurrency
fn helper(name: &String) {

  thread::spawn(||{

    println!("{}", name);

  });

}

Lifetime `static` required

Does this prevent the exact same class of problems?
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fn main() {

  let name = format!("...");

  helper(name.clone());

  helper(name);

}

Clone, Move
fn helper(name: String) {

  thread::spawn(move || {

    println!("{}", name);

  });

}

Is this better?

Explicitly take ownership

Ensure concurrent owners 
Work with different copies

Copy versus Clone:
Default: Types cannot be copied
• Values move from place to place
• E.g. file descriptor
Clone: Type is expensive to copy
• Make it explicit with clone call
• e.g. Hashtable
Copy: type implicitly copy-able
• e.g. u32, i32, f32, …
#[derive(Clone, Debug)]
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struct Structure {

    id: i32,

    map: HashMap<String, f32>,
}

impl Structure {

    fn mutate(&mut self, name: String, value: f32){

        self.map.insert(name, value);
    }

}

Mutability

Key idea:
• Force mutation and ownership to be explicit
• Fixes MM *and* concurrency in fell swoop!
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Sharing State: Channels

APIs return Option<T>
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Sharing State: Arc and Mutex

Key ideas:
• Use reference counting wrapper to pass refs
• Use scoped lock for mutual exclusion
• Actually compiles à works 1st time!

Anyone see the error here?
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Would cloning var_arc fix it?
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Same problem!

What if we just don’t move?
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Sharing State: Arc and Mutex, really

What’s the actual fix?
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Compiles! Yay!
Other fixes?
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Why does this compile?
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Discussion

GC lambdas, Rust C++
• This is pretty nuanced: 
• Stack closures, owned closures, managed closures, exchg heaps
Ownership and Macros

Macros use regexp and expand to closures



Summary

Rust: best of both worlds
systems vs productivity language

Separate sharing, mutability, concurrency
Type safety solves MM and concurrency
Have fun with the lab!



Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)
add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problem: crash in the middle
• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates
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Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques

• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions
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Two-phase commit

• N participants agree or don’t (atomicity)
• Phase 1: everyone “prepares”
• Phase 2: Master decides and tells everyone to actually commit
• What if the master crashes in the middle?



2PC: Phase 1

1. Coordinator sends REQUEST to all participants
2. Participants receive request and
3. Execute locally
4. Write VOTE_COMMIT or VOTE_ABORT to local log
5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Example—move: CàS1: delete foo from /, CàS2: add foo to /

Failure case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 decides permission problem
S2 writes/sends VOTE_ABORT

Success case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 writes add foo to /
S2 writes/sends VOTE_COMMIT



2PC: Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log
• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log
• send GLOBAL_COMMIT to participants

• Participants receive decision, write GLOBAL_* to log



2PC corner cases
Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log
• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log
• send GLOBAL_COMMIT to participants

• Participants recv decision, write GLOBAL_* to log

• What if participant crashes at X?
• Coordinator crashes at Y?
• Participant crashes at Z?
• Coordinator crashes at W?

Z

X
Y

W



2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice
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Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request
4. Pooch delivered (not shown)

Purchase
Pooch

How to handle lots and lots of dogs?



3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
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3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

Vertical scale gets you a long 
way, but there is always a 

bigger problem size



Horizontal Scale: Goal
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Distributed Memory 
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)
Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Cluster of SMPs
• Shared memory in SMP 

node
• Messaging ßà SMP nodes

• also regarded as MPP if 
processor # is large

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP
network
interface

Multicore SMP+GPU Cluster 
• Shared mem in SMP node
• Messaging between nodes

• GPU accelerators attached

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP



What requires extreme scale?

Simulations—why?
Simulations are sometimes more
cost effective than experiments

Why extreme scale?
More compute cycles, more
memory, etc, lead for faster
and/or more accurate simulations
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How big is “extreme” scale?

Measured in FLOPs
FLoating point Operations Per second

1 GigaFLOP = 1 billion FLOPs
1 TeraFLOP = 1000 GigaFLOPs
1 PetaFLOP = 1000 TeraFLOPs

Most current super computers
1 ExaFLOP = 1000 PetaFLOPs

Arriving in 2018 (supposedly)
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non-local data
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Parallel applications partitioned across
Processors: execution units
Memory: data partitioning

Scalable architecture
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Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection 
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many 
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch
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Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
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bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many 
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Is this different from metrics we’ve 
cared about so far? 
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focus attention on costly aspect of parallel computation

Synchronization à
naturally associated with sending messages
reduces possibility for errors from incorrect synchronization 

Easier to use sender-initiated communication à
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focus attention on costly aspect of parallel computation

Synchronization à
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Can you think of any disadvantages?
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SPMD

Data distributed across processes
Not shared à shared nothing

~~~~~
~~~
~~~~
~~

~~~~~
~~~
~~~~
~~

~~~~~
~~~
~~~~
~~

~~~~~
~~~
~~~~
~~

Shared
program

Multiple
data

“Owner compute” rule:
Process that “owns”
the data (local data)
performs computations
on that data 
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Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving processʼs memory made with receiverʼs explicit 
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)
Receive(data)

time
Familiar argument?
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One-Sided Operations

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
 Communication and synchronization are decoupled

Process 0 Process 1
Put(data)

(memory)
(memory)

Get(data)
time

Are 1-sided 
operations better 
for performance?



A Simple MPI Program

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )
{
    MPI_Init( &argc, &argv );
    printf( "Hello, world!\n" );
    MPI_Finalize();
    return 0;
}
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Give processes what they need to know
Wait…what do they need to know?

Configure OS-level resources
Configure tools that are running with MPI
…
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MPI-1 does not specify how to run an MPI program

Starting an MPI program is dependent on implementation
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How many processes are being use in computation?
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MPI provides functions to answer these questions
MPI_Comm_size reports the number of processes
MPI_Comm_rank reports the rank

number between 0 and size-1
identifies the calling process
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#include "mpi.h"
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Hello World Revisited

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )
{
    int rank, size;
    MPI_Init( &argc, &argv );
    MPI_Comm_rank( MPI_COMM_WORLD, &rank );
    MPI_Comm_size( MPI_COMM_WORLD, &size );
    printf( "I am %d of %d\n", rank, size );
    MPI_Finalize();
    return 0;
}

r What does this program do?
Comm?
“Communicator”



Basic Concepts

Processes can be collected into groups
Each message is sent in a context

Must be received in the same context!

A group and context together form a communicator
A process is identified by its rank 

With respect to the group associated with a communicator

There is a default communicator MPI_COMM_WORLD
Contains all initial processes



MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

The message buffer is described by:
start, count, datatype

The target process is specified by dest
Rank of the target process in the communicator
specified by comm

Process blocks until:
Data has been delivered to the system
Buffer can then be reused

Message may not have been received by target process!



MPI Datatypes

Message data (sent or received) is described by a triple
address, count, datatype

An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise
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Messages are sent with an accompanying user-defined integer tag
Assist the receiving process in identifying the message

Messages can be screened at receiving end by specifying specific tag
MPI_ANY_TAG matches any tag in a receive

Tags are sometimes called “message types”
MPI calls them “tags” to avoid confusion with datatypes
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MPI with Only Six Functions

Many parallel programs can be written using:
MPI_INIT()
MPI_FINALIZE()

MPI_COMM_SIZE()
MPI_COMM_RANK()
MPI_SEND()

MPI_RECV()

Why have any other APIs (e.g. broadcast, reduce, etc.)?

Point-to-point (send/recv) isn’t always the most efficient...
Add more support for communication
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To use or not use MPI?

• USE
• You need a portable parallel program
• You are writing a parallel library
• You have irregular or dynamic data relationships
• You care about performance

• NOT USE
• You don’t need parallelism at all
• You can use libraries (which may be written in MPI) or other tools
• You can use multi-threading in a concurrent environment

• You don’t need extreme scale
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