
cs378

Rust + 2PC
Parallelism at Scale: MPI

Outline for Today

SOSP
Project
2PC review
Rust Wrapup
Scale
MPI

Acknowledgements:

Portions of the lectures slides were adopted from:
Argonne National Laboratory, MPI tutorials.
Lawrence Livermore National Laboratory, MPI tutorials
See online tutorial links in course webpage

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing
Interface, MIT Press, ISBN 0-262-57133-1, 1999.

W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the Message Passing Interface,
MIT Press, ISBN 0-262-57132-3, 1999.

http://www-unix.mcs.anl.gov/mpi/usingmpi/
http://www-unix.mcs.anl.gov/mpi/usingmpi/
http://www-unix.mcs.anl.gov/mpi/usingmpi2/

Project Proposal

• A very good example

https://docs.google.com/document/d/1nguoQg0SrVSCLRdlurwsqpO9whFtv4L4e5P48zP5h-I/edit

Project Proposal

• A very good example

Ideas:
• Heterogeneity
• Transactional

Memory
• Julia, X10, Chapel
• Actor Models: Akka
• Dataflow Models
• Race Detection
• Lock-free data

structures
• ….
The sky is the limit

https://docs.google.com/document/d/1nguoQg0SrVSCLRdlurwsqpO9whFtv4L4e5P48zP5h-I/edit

Project Proposal

• A very good example

Questions?

Ideas:
• Heterogeneity
• Transactional

Memory
• Julia, X10, Chapel
• Actor Models: Akka
• Dataflow Models
• Race Detection
• Lock-free data

structures
• ….
The sky is the limit

https://docs.google.com/document/d/1nguoQg0SrVSCLRdlurwsqpO9whFtv4L4e5P48zP5h-I/edit

fn main() {

 let name = format!("...");

 helper(name);

}

Ownership/Borrowing

fn main() {

 let name = format!("...");

 helper(name);

}

Ownership/Borrowing

fn main() {

 let name = format!("...");

 helper(name);

}

Ownership/Borrowing
fn helper(name: String) {

 println!(“{}”, name);

}

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing
fn helper(name: String) {

 println!(“{}”, name);

}

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing
fn helper(name: String) {

 println!(“{}”, name);

}

Error: use of moved value: `name`

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing
fn helper(name: String) {

 println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing
fn helper(name: String) {

 println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing
fn helper(name: String) {

 println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

What kinds of problems might this prevent?

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing
fn helper(name: String) {

 println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

Pass by reference takes “ownership implicitly” in other languages like Java

What kinds of problems might this prevent?

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing
fn helper(name: &String) {

 println!(“{}”, name);

}

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing
fn helper(name: &String) {

 println!(“{}”, name);

}

Lend the string

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing
fn helper(name: &String) {

 println!(“{}”, name);

}

Lend the string

Take a reference to a String

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing
fn helper(name: &String) {

 println!(“{}”, name);

}

Lend the string

Take a reference to a String

Why does this fix the problem?

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing with Concurrency
fn helper(name: &String) {

 thread::spawn(||{

 println!("{}", name);

 });

}

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing with Concurrency
fn helper(name: &String) {

 thread::spawn(||{

 println!("{}", name);

 });

}

Lifetime `static` required

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing with Concurrency
fn helper(name: &String) {

 thread::spawn(||{

 println!("{}", name);

 });

}

Lifetime `static` required

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing with Concurrency
fn helper(name: &String) {

 thread::spawn(||{

 println!("{}", name);

 });

}

Lifetime `static` required

Does this prevent the exact same class of problems?

fn main() {

 let name = format!("...");

 helper(name.clone());

 helper(name);

}

Clone, Move
fn helper(name: String) {

 thread::spawn(move || {

 println!("{}", name);

 });

}

fn main() {

 let name = format!("...");

 helper(name.clone());

 helper(name);

}

Clone, Move
fn helper(name: String) {

 thread::spawn(move || {

 println!("{}", name);

 });

}
Explicitly take ownership

fn main() {

 let name = format!("...");

 helper(name.clone());

 helper(name);

}

Clone, Move
fn helper(name: String) {

 thread::spawn(move || {

 println!("{}", name);

 });

}
Explicitly take ownership

Ensure concurrent owners
Work with different copies

fn main() {

 let name = format!("...");

 helper(name.clone());

 helper(name);

}

Clone, Move
fn helper(name: String) {

 thread::spawn(move || {

 println!("{}", name);

 });

}

Is this better?

Explicitly take ownership

Ensure concurrent owners
Work with different copies

fn main() {

 let name = format!("...");

 helper(name.clone());

 helper(name);

}

Clone, Move
fn helper(name: String) {

 thread::spawn(move || {

 println!("{}", name);

 });

}

Is this better?

Explicitly take ownership

Ensure concurrent owners
Work with different copies

Copy versus Clone:
Default: Types cannot be copied
• Values move from place to place
• E.g. file descriptor
Clone: Type is expensive to copy
• Make it explicit with clone call
• e.g. Hashtable
Copy: type implicitly copy-able
• e.g. u32, i32, f32, …
#[derive(Clone, Debug)]

struct Structure {

 id: i32,

 map: HashMap<String, f32>,
}

impl Structure {

 fn mutate(&self, name: String, value: f32) {

 self.map.insert(name, value);
 }

}

Mutability

struct Structure {

 id: i32,

 map: HashMap<String, f32>,
}

impl Structure {

 fn mutate(&self, name: String, value: f32) {

 self.map.insert(name, value);
 }

}

Mutability

Error: cannot be borrowed as mutable

struct Structure {

 id: i32,

 map: HashMap<String, f32>,
}

impl Structure {

 fn mutate(&self, name: String, value: f32) {

 self.map.insert(name, value);
 }

}

Mutability

Error: cannot be borrowed as mutable

struct Structure {

 id: i32,

 map: HashMap<String, f32>,
}

impl Structure {

 fn mutate(&mut self, name: String, value: f32){

 self.map.insert(name, value);
 }

}

Mutability

struct Structure {

 id: i32,

 map: HashMap<String, f32>,
}

impl Structure {

 fn mutate(&mut self, name: String, value: f32){

 self.map.insert(name, value);
 }

}

Mutability

struct Structure {

 id: i32,

 map: HashMap<String, f32>,
}

impl Structure {

 fn mutate(&mut self, name: String, value: f32){

 self.map.insert(name, value);
 }

}

Mutability

Key idea:
• Force mutation and ownership to be explicit
• Fixes MM *and* concurrency in fell swoop!

fn main() {
 let (tx0, rx0) = channel();
 thread::spawn(move || {
 let (tx1, rx1) = channel();
 tx0.send((format!("yo"), tx1)).unwrap();
 let response = rx1.recv().unwrap();
 println!("child got {}", response);
 });
 let (message, tx1) = rx0.recv().unwrap();
 tx1.send(format!("what up!")).unwrap();
 println("parent received {}", message);
}

Sharing State: Channels

fn main() {
 let (tx0, rx0) = channel();
 thread::spawn(move || {
 let (tx1, rx1) = channel();
 tx0.send((format!("yo"), tx1)).unwrap();
 let response = rx1.recv().unwrap();
 println!("child got {}", response);
 });
 let (message, tx1) = rx0.recv().unwrap();
 tx1.send(format!("what up!")).unwrap();
 println("parent received {}", message);
}

Sharing State: Channels

fn main() {
 let (tx0, rx0) = channel();
 thread::spawn(move || {
 let (tx1, rx1) = channel();
 tx0.send((format!("yo"), tx1)).unwrap();
 let response = rx1.recv().unwrap();
 println!("child got {}", response);
 });
 let (message, tx1) = rx0.recv().unwrap();
 tx1.send(format!("what up!")).unwrap();
 println("parent received {}", message);
}

Sharing State: Channels

fn main() {
 let (tx0, rx0) = channel();
 thread::spawn(move || {
 let (tx1, rx1) = channel();
 tx0.send((format!("yo"), tx1)).unwrap();
 let response = rx1.recv().unwrap();
 println!("child got {}", response);
 });
 let (message, tx1) = rx0.recv().unwrap();
 tx1.send(format!("what up!")).unwrap();
 println("parent received {}", message);
}

Sharing State: Channels

fn main() {
 let (tx0, rx0) = channel();
 thread::spawn(move || {
 let (tx1, rx1) = channel();
 tx0.send((format!("yo"), tx1)).unwrap();
 let response = rx1.recv().unwrap();
 println!("child got {}", response);
 });
 let (message, tx1) = rx0.recv().unwrap();
 tx1.send(format!("what up!")).unwrap();
 println("parent received {}", message);
}

Sharing State: Channels

fn main() {
 let (tx0, rx0) = channel();
 thread::spawn(move || {
 let (tx1, rx1) = channel();
 tx0.send((format!("yo"), tx1)).unwrap();
 let response = rx1.recv().unwrap();
 println!("child got {}", response);
 });
 let (message, tx1) = rx0.recv().unwrap();
 tx1.send(format!("what up!")).unwrap();
 println("parent received {}", message);
}

Sharing State: Channels

fn main() {
 let (tx0, rx0) = channel();
 thread::spawn(move || {
 let (tx1, rx1) = channel();
 tx0.send((format!("yo"), tx1)).unwrap();
 let response = rx1.recv().unwrap();
 println!("child got {}", response);
 });
 let (message, tx1) = rx0.recv().unwrap();
 tx1.send(format!("what up!")).unwrap();
 println("parent received {}", message);
}

Sharing State: Channels

“yo!”

fn main() {
 let (tx0, rx0) = channel();
 thread::spawn(move || {
 let (tx1, rx1) = channel();
 tx0.send((format!("yo"), tx1)).unwrap();
 let response = rx1.recv().unwrap();
 println!("child got {}", response);
 });
 let (message, tx1) = rx0.recv().unwrap();
 tx1.send(format!("what up!")).unwrap();
 println("parent received {}", message);
}

Sharing State: Channels

“yo!”“what up!”

fn main() {
 let (tx0, rx0) = channel();
 thread::spawn(move || {
 let (tx1, rx1) = channel();
 tx0.send((format!("yo"), tx1)).unwrap();
 let response = rx1.recv().unwrap();
 println!("child got {}", response);
 });
 let (message, tx1) = rx0.recv().unwrap();
 tx1.send(format!("what up!")).unwrap();
 println("parent received {}", message);
}

Sharing State: Channels

fn main() {
 let (tx0, rx0) = channel();
 thread::spawn(move || {
 let (tx1, rx1) = channel();
 tx0.send((format!("yo"), tx1)).unwrap();
 let response = rx1.recv().unwrap();
 println!("child got {}", response);
 });
 let (message, tx1) = rx0.recv().unwrap();
 tx1.send(format!("what up!")).unwrap();
 println("parent received {}", message);
}

Sharing State: Channels

APIs return Option<T>

fn main() {

 let var = Structure::new();

for i in 0..N {
 thread::spawn(move || {

 // ok to mutate var?
 });

 }

}

Sharing State

fn main() {

 let var = Structure::new();

for i in 0..N {
 thread::spawn(move || {

 // ok to mutate var?
 });

 }

}

Sharing State

fn main() {
 let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex

fn main() {
 let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex

fn main() {
 let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex

fn main() {
 let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex

fn main() {
 let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex

fn main() {
 let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex

Key ideas:
• Use reference counting wrapper to pass refs
• Use scoped lock for mutual exclusion
• Actually compiles à works 1st time!

fn main() {
 let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex

Key ideas:
• Use reference counting wrapper to pass refs
• Use scoped lock for mutual exclusion
• Actually compiles à works 1st time!

Anyone see the error here?

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

Why doesn’t “&” fix it?
(&var_arc, instead of just var_arc)

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

Why doesn’t “&” fix it?
(&var_arc, instead of just var_arc)

Would cloning var_arc fix it?

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc.clone());
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc.clone());
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc.clone());
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

Same problem!

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc.clone());
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

Same problem!

What if we just don’t move?

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(|| {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(|| {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(|| {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

What’s the actual fix?

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

let clone_arc = var_arc.clone();
 thread::spawn(move || {
 let ldata = Arc::clone(&clone_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

let clone_arc = var_arc.clone();
 thread::spawn(move || {
 let ldata = Arc::clone(&clone_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }
}

Sharing State: Arc and Mutex, really

Compiles! Yay!
Other fixes?

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }

}

Sharing State: Arc and Mutex, really

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }

}

Sharing State: Arc and Mutex, really

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }

}

Sharing State: Arc and Mutex, really

Why does this compile?

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }

}

Sharing State: Arc and Mutex, really

Could we use a vec of JoinHandle
to keep var_arc in scope?

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }

}

Sharing State: Arc and Mutex, really

Could we use a vec of JoinHandle
to keep var_arc in scope?

for i in 0..N { join(); }

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }

}

Sharing State: Arc and Mutex, really

Could we use a vec of JoinHandle
to keep var_arc in scope?

for i in 0..N { join(); }

What if I need my lambda to own
some things and borrow others?

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }

}

Sharing State: Arc and Mutex, really

Could we use a vec of JoinHandle
to keep var_arc in scope?

for i in 0..N { join(); }

What if I need my lambda to own
some things and borrow others?

Parameters!

fn test() {
 let var = Structure::new();

let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

 thread::spawn(move || {
 let ldata = Arc::clone(&var_arc);
 let vdata = ldata.lock();
 // ok to mutate var (vdata)!
 });
 }

}

Sharing State: Arc and Mutex, really

Could we use a vec of JoinHandle
to keep var_arc in scope?

for i in 0..N { join(); }

What if I need my lambda to own
some things and borrow others?

Parameters!

Discussion

GC lambdas, Rust C++
• This is pretty nuanced:
• Stack closures, owned closures, managed closures, exchg heaps
Ownership and Macros

Macros use regexp and expand to closures

Summary

Rust: best of both worlds
systems vs productivity language

Separate sharing, mutability, concurrency
Type safety solves MM and concurrency
Have fun with the lab!

Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)
add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problem: crash in the middle
• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates

Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)
add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problem: crash in the middle
• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates

Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)
add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problem: crash in the middle
• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates

Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques

• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions

Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques

• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions

Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques
• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions

Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques
• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions

Key problems:
• output commit
• synchronization

Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques
• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions

Key problems:
• output commit
• synchronization

Two-phase commit

• N participants agree or don’t (atomicity)
• Phase 1: everyone “prepares”
• Phase 2: Master decides and tells everyone to actually commit
• What if the master crashes in the middle?

2PC: Phase 1

1. Coordinator sends REQUEST to all participants
2. Participants receive request and
3. Execute locally
4. Write VOTE_COMMIT or VOTE_ABORT to local log
5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Example—move: CàS1: delete foo from /, CàS2: add foo to /

Failure case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 decides permission problem
S2 writes/sends VOTE_ABORT

Success case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 writes add foo to /
S2 writes/sends VOTE_COMMIT

2PC: Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log
• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log
• send GLOBAL_COMMIT to participants

• Participants receive decision, write GLOBAL_* to log

2PC corner cases
Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log
• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log
• send GLOBAL_COMMIT to participants

• Participants recv decision, write GLOBAL_* to log

• What if participant crashes at X?
• Coordinator crashes at Y?
• Participant crashes at Z?
• Coordinator crashes at W?

Z

X
Y

W

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!

• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!
• Reliable replacement of crashed “leader”
• 2PC often good enough in practice

Questions?

Scale Out vs Scale Up

Scale Out vs Scale Up

Scale Out vs Scale Up

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request
4. Pooch delivered (not shown)

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request
4. Pooch delivered (not shown)

Hot Startup Idea:
www.purchase-a-pooch.biz

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request
4. Pooch delivered (not shown)

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request
4. Pooch delivered (not shown)

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request
4. Pooch delivered (not shown)

Purchase
Pooch

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request
4. Pooch delivered (not shown)

Purchase
Pooch

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request
4. Pooch delivered (not shown)

Purchase
Pooch

Parallel Systems Architects Wanted

1. User Browses Potential Pets
2. Clicks “Purchase Pooch”
3. Web Server, CGI/EJB + Database complete request
4. Pooch delivered (not shown)

Purchase
Pooch

How to handle lots and lots of dogs?

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
request

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
request

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

3 Tier architecture

Web Servers (Presentation Tier) and App servers (Business Tier) scale horizontally
Database Server à scales vertically

Horizontal Scale à “Shared Nothing”
Why is this a good arrangement?

User
request

Database Server

Web Servers App Servers

Vertical scale gets you a long
way, but there is always a

bigger problem size

Horizontal Scale: Goal

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Design Space

ThroughputLatency

Internet

Private
data

center

Shared
nothing

Shared
something

Parallel Architectures and MPI

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)
Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)
Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)
Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)
Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Cluster of SMPs
• Shared memory in SMP

node
• Messaging ßà SMP nodes

• also regarded as MPP if
processor # is large

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)
Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Cluster of SMPs
• Shared memory in SMP

node
• Messaging ßà SMP nodes

• also regarded as MPP if
processor # is large

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP
network
interface

Parallel Architectures and MPI

Distributed Memory
Multiprocessor

Messaging between nodes

Massively Parallel Processor (MPP)
Many, many processors

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

…

…

Cluster of SMPs
• Shared memory in SMP

node
• Messaging ßà SMP nodes

• also regarded as MPP if
processor # is large

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP
network
interface

Multicore SMP+GPU Cluster
• Shared mem in SMP node
• Messaging between nodes

• GPU accelerators attached

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

What requires extreme scale?

Simulations—why?
Simulations are sometimes more
cost effective than experiments

Why extreme scale?
More compute cycles, more
memory, etc, lead for faster
and/or more accurate simulations

What requires extreme scale?

Simulations—why?
Simulations are sometimes more
cost effective than experiments

Why extreme scale?
More compute cycles, more
memory, etc, lead for faster
and/or more accurate simulations

What requires extreme scale?

Simulations—why?
Simulations are sometimes more
cost effective than experiments

Why extreme scale?
More compute cycles, more
memory, etc, lead for faster
and/or more accurate simulations

What requires extreme scale?

Simulations—why?
Simulations are sometimes more
cost effective than experiments

Why extreme scale?
More compute cycles, more
memory, etc, lead for faster
and/or more accurate simulations

What requires extreme scale?

Simulations—why?
Simulations are sometimes more
cost effective than experiments

Why extreme scale?
More compute cycles, more
memory, etc, lead for faster
and/or more accurate simulations

C
lim

at
e

C
ha

ng
e

As
tro

ph
ys

ic
s

Nuclear Reactors Im
ag

e
cr

ed
it:

 P
ra

bh
at

, L
BN

L

How big is “extreme” scale?

Measured in FLOPs
FLoating point Operations Per second

1 GigaFLOP = 1 billion FLOPs
1 TeraFLOP = 1000 GigaFLOPs
1 PetaFLOP = 1000 TeraFLOPs

Most current super computers
1 ExaFLOP = 1000 PetaFLOPs

Arriving in 2018 (supposedly)

How big is “extreme” scale?

Measured in FLOPs
FLoating point Operations Per second

1 GigaFLOP = 1 billion FLOPs
1 TeraFLOP = 1000 GigaFLOPs
1 PetaFLOP = 1000 TeraFLOPs

Most current super computers
1 ExaFLOP = 1000 PetaFLOPs

Arriving in 2018 (supposedly)

How big is “extreme” scale?

Measured in FLOPs
FLoating point Operations Per second

1 GigaFLOP = 1 billion FLOPs
1 TeraFLOP = 1000 GigaFLOPs
1 PetaFLOP = 1000 TeraFLOPs

Most current super computers
1 ExaFLOP = 1000 PetaFLOPs

Arriving in 2018 (supposedly)

Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

Processors communicate to access
non-local data

Message communication
Message passing architecture

Processor interconnection network

Parallel applications partitioned across
Processors: execution units
Memory: data partitioning

Scalable architecture
Incremental cost to add hardware
(cost of node)

Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

Processors communicate to access
non-local data

Message communication
Message passing architecture

Processor interconnection network

Parallel applications partitioned across
Processors: execution units
Memory: data partitioning

Scalable architecture
Incremental cost to add hardware
(cost of node)

Network

M $

P

M $

P

M $

P

Network interface

Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

Processors communicate to access
non-local data

Message communication
Message passing architecture

Processor interconnection network

Parallel applications partitioned across
Processors: execution units
Memory: data partitioning

Scalable architecture
Incremental cost to add hardware
(cost of node)

• Nodes: complete computer
• Including I/O

• Nodes communicate via network
• Standard networks (IP)
• Specialized networks (RDMA, fiber)

Network

M $

P

M $

P

M $

P

Network interface

Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

Processors communicate to access
non-local data

Message communication
Message passing architecture

Processor interconnection network

Parallel applications partitioned across
Processors: execution units
Memory: data partitioning

Scalable architecture
Incremental cost to add hardware
(cost of node)

• Nodes: complete computer
• Including I/O

• Nodes communicate via network
• Standard networks (IP)
• Specialized networks (RDMA, fiber)

Network

M $

P

M $

P

M $

P

Network interface

Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

Processors communicate to access
non-local data

Message communication
Message passing architecture

Processor interconnection network

Parallel applications partitioned across
Processors: execution units
Memory: data partitioning

Scalable architecture
Incremental cost to add hardware
(cost of node)

• Nodes: complete computer
• Including I/O

• Nodes communicate via network
• Standard networks (IP)
• Specialized networks (RDMA, fiber)

Network

M $

P

M $

P

M $

P

Network interface

Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

Processors communicate to access
non-local data

Message communication
Message passing architecture

Processor interconnection network

Parallel applications partitioned across
Processors: execution units
Memory: data partitioning

Scalable architecture
Incremental cost to add hardware
(cost of node)

• Nodes: complete computer
• Including I/O

• Nodes communicate via network
• Standard networks (IP)
• Specialized networks (RDMA, fiber)

Network

M $

P

M $

P

M $

P

Network interface

Distributed Memory Multiprocessors

Each processor has a local memory
Physically separated address space

Processors communicate to access
non-local data

Message communication
Message passing architecture

Processor interconnection network

Parallel applications partitioned across
Processors: execution units
Memory: data partitioning

Scalable architecture
Incremental cost to add hardware
(cost of node)

• Nodes: complete computer
• Including I/O

• Nodes communicate via network
• Standard networks (IP)
• Specialized networks (RDMA, fiber)

Network

M $

P

M $

P

M $

P

Network interface

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Wait…bisection bandwidth?

if network is bisected, bisection
bandwidth == bandwidth
between the two partitions

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Wait…bisection bandwidth?

if network is bisected, bisection
bandwidth == bandwidth
between the two partitions

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Wait…bisection bandwidth?

if network is bisected, bisection
bandwidth == bandwidth
between the two partitions

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Wait…bisection bandwidth?

if network is bisected, bisection
bandwidth == bandwidth
between the two partitions

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Performance: Latency and Bandwidth

Bandwidth
Need high bandwidth in communication
Match limits in network, memory, and processor
Network interface speed vs. network bisection
bandwidth

Latency
Performance affected: processor may have to wait
Hard to overlap communication and computation
Overhead to communicate: a problem in many
machines

Latency hiding
Increases programming system burden
E.g.: communication/computation overlap, prefetch

Is this different from metrics we’ve
cared about so far?

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable
Communication explicit, simpler to understand
Explicit communication à

focus attention on costly aspect of parallel computation

Synchronization à
naturally associated with sending messages
reduces possibility for errors from incorrect synchronization

Easier to use sender-initiated communication à
some advantages in performance

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable
Communication explicit, simpler to understand
Explicit communication à

focus attention on costly aspect of parallel computation

Synchronization à
naturally associated with sending messages
reduces possibility for errors from incorrect synchronization

Easier to use sender-initiated communication à
some advantages in performance

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable
Communication explicit, simpler to understand
Explicit communication à

focus attention on costly aspect of parallel computation

Synchronization à
naturally associated with sending messages
reduces possibility for errors from incorrect synchronization

Easier to use sender-initiated communication à
some advantages in performance

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable
Communication explicit, simpler to understand
Explicit communication à

focus attention on costly aspect of parallel computation

Synchronization à
naturally associated with sending messages
reduces possibility for errors from incorrect synchronization

Easier to use sender-initiated communication à
some advantages in performance

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable
Communication explicit, simpler to understand
Explicit communication à

focus attention on costly aspect of parallel computation

Synchronization à
naturally associated with sending messages
reduces possibility for errors from incorrect synchronization

Easier to use sender-initiated communication à
some advantages in performance

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable
Communication explicit, simpler to understand
Explicit communication à

focus attention on costly aspect of parallel computation

Synchronization à
naturally associated with sending messages
reduces possibility for errors from incorrect synchronization

Easier to use sender-initiated communication à
some advantages in performance

Ostensible Advantages of
Distributed Memory Architectures

Hardware simpler (especially versus NUMA), more scalable
Communication explicit, simpler to understand
Explicit communication à

focus attention on costly aspect of parallel computation

Synchronization à
naturally associated with sending messages
reduces possibility for errors from incorrect synchronization

Easier to use sender-initiated communication à
some advantages in performance

Can you think of any disadvantages?

Running on Supercomputers

Running on Supercomputers

• Programmer plans a job; job ==
• parallel binary program
• “input deck” (specifies input data)

• Submit job to a queue
• Scheduler allocates resources when

• resources are available,
• (or) the job is deemed “high priority”

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs

Supercomputers used continuously
Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program
• “input deck” (specifies input data)

• Submit job to a queue
• Scheduler allocates resources when

• resources are available,
• (or) the job is deemed “high priority”

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs

Supercomputers used continuously
Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program
• “input deck” (specifies input data)

• Submit job to a queue
• Scheduler allocates resources when

• resources are available,
• (or) the job is deemed “high priority”

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs

Supercomputers used continuously
Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program
• “input deck” (specifies input data)

• Submit job to a queue
• Scheduler allocates resources when

• resources are available,
• (or) the job is deemed “high priority”

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs

Supercomputers used continuously
Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program
• “input deck” (specifies input data)

• Submit job to a queue
• Scheduler allocates resources when

• resources are available,
• (or) the job is deemed “high priority”

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs

Supercomputers used continuously
Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program
• “input deck” (specifies input data)

• Submit job to a queue
• Scheduler allocates resources when

• resources are available,
• (or) the job is deemed “high priority”

• Scheduler runs scripts that initialize the environment
• Typically done with environment variables

• At the end of initialization, it is possible to infer:
• What the desired job configuration is (i.e., how many tasks per node)
• What other nodes are involved
• How your node’s tasks relates to the overall program

• MPI library interprets this information, hides the details

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs

Supercomputers used continuously
Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program
• “input deck” (specifies input data)

• Submit job to a queue
• Scheduler allocates resources when

• resources are available,
• (or) the job is deemed “high priority”

• Scheduler runs scripts that initialize the environment
• Typically done with environment variables

• At the end of initialization, it is possible to infer:
• What the desired job configuration is (i.e., how many tasks per node)
• What other nodes are involved
• How your node’s tasks relates to the overall program

• MPI library interprets this information, hides the details

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs

Supercomputers used continuously
Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program
• “input deck” (specifies input data)

• Submit job to a queue
• Scheduler allocates resources when

• resources are available,
• (or) the job is deemed “high priority”

• Scheduler runs scripts that initialize the environment
• Typically done with environment variables

• At the end of initialization, it is possible to infer:
• What the desired job configuration is (i.e., how many tasks per node)
• What other nodes are involved
• How your node’s tasks relates to the overall program

• MPI library interprets this information, hides the details

Running on Supercomputers

Sometimes 1 job takes whole machine
These are called “hero runs”…

Sometimes many smaller jobs

Supercomputers used continuously
Processors: “scarce resource”
jobs are “plentiful”

• Programmer plans a job; job ==
• parallel binary program
• “input deck” (specifies input data)

• Submit job to a queue
• Scheduler allocates resources when

• resources are available,
• (or) the job is deemed “high priority”

• Scheduler runs scripts that initialize the environment
• Typically done with environment variables

• At the end of initialization, it is possible to infer:
• What the desired job configuration is (i.e., how many tasks per node)
• What other nodes are involved
• How your node’s tasks relates to the overall program

• MPI library interprets this information, hides the details

The Message-Passing Model
Process: a program counter and address space
Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization
Data movement

P1 P2 P3 P4 process

thread
address
space
(memory)

The Message-Passing Model
Process: a program counter and address space
Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization
Data movement

P1 P2 P3 P4 process

thread
address
space
(memory)

How does this compare with
CSP?

The Message-Passing Model
Process: a program counter and address space
Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization
Data movement

P1 P2 P3 P4 process

thread
address
space
(memory)

How does this compare with
CSP?

• MPI == Message-Passing Interface specification
• Extended message-passing model
• Not a language or compiler specification
• Not a specific implementation or product

• Specified in C, C++, Fortran 77, F90
• Message Passing Interface (MPI) Forum

• http://www.mpi-forum.org/
• http://www.mpi-forum.org/docs/docs.html

http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/docs.html

The Message-Passing Model
Process: a program counter and address space
Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization
Data movement

P1 P2 P3 P4 process

thread
address
space
(memory)

How does this compare with
CSP?

• MPI == Message-Passing Interface specification
• Extended message-passing model
• Not a language or compiler specification
• Not a specific implementation or product

• Specified in C, C++, Fortran 77, F90
• Message Passing Interface (MPI) Forum

• http://www.mpi-forum.org/
• http://www.mpi-forum.org/docs/docs.html

http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/docs.html

The Message-Passing Model
Process: a program counter and address space
Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization
Data movement

P1 P2 P3 P4 process

thread
address
space
(memory)

How does this compare with
CSP?

• MPI == Message-Passing Interface specification
• Extended message-passing model
• Not a language or compiler specification
• Not a specific implementation or product

• Specified in C, C++, Fortran 77, F90
• Message Passing Interface (MPI) Forum

• http://www.mpi-forum.org/
• http://www.mpi-forum.org/docs/docs.html

http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/docs.html

The Message-Passing Model
Process: a program counter and address space
Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization
Data movement

P1 P2 P3 P4 process

thread
address
space
(memory)

How does this compare with
CSP?

• MPI == Message-Passing Interface specification
• Extended message-passing model
• Not a language or compiler specification
• Not a specific implementation or product

• Specified in C, C++, Fortran 77, F90
• Message Passing Interface (MPI) Forum
• http://www.mpi-forum.org/
• http://www.mpi-forum.org/docs/docs.html

http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/docs.html

The Message-Passing Model
Process: a program counter and address space
Processes: multiple threads sharing a single address space

MPI is for communication among processes
Not threads

Inter-process communication consists of
Synchronization
Data movement

P1 P2 P3 P4 process

thread
address
space
(memory)

How does this compare with
CSP?

• MPI == Message-Passing Interface specification
• Extended message-passing model
• Not a language or compiler specification
• Not a specific implementation or product

• Specified in C, C++, Fortran 77, F90
• Message Passing Interface (MPI) Forum
• http://www.mpi-forum.org/
• http://www.mpi-forum.org/docs/docs.html

• Two flavors for communication
• Cooperative operations
• One-sided operations

http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/docs.html

SPMD

Data distributed across processes
Not shared à shared nothing

~~~~~
~~~
~~~~
~~

~~~~~
~~~
~~~~
~~

~~~~~
~~~
~~~~
~~

~~~~~
~~~
~~~~
~~

Shared
program

Multiple
data

“Owner compute” rule:
Process that “owns”
the data (local data)
performs computations
on that data

Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving processʼs memory made with receiverʼs explicit
participation

Communication and synchronization are combined

Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving processʼs memory made with receiverʼs explicit
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)
Receive(data)

time

Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving processʼs memory made with receiverʼs explicit
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)
Receive(data)

time

Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving processʼs memory made with receiverʼs explicit
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)
Receive(data)

time

Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving processʼs memory made with receiverʼs explicit
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)
Receive(data)

time

Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving processʼs memory made with receiverʼs explicit
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)
Receive(data)

time

Cooperative Operations

Data is cooperatively exchanged in message-passing
Explicitly sent by one process and received by another
Advantage of local control of memory

Change in the receiving processʼs memory made with receiverʼs explicit
participation

Communication and synchronization are combined

Process 0 Process 1

Send(data)
Receive(data)

time
Familiar argument?

One-Sided Operations

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
 Communication and synchronization are decoupled

One-Sided Operations

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
 Communication and synchronization are decoupled

Process 0 Process 1
Put(data)

(memory)
(memory)

Get(data)
time

One-Sided Operations

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
 Communication and synchronization are decoupled

Process 0 Process 1
Put(data)

(memory)
(memory)

Get(data)
time

One-Sided Operations

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
 Communication and synchronization are decoupled

Process 0 Process 1
Put(data)

(memory)
(memory)

Get(data)
time

One-Sided Operations

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
 Communication and synchronization are decoupled

Process 0 Process 1
Put(data)

(memory)
(memory)

Get(data)
time

One-Sided Operations

One-sided operations between processes
Include remote memory reads and writes

Only one process needs to explicitly participate
There is still agreement implicit in the SPMD program

Implication:
 Communication and synchronization are decoupled

Process 0 Process 1
Put(data)

(memory)
(memory)

Get(data)
time

Are 1-sided
operations better
for performance?

A Simple MPI Program

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 printf("Hello, world!\n");
 MPI_Finalize();
 return 0;
}

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait…what do they need to know?

Configure OS-level resources
Configure tools that are running with MPI
…

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait…what do they need to know?

Configure OS-level resources
Configure tools that are running with MPI
…

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait…what do they need to know?

Configure OS-level resources
Configure tools that are running with MPI
…

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait…what do they need to know?

Configure OS-level resources
Configure tools that are running with MPI
…

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait…what do they need to know?

Configure OS-level resources
Configure tools that are running with MPI
…

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait…what do they need to know?

Configure OS-level resources
Configure tools that are running with MPI
…

MPI_Init

Hardware resources allocated
MPI-managed ones anyway…

Start processes on different nodes
Where does their executable program come from?

Give processes what they need to know
Wait…what do they need to know?

Configure OS-level resources
Configure tools that are running with MPI
…

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

Executive Summary
• Undo all of init
• Be able to do it on

success or failure
exit

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

Executive Summary
• Undo all of init
• Be able to do it on

success or failure
exit

• By default, an error causes all processes to abort
• The user can cause routines to return (with an error code)

• In C++, exceptions are thrown (MPI-2)

• A user can also write and install custom error handlers
• Libraries may handle errors differently from applications

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

Executive Summary
• Undo all of init
• Be able to do it on

success or failure
exit

• By default, an error causes all processes to abort
• The user can cause routines to return (with an error code)

• In C++, exceptions are thrown (MPI-2)

• A user can also write and install custom error handlers
• Libraries may handle errors differently from applications

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

Executive Summary
• Undo all of init
• Be able to do it on

success or failure
exit

• By default, an error causes all processes to abort
• The user can cause routines to return (with an error code)

• In C++, exceptions are thrown (MPI-2)

• A user can also write and install custom error handlers
• Libraries may handle errors differently from applications

MPI_Finalize

Why do we need to finalize MPI?
What is necessary for a “graceful” MPI exit?

Can bad things happen otherwise?
Suppose one process exits…

How do resources get de-allocated?
How to shut down communication?
What type of exit protocol might be used?

Executive Summary
• Undo all of init
• Be able to do it on

success or failure
exit

• By default, an error causes all processes to abort
• The user can cause routines to return (with an error code)

• In C++, exceptions are thrown (MPI-2)

• A user can also write and install custom error handlers
• Libraries may handle errors differently from applications

Running MPI Programs

MPI-1 does not specify how to run an MPI program

Starting an MPI program is dependent on implementation
Scripts, program arguments, and/or environment variables

% mpirun -np <procs> a.out
For MPICH under Linux

mpiexec <args>
Recommended part of MPI-2, as a recommendation
mpiexec for MPICH (distribution from ANL)

mpirun for SGI’s MPI

Running MPI Programs

MPI-1 does not specify how to run an MPI program

Starting an MPI program is dependent on implementation
Scripts, program arguments, and/or environment variables

% mpirun -np <procs> a.out
For MPICH under Linux

mpiexec <args>
Recommended part of MPI-2, as a recommendation
mpiexec for MPICH (distribution from ANL)

mpirun for SGI’s MPI

Running MPI Programs

MPI-1 does not specify how to run an MPI program

Starting an MPI program is dependent on implementation
Scripts, program arguments, and/or environment variables

% mpirun -np <procs> a.out
For MPICH under Linux

mpiexec <args>
Recommended part of MPI-2, as a recommendation
mpiexec for MPICH (distribution from ANL)

mpirun for SGI’s MPI

Running MPI Programs

MPI-1 does not specify how to run an MPI program

Starting an MPI program is dependent on implementation
Scripts, program arguments, and/or environment variables

% mpirun -np <procs> a.out
For MPICH under Linux

mpiexec <args>
Recommended part of MPI-2, as a recommendation
mpiexec for MPICH (distribution from ANL)

mpirun for SGI’s MPI

Running MPI Programs

MPI-1 does not specify how to run an MPI program

Starting an MPI program is dependent on implementation
Scripts, program arguments, and/or environment variables

% mpirun -np <procs> a.out
For MPICH under Linux

mpiexec <args>
Recommended part of MPI-2, as a recommendation
mpiexec for MPICH (distribution from ANL)

mpirun for SGI’s MPI

Finding Out About the Environment

Two important questions that arise in message passing
How many processes are being use in computation?
Which one am I?

MPI provides functions to answer these questions
MPI_Comm_size reports the number of processes
MPI_Comm_rank reports the rank

number between 0 and size-1
identifies the calling process

Finding Out About the Environment

Two important questions that arise in message passing
How many processes are being use in computation?
Which one am I?

MPI provides functions to answer these questions
MPI_Comm_size reports the number of processes
MPI_Comm_rank reports the rank

number between 0 and size-1
identifies the calling process

Finding Out About the Environment

Two important questions that arise in message passing
How many processes are being use in computation?
Which one am I?

MPI provides functions to answer these questions
MPI_Comm_size reports the number of processes
MPI_Comm_rank reports the rank

number between 0 and size-1
identifies the calling process

Hello World Revisited

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

Hello World Revisited

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

r What does this program do?

Hello World Revisited

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

r What does this program do?
Comm?
“Communicator”

Basic Concepts

Processes can be collected into groups
Each message is sent in a context

Must be received in the same context!

A group and context together form a communicator
A process is identified by its rank

With respect to the group associated with a communicator

There is a default communicator MPI_COMM_WORLD
Contains all initial processes

MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

The message buffer is described by:
start, count, datatype

The target process is specified by dest
Rank of the target process in the communicator
specified by comm

Process blocks until:
Data has been delivered to the system
Buffer can then be reused

Message may not have been received by target process!

MPI Datatypes

Message data (sent or received) is described by a triple
address, count, datatype

An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise

MPI Datatypes

Message data (sent or received) is described by a triple
address, count, datatype

An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise

MPI Datatypes

Message data (sent or received) is described by a triple
address, count, datatype

An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise

MPI Datatypes

Message data (sent or received) is described by a triple
address, count, datatype

An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise

MPI Datatypes

Message data (sent or received) is described by a triple
address, count, datatype

An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise

• Enables heterogeneous communication
• Support communication between processes on machines with different

memory representations and lengths of elementary datatypes
• MPI provides the representation translation if necessary

• Allows application-oriented layout of data in memory
• Reduces memory-to-memory copies in implementation
• Allows use of special hardware (scatter/gather)

MPI Datatypes

Message data (sent or received) is described by a triple
address, count, datatype

An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise

• Enables heterogeneous communication
• Support communication between processes on machines with different

memory representations and lengths of elementary datatypes
• MPI provides the representation translation if necessary

• Allows application-oriented layout of data in memory
• Reduces memory-to-memory copies in implementation
• Allows use of special hardware (scatter/gather)

MPI Datatypes

Message data (sent or received) is described by a triple
address, count, datatype

An MPI datatype is recursively defined as:
Predefined data type from the language
A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

There are MPI functions to construct custom datatypes
Array of (int, float) pairs
Row of a matrix stored columnwise

• Enables heterogeneous communication
• Support communication between processes on machines with different

memory representations and lengths of elementary datatypes
• MPI provides the representation translation if necessary

• Allows application-oriented layout of data in memory
• Reduces memory-to-memory copies in implementation
• Allows use of special hardware (scatter/gather)

MPI Tags

Messages are sent with an accompanying user-defined integer tag
Assist the receiving process in identifying the message

Messages can be screened at receiving end by specifying specific tag
MPI_ANY_TAG matches any tag in a receive

Tags are sometimes called “message types”
MPI calls them “tags” to avoid confusion with datatypes

MPI Tags

Messages are sent with an accompanying user-defined integer tag
Assist the receiving process in identifying the message

Messages can be screened at receiving end by specifying specific tag
MPI_ANY_TAG matches any tag in a receive

Tags are sometimes called “message types”
MPI calls them “tags” to avoid confusion with datatypes

MPI Tags

Messages are sent with an accompanying user-defined integer tag
Assist the receiving process in identifying the message

Messages can be screened at receiving end by specifying specific tag
MPI_ANY_TAG matches any tag in a receive

Tags are sometimes called “message types”
MPI calls them “tags” to avoid confusion with datatypes

MPI Tags

Messages are sent with an accompanying user-defined integer tag
Assist the receiving process in identifying the message

Messages can be screened at receiving end by specifying specific tag
MPI_ANY_TAG matches any tag in a receive

Tags are sometimes called “message types”
MPI calls them “tags” to avoid confusion with datatypes

MPI with Only Six Functions

Many parallel programs can be written using:
MPI_INIT()
MPI_FINALIZE()

MPI_COMM_SIZE()
MPI_COMM_RANK()
MPI_SEND()

MPI_RECV()

Why have any other APIs (e.g. broadcast, reduce, etc.)?

Point-to-point (send/recv) isn’t always the most efficient...
Add more support for communication

MPI with Only Six Functions

Many parallel programs can be written using:
MPI_INIT()
MPI_FINALIZE()

MPI_COMM_SIZE()
MPI_COMM_RANK()
MPI_SEND()

MPI_RECV()

Why have any other APIs (e.g. broadcast, reduce, etc.)?

Point-to-point (send/recv) isn’t always the most efficient...
Add more support for communication

MPI with Only Six Functions

Many parallel programs can be written using:
MPI_INIT()
MPI_FINALIZE()

MPI_COMM_SIZE()
MPI_COMM_RANK()
MPI_SEND()

MPI_RECV()

Why have any other APIs (e.g. broadcast, reduce, etc.)?

Point-to-point (send/recv) isn’t always the most efficient...
Add more support for communication

MPI with Only Six Functions

Many parallel programs can be written using:
MPI_INIT()
MPI_FINALIZE()

MPI_COMM_SIZE()
MPI_COMM_RANK()
MPI_SEND()

MPI_RECV()

Why have any other APIs (e.g. broadcast, reduce, etc.)?

Point-to-point (send/recv) isn’t always the most efficient...
Add more support for communication

Excerpt: Count 3s

Excerpt: Barnes-Hut

Excerpt: Barnes-Hut

Excerpt: Barnes-Hut

To use or not use MPI?

• USE
• You need a portable parallel program
• You are writing a parallel library
• You have irregular or dynamic data relationships
• You care about performance

• NOT USE
• You don’t need parallelism at all
• You can use libraries (which may be written in MPI) or other tools
• You can use multi-threading in a concurrent environment

• You don’t need extreme scale

67Introduction to Parallel Computing, University of Oregon, IPCC

To use or not use MPI?

• USE
• You need a portable parallel program
• You are writing a parallel library
• You have irregular or dynamic data relationships
• You care about performance

• NOT USE
• You don’t need parallelism at all
• You can use libraries (which may be written in MPI) or other tools
• You can use multi-threading in a concurrent environment

• You don’t need extreme scale

67Introduction to Parallel Computing, University of Oregon, IPCC

To use or not use MPI?

• USE
• You need a portable parallel program
• You are writing a parallel library
• You have irregular or dynamic data relationships
• You care about performance

• NOT USE
• You don’t need parallelism at all
• You can use libraries (which may be written in MPI) or other tools
• You can use multi-threading in a concurrent environment

• You don’t need extreme scale

67Introduction to Parallel Computing, University of Oregon, IPCC

