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Shared Memory Synchronization Rides Again: 
Lock Freedom



Today

Questions? 

Administrivia
• Faux Quiz

Agenda:
• Lock Freedom



Faux Quiz Questions: 5 min, pick any 2
• What is obstruction freedom, wait freedom, lock freedom?
• How can one compose lock free data structures?
• What is the difference between linearizability and strong consistency? 

Between linearizability and serializability?
• What is the ABA problem? Give an example. 
• How do lock-free data structures deal with the “inconsistent view” 

problem?



Non-Blocking Synchronization

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance
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Lock-free programming

• Subset of a broader class: Non-blocking Synchronization
• Thread-safe access shared mutable state without mutual exclusion
• Possible without HW support

• e.g. Lamport’s Concurrent Buffer
• …but not really practical wo HW

• Built on atomic instructions like CAS + clever algorithmic tricks
• Lock-free algorithms are hard, so
• General approach: encapsulate lock-free algorithms in data structures

• Queue, list, hash-table, skip list, etc.
• New LF data structure à research result
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Example: SP-SC Queue

• Single-producer single-consumer
• Why/when does this work?

next(x): 
    if(x == Q_size-1) return 0;
    else return x+1;

Q_get(data):   Q_put(data):
    t = Q_tail;       h = Q_head;
    while(t == Q_head)      while(next(h) == Q_tail)
 ;             ;
    data = Q_buf[t];      Q_buf[h] = data;
    Q_tail = next(t);      Q_head = next(h);



Example: SP-SC Queue

• Single-producer single-consumer
• Why/when does this work?

next(x): 
    if(x == Q_size-1) return 0;
    else return x+1;

Q_get(data):   Q_put(data):
    t = Q_tail;       h = Q_head;
    while(t == Q_head)      while(next(h) == Q_tail)
 ;             ;
    data = Q_buf[t];      Q_buf[h] = data;
    Q_tail = next(t);      Q_head = next(h);

1. Q_head is last write in Q_put, so Q_get 
never gets “ahead”.

2. *single* p,c only (as advertised)
3. Requires fence before setting Q head
4. Devil in the details of “wait”
5. No lock à “optimistic”
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ABA Problem

• Thread 1 observes shared variable à ‘A’ 
• Thread 1 calculates using that value
• Thread 2 changes variable to B 
• if Thread 1 wakes up now and tries to CAS, CAS fails and Thread 1 retries

• Instead, Thread 2 changes variable back to A! 
• CAS succeeds despite mutated state
• Very bad if the variables are pointers • Keep update count à DCAS

• Avoid re-using memory
• Multi-CAS support à HTM
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H 10 30 T
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Correctness: Searching a sorted list

• find(20):

H 10 30 T

20?

find(20) -> false
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• insert(20):
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Searching and finding together
• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true
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Searching and finding together
• find(20) -> false • insert(20) -> true

This thread saw 20 
was not in the set...

...but this thread 
succeeded in putting 

it in!

• Is this a correct implementation?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?

19



Correctness criteria

20

Informally: 

Look at the behavior of the data structure 
• what operations are called on it 
• what their results are

If behavior is indistinguishable from atomic calls to a 
sequential implementation then the concurrent 
implementation is correct.
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Linearizability: concurrent behaviour should be similar 
• even when threads can see intermediate state
• Recall: mutual exclusion precludes overlap
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• Start/end impose ordering constraints
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Concurrent history

time

Allow overlapping invocations

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

22

Linearizability:
• Is there a correct sequential history:

• Same results as the concurrent one
• Consistent with the timing of the 

invocations/responses?
• Start/end impose ordering constraints

Total Order: 
1. Insert(10)
2. Find(20)
3. Insert(20)
• Is consistent with real-time order
• 2, 3 overlap, but return order OK

Why is this one OK?



Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true
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Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false
A valid sequential history: 
this concurrent execution 

is OK
Note: linearization point

23



Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

24



Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

24

Why is this one NOT OK?



Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

24

Why is this one NOT OK?

Note: return values are meaningful!
Linearizable à consistent with return values



Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

24

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

Note: return values are meaningful!
Linearizable à consistent with return values



Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

24

Possible Total Orders
1. Insert(10)
2. Delete(10)
3. Insert(10)
• Both consistent with real-time order
• 1, 2 overlap, but 3 doesn’t

Why is this one NOT OK?

1. Delete(10)
2. Insert(10)
3. Insert(10)

How can things like this happen?

Note: return values are meaningful!
Linearizable à consistent with return values
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Example Revisited
• find(20)

H 10 30 T

-> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history: 
this concurrent execution 

is OK because a 
linearization point exists
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Recurring Techniques:
• For updates

• Perform an essential step of an 
operation by a single atomic 
instruction

• E.g. CAS to insert an item into a list
• This forms a “linearization point”

• For reads
• Identify a point during the operation’s 

execution when the result is valid 
• Not always a specific instruction



Formal Properties

• Wait-free
• A thread finishes its own operation if it continues executing steps
• Strong: everyone eventually finishes

• Lock-free
• Some thread finishes its operation if threads continue taking steps
• Weaker: some forward progress guaranateed, but admits unfairness, live-lock, etc.

• Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Very weak. Means if you remove contention, someone finishes
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Lock-free
• Some thread finishes its operation if threads continue taking steps

time
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Finish

Start

Start

Finish
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• Red never finishes
• Orange does
• Still lock-free
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• A thread finishes its own operation if it runs in isolation
• Meaning, if you de-schedule contenders
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Obstruction-free
• A thread finishes its own operation if it runs in isolation
• Meaning, if you de-schedule contenders

time

Start

Start

FinishInterference here can prevent 
any operation finishing

33
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• non-blocking 
• one method is never forced to wait to sync with another.

•    local property: 
•  a system is linearizable iff each individual object is linearizable. 
•  gives us composability.

• Why is it important? 
•  Serializability is not composable. 

Linearizability Properties
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Huh? Composable?
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Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

void move(list s, list d, Obj key){
  tmp = s.remove(key);
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Composability

• Lock-based code doesn’t compose
• If list were a linearizable concurrent data structure, composition OK?

T * list::remove(Obj key){
  LOCK(this);
  tmp = __do_remove(key);
  UNLOCK(this);
  return tmp;
}

void list::insert(Obj key, T * val){
  LOCK(this);
  __do_insert(key, val);
  UNLOCK(this);
}

void move(list s, list d, Obj key){
  LOCK(s);
  LOCK(d);
  tmp = s.remove(key);
  d.insert(key, tmp);
  UNLOCK(d);
  UNLOCK(s);
}

Painting with a very broad brush
Composition with linearizability is really 
about composed schedules



• non-blocking 
• one method is never forced to wait to sync with another.

•    local property: 
•  a system is linearizable iff each individual object is linearizable. 
•  gives us composability.

• Why is it important? 
•  Serializability is not composable. 
•  Core hypotheses: 

•  structuring all as concurrent objects buys composability
•  structuring all as concurrent objects is tractable/possible

Linearizability Properties
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• These are related but differ in subtle ways
• Non-composability of serializability is really about composing 
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Histories for multiple concurrent registers

• Consider all possible permutations of atomic invocations
• (That respect program order)
• Call them “sub-histories”: from A, B “perspective”

Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

From the perspective threads A, B, all sub-histories are serializable
• They respect program order for each of A, B
• And are equivalent to *some* serial execution
• If we “compose” these histories, some composed histories not serializable

…
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Histories for multiple concurrent registers

• Compose sub-histories to form all possible histories
• Composition of serializable histories à non-serializable histories
• Ex. H1ab is not serializable 
Sub-History Outcome

H1a A writes r1=1, reads r2 à 0

H2a A writes r1=1, reads r2 à 2

H1b B writes r2=2, reads r1 à 0

H2b B writes r2=2, reads r1 à 1

History Effect

H1ab A writes r1=1, B writes r2=2 
reads r2 à 0, B reads r1 à 0

H2ab A writes r1=1, B writes r2=2 
reads r2 à 0, B reads r1 à 1

H3ab A writes r1=1, B writes r2=2 
reads r2 à 2, B reads r1 à 0

H4ab A writes r1=1, B writes r2=2 
reads r2 à 2, B reads r1 à 1

4 serializable sub-histories composed
To form 4 complete histories,
Only H4ab is actually serializable



• non-blocking 
• one method is never forced to wait to sync with another.

•    local property: 
•  a system is linearizable iff each individual object is linearizable. 
•  gives us composability.

• Why is it important? 
• Serializability is not composable. 
• A system composed of linearizable objects remains linearizable
• Does this mean you get txn or lock-like composition for free? 

• In general no
• Serializability is a property of transactions, or groups of updates
• Linearizability is a property of concurrent objects
• The two are often conflated (e.g. because txns update only a single object)
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Relax the semantics 
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

45


