

 Hadoop

i

About this tutorial

Hadoop is an open-source framework that allows to store and process big data in a

distributed environment across clusters of computers using simple programming models.

It is designed to scale up from single servers to thousands of machines, each offering

local computation and storage.

This brief tutorial provides a quick introduction to Big Data, MapReduce algorithm, and

Hadoop Distributed File System.

Audience

This tutorial has been prepared for professionals aspiring to learn the basics of Big Data

Analytics using Hadoop Framework and become a Hadoop Developer. Software

Professionals, Analytics Professionals, and ETL developers are the key beneficiaries of

this course.

Prerequisites

Before you start proceeding with this tutorial, we assume that you have prior exposure

to Core Java, database concepts, and any of the Linux operating system flavors.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

 Hadoop

ii

Table of Contents

About this tutorial ·· i

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ··· i

Table of Contents ·· ii

1. HADOOP ─ BIG DATA OVERVIEW ··· 1

What is Big Data? ·· 1

What Comes Under Big Data? ··· 1

Benefits of Big Data ··· 2

Big Data Technologies ··· 2

Operational vs. Analytical Systems·· 3

Big Data Challenges ··· 4

2. HADOOP ─ BIG DATA SOLUTIONS ·· 5

Traditional Enterprise Approach ··· 5

Google’s Solution ·· 5

Hadoop ··· 6

3. HADOOP ─ INTRODUCTION ··· 7

Hadoop Architecture ··· 7

MapReduce ··· 7

Hadoop Distributed File System ·· 8

How Does Hadoop Work? ··· 8

Advantages of Hadoop ·· 9

 Hadoop

iii

4. HADOOP ─ ENVIRONMENT SETUP ··· 10

Pre-installation Setup ·· 10

Installing Java ·· 11

Downloading Hadoop·· 12

Hadoop Operation Modes ··· 13

Installing Hadoop in Standalone Mode ··· 13

Installing Hadoop in Pseudo Distributed Mode ··· 15

Verifying Hadoop Installation ·· 18

5. HADOOP ─ HDFS OVERVIEW ·· 21

Features of HDFS ··· 21

HDFS Architecture ··· 21

Goals of HDFS ·· 22

6. HADOOP ─ HDFS OPERATIONS ·· 23

Starting HDFS ·· 23

Listing Files in HDFS ··· 23

Inserting Data into HDFS ··· 23

Retrieving Data from HDFS ·· 24

Shutting Down the HDFS ··· 24

7. HADOOP ─ COMMAND REFERENCE ··· 25

HDFS Command Reference ·· 25

8. HADOOP ─ MAPREDUCE ·· 28

What is MapReduce? ·· 28

The Algorithm ··· 28

Inputs and Outputs (Java Perspective) ·· 29

 Hadoop

iv

Terminology ·· 29

Example Scenario ·· 30

Compilation and Execution of Process Units Program ··· 33

Important Commands ··· 36

How to Interact with MapReduce Jobs ·· 38

9. HADOOP ─ STREAMING ··· 40

Example using Python ··· 40

How Streaming Works··· 42

Important Commands ··· 42

10. HADOOP ─ MULTI-NODE CLUSTER ·· 44

Installing Java ·· 44

Creating User Account ··· 45

Mapping the nodes ··· 45

Configuring Key Based Login ··· 46

Installing Hadoop ·· 46

Configuring Hadoop ·· 46

Installing Hadoop on Slave Servers ·· 48

Configuring Hadoop on Master Server ·· 48

Starting Hadoop Services ·· 49

Adding a New DataNode in the Hadoop Cluster ·· 49

Adding a User and SSH Access ··· 49

Set Hostname of New Node ·· 50

Start the DataNode on New Node ··· 51

Removing a DataNode from the Hadoop Cluster ··· 51

Hadoop

1

“90% of the world’s data was generated in the last few years.”

Due to the advent of new technologies, devices, and communication means like social

networking sites, the amount of data produced by mankind is growing rapidly every

year. The amount of data produced by us from the beginning of time till 2003 was 5

billion gigabytes. If you pile up the data in the form of disks it may fill an entire football

field. The same amount was created in every two days in 2011, and in every ten

minutes in 2013. This rate is still growing enormously. Though all this information

produced is meaningful and can be useful when processed, it is being neglected.

What is Big Data?

Big Data is a collection of large datasets that cannot be processed using traditional

computing techniques. It is not a single technique or a tool, rather it involves many
areas of business and technology.

What Comes Under Big Data?

Big data involves the data produced by different devices and applications. Given below

are some of the fields that come under the umbrella of Big Data.

 Black Box Data: It is a component of helicopter, airplanes, and jets, etc. It

captures voices of the flight crew, recordings of microphones and earphones, and
the performance information of the aircraft.

 Social Media Data: Social media such as Facebook and Twitter hold information
and the views posted by millions of people across the globe.

 Stock Exchange Data: The stock exchange data holds information about the

‘buy’ and ‘sell’ decisions made on a share of different companies made by the
customers.

 Power Grid Data: The power grid data holds information consumed by a
particular node with respect to a base station.

 Transport Data: Transport data includes model, capacity, distance and
availability of a vehicle.

 Search Engine Data: Search engines retrieve lots of data from different

databases.

1. Hadoop ─ Big Data Overview

Hadoop

2

Thus Big Data includes huge volume, high velocity, and extensible variety of data. The
data in it will be of three types.

 Structured data: Relational data.

 Semi Structured data: XML data.

 Unstructured data: Word, PDF, Text, Media Logs.

Benefits of Big Data

 Using the information kept in the social network like Facebook, the marketing

agencies are learning about the response for their campaigns, promotions, and

other advertising mediums.

 Using the information in the social media like preferences and product perception

of their consumers, product companies and retail organizations are planning their

production.

 Using the data regarding the previous medical history of patients, hospitals are

providing better and quick service.

Big Data Technologies

Big data technologies are important in providing more accurate analysis, which may lead

to more concrete decision-making resulting in greater operational efficiencies, cost

reductions, and reduced risks for the business.

To harness the power of big data, you would require an infrastructure that can manage

and process huge volumes of structured and unstructured data in real-time and can

protect data privacy and security.

Hadoop

3

There are various technologies in the market from different vendors including Amazon,

IBM, Microsoft, etc., to handle big data. While looking into the technologies that handle

big data, we examine the following two classes of technology:

Operational Big Data

These include systems like MongoDB that provide operational capabilities for real-time,

interactive workloads where data is primarily captured and stored.

NoSQL Big Data systems are designed to take advantage of new cloud computing

architectures that have emerged over the past decade to allow massive computations to

be run inexpensively and efficiently. This makes operational big data workloads much

easier to manage, cheaper, and faster to implement.

Some NoSQL systems can provide insights into patterns and trends based on real-time

data with minimal coding and without the need for data scientists and additional

infrastructure.

Analytical Big Data

These includes systems like Massively Parallel Processing (MPP) database systems and

MapReduce that provide analytical capabilities for retrospective and complex analysis

that may touch most or all of the data.

MapReduce provides a new method of analyzing data that is complementary to the

capabilities provided by SQL, and a system based on MapReduce that can be scaled up

from single servers to thousands of high and low end machines.

These two classes of technology are complementary and frequently deployed together.

Operational vs. Analytical Systems

 Operational Analytical

Latency 1 ms - 100 ms 1 min - 100 min

Concurrency 1000 - 100,000 1 - 10

Access Pattern Writes and Reads Reads

Queries Selective Unselective

Data Scope Operational Retrospective

End User Customer Data Scientist

Technology NoSQL MapReduce, MPP Database

Hadoop

4

Big Data Challenges

The major challenges associated with big data are as follows:

 Capturing data

 Curation

 Storage

 Searching

 Sharing

 Transfer

 Analysis

 Presentation

To fulfill the above challenges, organizations normally take the help of enterprise

servers.

Hadoop

5

Traditional Enterprise Approach

In this approach, an enterprise will have a computer to store and process big data. For

storage purpose, the programmers will take the help of their choice of database vendors

such as Oracle, IBM, etc. In this approach, the user interacts with the application, which

in turn handles the part of data storage and analysis.

Limitation

This approach works fine with those applications that process less voluminous data that

can be accommodated by standard database servers, or up to the limit of the processor

that is processing the data. But when it comes to dealing with huge amounts of scalable

data, it is a hectic task to process such data through a single database bottleneck.

Google’s Solution

Google solved this problem using an algorithm called MapReduce. This algorithm divides

the task into small parts and assigns them to many computers, and collects the results
from them which when integrated, form the result dataset.

2. Hadoop ─ Big Data Solutions

Hadoop

6

Hadoop

Using the solution provided by Google, Doug Cutting and his team developed an Open
Source Project called HADOOP.

Hadoop runs applications using the MapReduce algorithm, where the data is processed in

parallel with others. In short, Hadoop is used to develop applications that could perform
complete statistical analysis on huge amounts of data.

Hadoop

7

Hadoop is an Apache open source framework written in java that allows distributed

processing of large datasets across clusters of computers using simple programming

models. The Hadoop framework application works in an environment that provides

distributed storage and computation across clusters of computers. Hadoop is designed to

scale up from single server to thousands of machines, each offering local computation

and storage.

Hadoop Architecture

At its core, Hadoop has two major layers namely:

(a) Processing/Computation layer (MapReduce), and

(b) Storage layer (Hadoop Distributed File System).

MapReduce

MapReduce is a parallel programming model for writing distributed applications devised

at Google for efficient processing of large amounts of data (multi-terabyte data-sets), on

large clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant

manner. The MapReduce program runs on Hadoop which is an Apache open-source

framework.

3. Hadoop ─ Introduction

Hadoop

8

Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is based on the Google File System (GFS)

and provides a distributed file system that is designed to run on commodity hardware. It

has many similarities with existing distributed file systems. However, the differences

from other distributed file systems are significant. It is highly fault-tolerant and is

designed to be deployed on low-cost hardware. It provides high throughput access to

application data and is suitable for applications having large datasets.

Apart from the above-mentioned two core components, Hadoop framework also includes

the following two modules:

 Hadoop Common: These are Java libraries and utilities required by other Hadoop

modules.

 Hadoop YARN: This is a framework for job scheduling and cluster resource

management.

How Does Hadoop Work?

It is quite expensive to build bigger servers with heavy configurations that handle large

scale processing, but as an alternative, you can tie together many commodity computers

with single-CPU, as a single functional distributed system and practically, the clustered

machines can read the dataset in parallel and provide a much higher throughput.

Moreover, it is cheaper than one high-end server. So this is the first motivational factor

behind using Hadoop that it runs across clustered and low-cost machines.

Hadoop runs code across a cluster of computers. This process includes the following core

tasks that Hadoop performs:

 Data is initially divided into directories and files. Files are divided into uniform

sized blocks of 128M and 64M (preferably 128M).

 These files are then distributed across various cluster nodes for further

processing.

 HDFS, being on top of the local file system, supervises the processing.

 Blocks are replicated for handling hardware failure.

 Checking that the code was executed successfully.

 Performing the sort that takes place between the map and reduce stages.

 Sending the sorted data to a certain computer.

 Writing the debugging logs for each job.

Hadoop

9

Advantages of Hadoop

 Hadoop framework allows the user to quickly write and test distributed systems.

It is efficient, and it automatic distributes the data and work across the machines

and in turn, utilizes the underlying parallelism of the CPU cores.

 Hadoop does not rely on hardware to provide fault-tolerance and high availability

(FTHA), rather Hadoop library itself has been designed to detect and handle

failures at the application layer.

 Servers can be added or removed from the cluster dynamically and Hadoop

continues to operate without interruption.

 Another big advantage of Hadoop is that apart from being open source, it is

compatible on all the platforms since it is Java based.

Hadoop

10

Hadoop is supported by GNU/Linux platform and its flavors. Therefore, we have to install

a Linux operating system for setting up Hadoop environment. In case you have an OS

other than Linux, you can install a Virtualbox software in it and have Linux inside the

Virtualbox.

Pre-installation Setup

Before installing Hadoop into the Linux environment, we need to set up Linux using ssh

(Secure Shell). Follow the steps given below for setting up the Linux environment.

Creating a User

At the beginning, it is recommended to create a separate user for Hadoop to isolate

Hadoop file system from Unix file system. Follow the steps given below to create a user:

 Open the root using the command “su”.

 Create a user from the root account using the command “useradd username”.

 Now you can open an existing user account using the command “su username”.

Open the Linux terminal and type the following commands to create a user.

$ su

 password:

useradd hadoop

passwd hadoop

 New passwd:

 Retype new passwd

SSH Setup and Key Generation

SSH setup is required to do different operations on a cluster such as starting, stopping,

distributed daemon shell operations. To authenticate different users of Hadoop, it is

required to provide public/private key pair for a Hadoop user and share it with different

users.

The following commands are used for generating a key value pair using SSH. Copy the

public keys form id_rsa.pub to authorized_keys, and provide the owner with read and

write permissions to authorized_keys file respectively.

$ ssh-keygen -t rsa

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

$ chmod 0600 ~/.ssh/authorized_keys

4. Hadoop ─ Environment Setup

Hadoop

11

Installing Java

Java is the main prerequisite for Hadoop. First of all, you should verify the existence of

java in your system using the command “java -version”. The syntax of java version

command is given below.

$ java -version

If everything is in order, it will give you the following output.

java version "1.7.0_71"

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

If java is not installed in your system, then follow the steps given below for installing

java.

Step 1

Download java (JDK <latest version> - X64.tar.gz) by visiting the following link

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-

1880260.html.

Then jdk-7u71-linux-x64.tar.gz will be downloaded into your system.

Step 2

Generally you will find the downloaded java file in Downloads folder. Verify it and extract

the jdk-7u71-linux-x64.gz file using the following commands.

$ cd Downloads/

$ ls

jdk-7u71-linux-x64.gz

$ tar zxf jdk-7u71-linux-x64.gz

$ ls

jdk1.7.0_71 jdk-7u71-linux-x64.gz

Step 3

To make java available to all the users, you have to move it to the location “/usr/local/”.

Open root, and type the following commands.

$ su

password:

mv jdk1.7.0_71 /usr/local/

Hadoop

12

exit

Step 4

For setting up PATH and JAVA_HOME variables, add the following commands to

~/.bashrc file.

export JAVA_HOME=/usr/local/jdk1.7.0_71

export PATH=PATH:$JAVA_HOME/bin

Now apply all the changes into the current running system.

$ source ~/.bashrc

Step 5

Use the following commands to configure java alternatives:

alternatives --install /usr/bin/java java usr/local/java/bin/java 2

alternatives --install /usr/bin/javac javac usr/local/java/bin/javac 2

alternatives --install /usr/bin/jar jar usr/local/java/bin/jar 2

alternatives --set java usr/local/java/bin/java

alternatives --set javac usr/local/java/bin/javac

alternatives --set jar usr/local/java/bin/jar

Now verify the installation using the command java -version from the terminal as

explained above.

Downloading Hadoop

Download and extract Hadoop 2.4.1 from Apache software foundation using the following

commands.

$ su

password:

cd /usr/local

wget http://apache.claz.org/hadoop/common/hadoop-2.4.1/

hadoop-2.4.1.tar.gz

tar xzf hadoop-2.4.1.tar.gz

mv hadoop-2.4.1/* to hadoop/

exit

Hadoop

13

Hadoop Operation Modes

Once you have downloaded Hadoop, you can operate your Hadoop cluster in one of the

three supported modes:

 Local/Standalone Mode: After downloading Hadoop in your system, by default,

it is configured in a standalone mode and can be run as a single java process.

 Pseudo Distributed Mode: It is a distributed simulation on single machine.

Each Hadoop daemon such as hdfs, yarn, MapReduce etc., will run as a separate

java process. This mode is useful for development.

 Fully Distributed Mode: This mode is fully distributed with minimum two or

more machines as a cluster. We will come across this mode in detail in the

coming chapters.

Installing Hadoop in Standalone Mode

Here we will discuss the installation of Hadoop 2.4.1 in standalone mode.

There are no daemons running and everything runs in a single JVM. Standalone mode is

suitable for running MapReduce programs during development, since it is easy to test

and debug them.

Setting Up Hadoop

You can set Hadoop environment variables by appending the following commands to

~/.bashrc file.

export HADOOP_HOME=/usr/local/hadoop

Before proceeding further, you need to make sure that Hadoop is working fine. Just

issue the following command:

$ hadoop version

If everything is fine with your setup, then you should see the following result:

Hadoop 2.4.1

Subversion https://svn.apache.org/repos/asf/hadoop/common -r 1529768

Compiled by hortonmu on 2013-10-07T06:28Z

Compiled with protoc 2.5.0

From source with checksum 79e53ce7994d1628b240f09af91e1af4

It means your Hadoop's standalone mode setup is working fine. By default, Hadoop is

configured to run in a non-distributed mode on a single machine.

Hadoop

14

Example

Let's check a simple example of Hadoop. Hadoop installation delivers the following

example MapReduce jar file, which provides basic functionality of MapReduce and can be

used for calculating, like Pi value, word counts in a given list of files, etc.

$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar

Let's have an input directory where we will push a few files and our requirement is to

count the total number of words in those files. To calculate the total number of words,

we do not need to write our MapReduce, provided the .jar file contains the

implementation for word count. You can try other examples using the same .jar file; just

issue the following commands to check supported MapReduce functional programs by

hadoop-mapreduce-examples-2.2.0.jar file.

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-

2.2.0.jar

Step 1

Create temporary content files in the input directory. You can create this input directory

anywhere you would like to work.

$ mkdir input

$ cp $HADOOP_HOME/*.txt input

$ ls -l input

It will give the following files in your input directory:

total 24

-rw-r--r-- 1 root root 15164 Feb 21 10:14 LICENSE.txt

-rw-r--r-- 1 root root 101 Feb 21 10:14 NOTICE.txt

-rw-r--r-- 1 root root 1366 Feb 21 10:14 README.txt

These files have been copied from the Hadoop installation home directory. For your

experiment, you can have different and large sets of files.

Step 2

Let's start the Hadoop process to count the total number of words in all the files

available in the input directory, as follows:

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-

2.2.0.jar wordcount input ouput

Hadoop

15

Step 3

Step-2 will do the required processing and save the output in output/part-r-00000 file,

which you can check by using:

$cat output/*

It will list down all the words along with their total counts available in all the files

available in the input directory.

"AS 4

"Contribution" 1

"Contributor" 1

"Derivative 1

"Legal 1

"License" 1

"License"); 1

"Licensor" 1

"NOTICE” 1

"Not 1

"Object" 1

"Source” 1

"Work” 1

"You" 1

"Your") 1

"[]" 1

"control" 1

"printed 1

"submitted" 1

(50%) 1

(BIS), 1

(C) 1

(Don't) 1

(ECCN) 1

(INCLUDING 2

(INCLUDING, 2

.............

Installing Hadoop in Pseudo Distributed Mode

Follow the steps given below to install Hadoop 2.4.1 in pseudo distributed mode.

Step 1: Setting Up Hadoop

You can set Hadoop environment variables by appending the following commands to

~/.bashrc file.

Hadoop

16

export HADOOP_HOME=/usr/local/hadoop
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin

export HADOOP_INSTALL=$HADOOP_HOME

Now apply all the changes into the current running system.

$ source ~/.bashrc

Step 2: Hadoop Configuration

You can find all the Hadoop configuration files in the location

“$HADOOP_HOME/etc/hadoop”. It is required to make changes in those configuration

files according to your Hadoop infrastructure.

$ cd $HADOOP_HOME/etc/hadoop

In order to develop Hadoop programs in java, you have to reset the java environment

variables in hadoop-env.sh file by replacing JAVA_HOME value with the location of

java in your system.

export JAVA_HOME=/usr/local/jdk1.7.0_71

The following are the list of files that you have to edit to configure Hadoop.

core-site.xml

The core-site.xml file contains information such as the port number used for Hadoop

instance, memory allocated for the file system, memory limit for storing the data, and

size of Read/Write buffers.

Open the core-site.xml and add the following properties in between <configuration>,

</configuration> tags.

<configuration>

 <property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:9000</value>

 </property>

</configuration>

Hadoop

17

hdfs-site.xml

The hdfs-site.xml file contains information such as the value of replication data,

namenode path, and datanode paths of your local file systems. It means the place where

you want to store the Hadoop infrastructure.

Let us assume the following data.

dfs.replication (data replication value) = 1

(In the below given path /hadoop/ is the user name.

hadoopinfra/hdfs/namenode is the directory created by hdfs file system.)

namenode path = //home/hadoop/hadoopinfra/hdfs/namenode

(hadoopinfra/hdfs/datanode is the directory created by hdfs file system.)

datanode path = //home/hadoop/hadoopinfra/hdfs/datanode

Open this file and add the following properties in between the <configuration>,

</configuration> tags in this file.

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

 <property>

 <name>dfs.name.dir</name>

 <value>file:///home/hadoop/hadoopinfra/hdfs/namenode</value>

 </property>

 <property>

 <name>dfs.data.dir</name>

 <value>file:///home/hadoop/hadoopinfra/hdfs/datanode</value>

 </property>

</configuration>

Note: In the above file, all the property values are user-defined and you can make

changes according to your Hadoop infrastructure.

yarn-site.xml

This file is used to configure yarn into Hadoop. Open the yarn-site.xml file and add the

following properties in between the <configuration>, </configuration> tags in this file.

Hadoop

18

<configuration>

 <property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_shuffle</value>

 </property>

</configuration>

mapred-site.xml

This file is used to specify which MapReduce framework we are using. By default,

Hadoop contains a template of yarn-site.xml. First of all, it is required to copy the file

from mapred-site,xml.template to mapred-site.xml file using the following

command.

$ cp mapred-site.xml.template mapred-site.xml

Open mapred-site.xml file and add the following properties in between the

<configuration>, </configuration> tags in this file.

<configuration>

 <property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

 </property>

</configuration>

Verifying Hadoop Installation

The following steps are used to verify the Hadoop installation.

Step 1: Name Node Setup

Set up the namenode using the command “hdfs namenode -format” as follows.

$ cd ~

$ hdfs namenode -format

The expected result is as follows.

10/24/14 21:30:55 INFO namenode.NameNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = localhost/192.168.1.11
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 2.4.1

Hadoop

19

...
...
10/24/14 21:30:56 INFO common.Storage: Storage directory
/home/hadoop/hadoopinfra/hdfs/namenode has been successfully formatted.
10/24/14 21:30:56 INFO namenode.NNStorageRetentionManager: Going to retain 1
images with txid >= 0
10/24/14 21:30:56 INFO util.ExitUtil: Exiting with status 0
10/24/14 21:30:56 INFO namenode.NameNode: SHUTDOWN_MSG:
/**
SHUTDOWN_MSG: Shutting down NameNode at localhost/192.168.1.11
**/

Step 2: Verifying Hadoop dfs

The following command is used to start dfs. Executing this command will start your

Hadoop file system.

$ start-dfs.sh

The expected output is as follows:

10/24/14 21:37:56

Starting namenodes on [localhost]

localhost: starting namenode, logging to /home/hadoop/hadoop-2.4.1/logs/hadoop-

hadoop-namenode-localhost.out

localhost: starting datanode, logging to /home/hadoop/hadoop-2.4.1/logs/hadoop-

hadoop-datanode-localhost.out

Starting secondary namenodes [0.0.0.0]

Step 3: Verifying Yarn Script

The following command is used to start the yarn script. Executing this command will

start your yarn daemons.

$ start-yarn.sh

The expected output as follows:

starting yarn daemons

starting resourcemanager, logging to /home/hadoop/hadoop-2.4.1/logs/yarn-

hadoop-resourcemanager-localhost.out

localhost: starting nodemanager, logging to /home/hadoop/hadoop-

2.4.1/logs/yarn-hadoop-nodemanager-localhost.out

Step 4: Accessing Hadoop on Browser

The default port number to access Hadoop is 50070. Use the following url to get Hadoop

services on browser.

Hadoop

20

http://localhost:50070/

Step 5: Verify All Applications for Cluster

The default port number to access all applications of cluster is 8088. Use the following

url to visit this service.

http://localhost:8088/

Hadoop

21

Hadoop File System was developed using distributed file system design. It is run on

commodity hardware. Unlike other distributed systems, HDFS is highly fault-tolerant and

designed using low-cost hardware.

HDFS holds very large amount of data and provides easier access. To store such huge

data, the files are stored across multiple machines. These files are stored in redundant

fashion to rescue the system from possible data losses in case of failure. HDFS also

makes applications available to parallel processing.

Features of HDFS

 It is suitable for the distributed storage and processing.

 Hadoop provides a command interface to interact with HDFS.

 The built-in servers of namenode and datanode help users to easily check the

status of cluster.

 Streaming access to file system data.

 HDFS provides file permissions and authentication.

HDFS Architecture

Given below is the architecture of a Hadoop File System.

5. Hadoop ─ HDFS Overview

Hadoop

22

HDFS follows the master-slave architecture and it has the following elements.

Namenode

The namenode is the commodity hardware that contains the GNU/Linux operating

system and the namenode software. It is a software that can be run on commodity

hardware. The system having the namenode acts as the master server and it does the

following tasks:

 Manages the file system namespace.

 Regulates client’s access to files.

 It also executes file system operations such as renaming, closing, and opening

files and directories.

Datanode

The datanode is a commodity hardware having the GNU/Linux operating system and

datanode software. For every node (Commodity hardware/System) in a cluster, there

will be a datanode. These nodes manage the data storage of their system.

 Datanodes perform read-write operations on the file systems, as per client

request.

 They also perform operations such as block creation, deletion, and replication

according to the instructions of the namenode.

Block

Generally the user data is stored in the files of HDFS. The file in a file system will be

divided into one or more segments and/or stored in individual data nodes. These file

segments are called as blocks. In other words, the minimum amount of data that HDFS

can read or write is called a Block. The default block size is 64MB, but it can be increased

as per the need to change in HDFS configuration.

Goals of HDFS

Fault detection and recovery: Since HDFS includes a large number of commodity

hardware, failure of components is frequent. Therefore HDFS should have mechanisms

for quick and automatic fault detection and recovery.

Huge datasets: HDFS should have hundreds of nodes per cluster to manage the

applications having huge datasets.

Hardware at data: A requested task can be done efficiently, when the computation

takes place near the data. Especially where huge datasets are involved, it reduces the

network traffic and increases the throughput.

Hadoop

23

Starting HDFS

Initially you have to format the configured HDFS file system, open namenode (HDFS

server), and execute the following command.

$ hadoop namenode -format

After formatting the HDFS, start the distributed file system. The following command will

start the namenode as well as the data nodes as cluster.

$ start-dfs.sh

Listing Files in HDFS

After loading the information in the server, we can find the list of files in a directory,

status of a file, using ‘ls’. Given below is the syntax of ls that you can pass to a directory

or a filename as an argument.

$ $HADOOP_HOME/bin/hadoop fs -ls <args>

Inserting Data into HDFS

Assume we have data in the file called file.txt in the local system which is ought to be

saved in the hdfs file system. Follow the steps given below to insert the required file in

the Hadoop file system.

Step 1

You have to create an input directory.

$ $HADOOP_HOME/bin/hadoop fs -mkdir /user/input

Step 2

Transfer and store a data file from local systems to the Hadoop file system using the put

command.

$ $HADOOP_HOME/bin/hadoop fs -put /home/file.txt /user/input

6. Hadoop ─ HDFS Operations

Hadoop

24

Step 3

You can verify the file using ls command.

$ $HADOOP_HOME/bin/hadoop fs -ls /user/input

Retrieving Data from HDFS

Assume we have a file in HDFS called outfile. Given below is a simple demonstration for

retrieving the required file from the Hadoop file system.

Step 1

Initially, view the data from HDFS using cat command.

$ $HADOOP_HOME/bin/hadoop fs -cat /user/output/outfile

Step 2

Get the file from HDFS to the local file system using get command.

$ $HADOOP_HOME/bin/hadoop fs -get /user/output/ /home/hadoop_tp/

Shutting Down the HDFS

You can shut down the HDFS by using the following command.

$ stop-dfs.sh

Hadoop

25

HDFS Command Reference

There are many more commands in "$HADOOP_HOME/bin/hadoop fs" than are

demonstrated here, although these basic operations will get you started. Running

./bin/hadoop dfs with no additional arguments will list all the commands that can be run

with the FsShell system. Furthermore, $HADOOP_HOME/bin/hadoop fs -help

commandName will display a short usage summary for the operation in question, if you

are stuck.

A table of all the operations is shown below. The following conventions are used for

parameters:

"<path>" means any file or directory name.

 "<path>..." means one or more file or directory names.

 "<file>" means any filename.

 "<src>" and "<dest>" are path names in a directed operation.

 "<localSrc>" and "<localDest>" are paths as above, but on the local file

system.

All other files and path names refer to the objects inside HDFS.

Command Description

-ls <path>

Lists the contents of the directory specified by

path, showing the names, permissions, owner,

size and modification date for each entry.

-lsr <path>
Behaves like -ls, but recursively displays entries

in all subdirectories of path.

-du <path>

Shows disk usage, in bytes, for all the files

which match path; filenames are reported with

the full HDFS protocol prefix.

-dus <path>
Like -du, but prints a summary of disk usage of

all files/directories in the path.

-mv <src> <dest>
Moves the file or directory indicated by src to

dest, within HDFS.

-cp <src> <dest>
Copies the file or directory identified by src to

dest, within HDFS.

7. Hadoop ─ Command reference

Hadoop

26

-rm <path>
Removes the file or empty directory identified

by path.

-rmr <path>

Removes the file or directory identified by path.

Recursively deletes any child entries (i.e., files

or subdirectories of path).

-put <localSrc> <dest>

Copies the file or directory from the local file

system identified by localSrc to dest within the

DFS.

-copyFromLocal <localSrc> <dest> Identical to -put

-moveFromLocal <localSrc> <dest>

Copies the file or directory from the local file

system identified by localSrc to dest within

HDFS, and then deletes the local copy on

success.

-get [-crc] <src> <localDest>

Copies the file or directory in HDFS identified by

src to the local file system path identified by

localDest.

-getmerge <src> <localDest>

Retrieves all files that match the path src in

HDFS, and copies them to a single, merged file

in the local file system identified by localDest.

-cat <filen-ame> Displays the contents of filename on stdout.

-copyToLocal <src> <localDest> Identical to -get

-moveToLocal <src> <localDest>
Works like -get, but deletes the HDFS copy on

success.

-mkdir <path>

Creates a directory named path in HDFS.

Creates any parent directories in path that are

missing (e.g., mkdir -p in Linux).

-setrep [-R] [-w] rep <path>

Sets the target replication factor for files

identified by path to rep. (The actual replication

factor will move toward the target over time)

-touchz <path> Creates a file at path containing the current

time as a timestamp. Fails if a file already

Hadoop

27

exists at path, unless the file is already size 0.

-test -[ezd] <path>
Returns 1 if path exists; has zero length; or is a

directory or 0 otherwise.

-stat [format] <path>

Prints information about path. Format is a

string which accepts file size in blocks (%b),

filename (%n), block size (%o), replication

(%r), and modification date (%y, %Y).

-tail [-f] <file2name> Shows the last 1KB of file on stdout.

-chmod [-R] mode,mode,...

<path>...

Changes the file permissions associated with

one or more objects identified by path....

Performs changes recursively with -R. mode is a

3-digit octal mode, or {augo}+/-{rwxX}.

Assumes if no scope is specified and does not

apply an umask.

-chown [-R] [owner][:[group]]

<path>...

Sets the owning user and/or group for files or

directories identified by path.... Sets owner

recursively if -R is specified.

-chgrp [-R] group <path>...

Sets the owning group for files or directories

identified by path.... Sets group recursively if -R

is specified.

-help <cmd-name>

Returns usage information for one of the

commands listed above. You must omit the

leading '-' character in cmd.

Hadoop

28

MapReduce is a framework using which we can write applications to process huge

amounts of data, in parallel, on large clusters of commodity hardware in a reliable

manner.

What is MapReduce?

MapReduce is a processing technique and a program model for distributed computing

based on java. The MapReduce algorithm contains two important tasks, namely Map and

Reduce. Map takes a set of data and converts it into another set of data, where

individual elements are broken down into tuples (key/value pairs). Secondly, reduce

task, which takes the output from a map as an input and combines those data tuples

into a smaller set of tuples. As the sequence of the name MapReduce implies, the reduce

task is always performed after the map job.

The major advantage of MapReduce is that it is easy to scale data processing over

multiple computing nodes. Under the MapReduce model, the data processing primitives

are called mappers and reducers. Decomposing a data processing application into

mappers and reducers is sometimes nontrivial. But, once we write an application in the

MapReduce form, scaling the application to run over hundreds, thousands, or even tens

of thousands of machines in a cluster is merely a configuration change. This simple

scalability is what has attracted many programmers to use the MapReduce model.

The Algorithm

 Generally MapReduce paradigm is based on sending the computer to where the

data resides!

 MapReduce program executes in three stages, namely map stage, shuffle stage,

and reduce stage.

o Map stage: The map or mapper’s job is to process the input data. Generally

the input data is in the form of file or directory and is stored in the Hadoop file

system (HDFS). The input file is passed to the mapper function line by line.

The mapper processes the data and creates several small chunks of data.

o Reduce stage: This stage is the combination of the Shuffle stage and the

Reduce stage. The Reducer’s job is to process the data that comes from the

mapper. After processing, it produces a new set of output, which will be

stored in the HDFS.

 During a MapReduce job, Hadoop sends the Map and Reduce tasks to the

appropriate servers in the cluster.

 The framework manages all the details of data-passing such as issuing tasks,

verifying task completion, and copying data around the cluster between the

nodes.

8. Hadoop ─ MapReduce

Hadoop

29

 Most of the computing takes place on nodes with data on local disks that reduces

the network traffic.

 After completion of the given tasks, the cluster collects and reduces the data to

form an appropriate result, and sends it back to the Hadoop server.

Inputs and Outputs (Java Perspective)

The MapReduce framework operates on <key, value> pairs, that is, the framework views

the input to the job as a set of <key, value> pairs and produces a set of <key, value>

pairs as the output of the job, conceivably of different types.

The key and the value classes should be in serialized manner by the framework and

hence, need to implement the Writable interface. Additionally, the key classes have to

implement the Writable-Comparable interface to facilitate sorting by the framework.

Input and Output types of a MapReduce job: (Input) <k1, v1> -> map -> <k2, v2>->

reduce -> <k3, v3> (Output).

 Input Output

Map <k1, v1> list (<k2, v2>)

Reduce <k2, list(v2)> list (<k3, v3>)

Terminology

 PayLoad - Applications implement the Map and the Reduce functions, and form

the core of the job.

 Mapper - Mapper maps the input key/value pairs to a set of intermediate

key/value pair.

 NamedNode - Node that manages the Hadoop Distributed File System (HDFS).

Hadoop

30

 DataNode - Node where data is presented in advance before any processing

takes place.

 MasterNode - Node where JobTracker runs and which accepts job requests from

clients.

 SlaveNode - Node where Map and Reduce program runs.

 JobTracker - Schedules jobs and tracks the assign jobs to Task tracker.

 Task Tracker - Tracks the task and reports status to JobTracker.

 Job - A program is an execution of a Mapper and Reducer across a dataset.

 Task - An execution of a Mapper or a Reducer on a slice of data.

 Task Attempt - A particular instance of an attempt to execute a task on a

SlaveNode.

Example Scenario

Given below is the data regarding the electrical consumption of an organization. It

contains the monthly electrical consumption and the annual average for various years.

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

If the above data is given as input, we have to write applications to process it and

produce results such as finding the year of maximum usage, year of minimum usage,

and so on. This is a walkover for the programmers with finite number of records. They

will simply write the logic to produce the required output, and pass the data to the

application written.

But, think of the data representing the electrical consumption of all the large-scale

industries of a particular state, since its formation.

When we write applications to process such bulk data,

 They will take a lot of time to execute.

Hadoop

31

 There will be a heavy network traffic when we move data from source to network

server and so on.

To solve these problems, we have the MapReduce framework.

Input Data

The above data is saved as sample.txt and given as input. The input file looks as shown

below.

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

Example Program

Given below is the program to the sample data using MapReduce framework.

package hadoop;

import java.util.*;

import java.io.IOException;

import java.io.IOException;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapred.*;

import org.apache.hadoop.util.*;

public class ProcessUnits

{

 //Mapper class

 public static class E_EMapper extends MapReduceBase implements

 Mapper<LongWritable ,/*Input key Type */

 Text, /*Input value Type*/

 Text, /*Output key Type*/

 IntWritable> /*Output value Type*/

 { //Map function

 public void map(LongWritable key, Text value,

Hadoop

32

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException

 {

 String line = value.toString();

 String lasttoken = null;

 StringTokenizer s = new StringTokenizer(line,"\t");

 String year = s.nextToken();

 while(s.hasMoreTokens()){lasttoken=s.nextToken();}

 int avgprice = Integer.parseInt(lasttoken);

 output.collect(new Text(year), new IntWritable(avgprice));

 }

 }

 //Reducer class

 public static class E_EReduce extends MapReduceBase implements

 Reducer< Text, IntWritable, Text, IntWritable >

 { //Reduce function

 public void reduce(

 Text key,

 Iterator <IntWritable> values,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException

 {

 int maxavg=30;

 int val=Integer.MIN_VALUE;

 while (values.hasNext())

 {

 if((val=values.next().get())>maxavg)

 {

 output.collect(key, new IntWritable(val));

 }

 }

 }

 }

Hadoop

33

 //Main function

 public static void main(String args[])throws Exception

 {

 JobConf conf = new JobConf(Eleunits.class);

 conf.setJobName("max_eletricityunits");

 conf.setOutputKeyClass(Text.class);

 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(E_EMapper.class);

 conf.setCombinerClass(E_EReduce.class);

 conf.setReducerClass(E_EReduce.class);

 conf.setInputFormat(TextInputFormat.class);

 conf.setOutputFormat(TextOutputFormat.class);

 FileInputFormat.setInputPaths(conf, new Path(args[0]));

 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 JobClient.runJob(conf);

 }

}

Save the above program as ProcessUnits.java. The compilation and execution of the

program is explained below.

Compilation and Execution of Process Units Program

Let us assume we are in the home directory of a Hadoop user (e.g. /home/hadoop).

Follow the steps given below to compile and execute the above program.

Step 1

The following command is to create a directory to store the compiled java classes.

$ mkdir units

Step 2

Download Hadoop-core-1.2.1.jar, which is used to compile and execute the

MapReduce program. Visit the following link

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1 to download

the jar. Let us assume the downloaded folder is /home/hadoop/.

Step 3

Hadoop

34

The following commands are used for compiling the ProcessUnits.java program and

creating a jar for the program.

$ javac -classpath hadoop-core-1.2.1.jar -d units ProcessUnits.java

$ jar -cvf units.jar -C units/ .

Step 4

The following command is used to create an input directory in HDFS.

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir

Step 5

The following command is used to copy the input file named sample.txt in the input

directory of HDFS.

$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/sample.txt input_dir

Step 6

The following command is used to verify the files in the input directory.

$HADOOP_HOME/bin/hadoop fs -ls input_dir/

Step 7

The following command is used to run the Eleunit_max application by taking the input

files from the input directory.

$HADOOP_HOME/bin/hadoop jar units.jar hadoop.ProcessUnits input_dir output_dir

Wait for a while until the file is executed. After execution, as shown below, the output

will contain the number of input splits, the number of Map tasks, the number of reducer

tasks, etc.

INFO mapreduce.Job: Job job_1414748220717_0002

completed successfully

14/10/31 06:02:52

INFO mapreduce.Job: Counters: 49

 File System Counters

FILE: Number of bytes read=61

FILE: Number of bytes written=279400

FILE: Number of read operations=0

Hadoop

35

FILE: Number of large read operations=0

FILE: Number of write operations=0

HDFS: Number of bytes read=546

HDFS: Number of bytes written=40

HDFS: Number of read operations=9

HDFS: Number of large read operations=0

HDFS: Number of write operations=2 Job Counters

 Launched map tasks=2

 Launched reduce tasks=1

 Data-local map tasks=2

 Total time spent by all maps in occupied slots (ms)=146137

 Total time spent by all reduces in occupied slots (ms)=441

 Total time spent by all map tasks (ms)=14613

 Total time spent by all reduce tasks (ms)=44120

 Total vcore-seconds taken by all map tasks=146137

 Total vcore-seconds taken by all reduce tasks=44120

 Total megabyte-seconds taken by all map tasks=149644288

 Total megabyte-seconds taken by all reduce tasks=45178880

Map-Reduce Framework

 Map input records=5

 Map output records=5

 Map output bytes=45

 Map output materialized bytes=67

 Input split bytes=208

 Combine input records=5

 Combine output records=5

 Reduce input groups=5

 Reduce shuffle bytes=6

 Reduce input records=5

 Reduce output records=5

 Spilled Records=10

 Shuffled Maps =2

 Failed Shuffles=0

Hadoop

36

 Merged Map outputs=2

 GC time elapsed (ms)=948

 CPU time spent (ms)=5160

 Physical memory (bytes) snapshot=47749120

 Virtual memory (bytes) snapshot=2899349504

 Total committed heap usage (bytes)=277684224

File Output Format Counters

 Bytes Written=40

Step 8

The following command is used to verify the resultant files in the output folder.

$HADOOP_HOME/bin/hadoop fs -ls output_dir/

Step 9

The following command is used to see the output in Part-00000 file. This file is

generated by HDFS.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000

Below is the output generated by the MapReduce program.

1981 34

1984 40

1985 45

Step 10

The following command is used to copy the output folder from HDFS to the local file

system for analyzing.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000/bin/hadoop dfs -get

output_dir /home/hadoop

Important Commands

All Hadoop commands are invoked by the $HADOOP_HOME/bin/hadoop command.

Running the Hadoop script without any arguments prints the description for all

commands.

Hadoop

37

Usage: hadoop [--config confdir] COMMAND

The following table lists the options available and their description.

Options Description

namenode -format Formats the DFS filesystem.

secondarynamenode Runs the DFS secondary namenode.

namenode Runs the DFS namenode.

datanode Runs a DFS datanode.

dfsadmin Runs a DFS admin client.

mradmin Runs a Map-Reduce admin client.

fsck Runs a DFS filesystem checking utility.

fs Runs a generic filesystem user client.

balancer Runs a cluster balancing utility.

oiv Applies the offline fsimage viewer to an

fsimage.

fetchdt Fetches a delegation token from the

NameNode.

jobtracker Runs the MapReduce job Tracker node.

pipes Runs a Pipes job.

tasktracker Runs a MapReduce task Tracker node.

historyserver Runs job history servers as a standalone

daemon.

job Manipulates the MapReduce jobs.

queue Gets information regarding JobQueues.

Hadoop

38

version Prints the version.

jar <jar> Runs a jar file.

distcp <srcurl> <desturl> Copies file or directories recursively.

distcp2 <srcurl> <desturl> DistCp version 2.

archive -archiveName NAME -p <parent

path> <src>* <dest>

Creates a hadoop archive.

classpath Prints the class path needed to get the

Hadoop jar and the required libraries.

daemonlog Get/Set the log level for each daemon.

How to Interact with MapReduce Jobs

Usage: hadoop job [GENERIC_OPTIONS]

The following are the Generic Options available in a Hadoop job.

GENERIC_OPTIONS Description

-submit <job-file> Submits the job.

-status <job-id> Prints the map and reduce completion percentage and

all job counters.

-counter < job-id> <group-

name> <counter-name>

Prints the counter value.

-kill <job-id> Kills the job.

-events <job-id> <from-

event-#> <#-of-events>

Prints the events' details received by jobtracker for the

given range.

-history [all]

<jobOutputDir> -history

<jobOutputDir>

Prints job details, failed and killed tip details. More

details about the job such as successful tasks and task

attempts made for each task can be viewed by

specifying the [all] option.

Hadoop

39

-list[all] Displays all jobs. -list displays only jobs which are yet

to complete.

-kill-task <task-id> Kills the task. Killed tasks are NOT counted against

failed attempts.

-fail-task <task-id> Fails the task. Failed tasks are counted against failed

attempts.

-set-priority <job-id>

<priority>

Changes the priority of the job. Allowed priority values

are VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW

To see the status of job

$ $HADOOP_HOME/bin/hadoop job -status < JOB-ID >

e.g.

$ $HADOOP_HOME/bin/hadoop job -status job_201310191043_0004

To see the history of job output-dir

$ $HADOOP_HOME/bin/hadoop job -history < DIR-NAME >

e.g.

$ $HADOOP_HOME/bin/hadoop job -history /user/expert/output

To kill the job

$ $HADOOP_HOME/bin/hadoop job -kill < JOB-ID >

e.g.

$ $HADOOP_HOME/bin/hadoop job -kill job_201310191043_0004

Hadoop

40

Hadoop streaming is a utility that comes with the Hadoop distribution. This utility allows

you to create and run Map/Reduce jobs with any executable or script as the mapper

and/or the reducer.

Example using Python

For Hadoop streaming, we are considering the word-count problem. Any job in Hadoop

must have two phases: mapper and reducer. We have written codes for the mapper and

the reducer in python script to run it under Hadoop. One can also write the same in Perl

and Ruby.

Mapper Phase Code

!/usr/bin/python

import sys

Input takes from standard input

for myline in sys.stdin:

 # Remove whitespace either side

 myline = myline.strip()

 # Break the line into words

 words = myline.split()

 # Iterate the words list

 for myword in words:

 # Write the results to standard output

 print '%s\t%s' % (myword, 1)

Make sure this file has execution permission (chmod +x /home/ expert/hadoop-

1.2.1/mapper.py).

Reducer Phase Code

#!/usr/bin/python

from operator import itemgetter
import sys

current_word = ""
current_count = 0
word = ""

9. Hadoop ─ Streaming

Hadoop

41

Input takes from standard input
for myline in sys.stdin:
 # Remove whitespace either side
 myline = myline.strip()

 # Split the input we got from mapper.py
 word, count = myline.split('\t', 1)

 # Convert count variable to integer
 try:
 count = int(count)

 except ValueError:
 # Count was not a number, so silently ignore this line
 continue

 if current_word == word:
 current_count += count
 else:
 if current_word:
 # Write result to standard output
 print '%s\t%s' % (current_word, current_count)

 current_count = count
 current_word = word

Do not forget to output the last word if needed!
if current_word == word:
 print '%s\t%s' % (current_word, current_count)

Save the mapper and reducer codes in mapper.py and reducer.py in Hadoop home

directory. Make sure these files have execution permission (chmod +x mapper.py and

chmod +x reducer.py). As python is indentation sensitive so the same code can be

download from the below link.

Execution of WordCount Program

$ $HADOOP_HOME/bin/hadoop jar contrib/streaming/hadoop-streaming-1. 2.1.jar \

 -input input_dirs \

 -output output_dir \

 -mapper <path/mapper.py \

 -reducer <path/reducer.py

Where "\" is used for line continuation for clear readability.

For example,

./bin/hadoop jar contrib/streaming/hadoop-streaming-1.2.1.jar -input myinput -

output myoutput -mapper /home/expert/hadoop-1.2.1/mapper.py -reducer

/home/expert/hadoop-1.2.1/reducer.py

Hadoop

42

How Streaming Works

In the above example, both the mapper and the reducer are python scripts that read the

input from standard input and emit the output to standard output. The utility will create

a Map/Reduce job, submit the job to an appropriate cluster, and monitor the progress of

the job until it completes.

When a script is specified for mappers, each mapper task will launch the script as a

separate process when the mapper is initialized. As the mapper task runs, it converts its

inputs into lines and feed the lines to the standard input (STDIN) of the process. In the

meantime, the mapper collects the line-oriented outputs from the standard output

(STDOUT) of the process and converts each line into a key/value pair, which is collected

as the output of the mapper. By default, the prefix of a line up to the first tab character

is the key and the rest of the line (excluding the tab character) will be the value. If there

is no tab character in the line, then the entire line is considered as the key and the value

is null. However, this can be customized, as per one need.

When a script is specified for reducers, each reducer task will launch the script as a

separate process, then the reducer is initialized. As the reducer task runs, it converts its

input key/values pairs into lines and feeds the lines to the standard input (STDIN) of the

process. In the meantime, the reducer collects the line-oriented outputs from the

standard output (STDOUT) of the process, converts each line into a key/value pair,

which is collected as the output of the reducer. By default, the prefix of a line up to the

first tab character is the key and the rest of the line (excluding the tab character) is the

value. However, this can be customized as per specific requirements.

Important Commands

Parameters Options Description

-input directory/file-name Required Input location for mapper.

-output directory-name Required Output location for reducer.

-mapper executable or script

or JavaClassName

Required Mapper executable.

-reducer executable or script

or JavaClassName

Required Reducer executable.

-file file-name Optional Makes the mapper, reducer, or combiner

executable available locally on the

compute nodes.

-inputformat JavaClassName Optional Class you supply should return key/value

pairs of Text class. If not specified,

Hadoop

43

TextInputFormat is used as the default.

-outputformat

JavaClassName

Optional Class you supply should take key/value

pairs of Text class. If not specified,

TextOutputformat is used as the default.

-partitioner JavaClassName Optional Class that determines which reduce a key

is sent to.

-combiner

streamingCommand or

JavaClassName

Optional Combiner executable for map output.

-cmdenv name=value Optional Passes the environment variable to

streaming commands.

-inputreader Optional For backwards-compatibility: specifies a

record reader class (instead of an input

format class).

-verbose Optional Verbose output.

-lazyOutput Optional Creates output lazily. For example, if the

output format is based on

FileOutputFormat, the output file is created

only on the first call to output.collect (or

Context.write).

-numReduceTasks Optional Specifies the number of reducers.

-mapdebug Optional Script to call when map task fails.

-reducedebug Optional Script to call when reduce task fails.

Hadoop

44

This chapter explains the setup of the Hadoop Multi-Node cluster on a distributed

environment.

As the whole cluster cannot be demonstrated, we are explaining the Hadoop cluster

environment using three systems (one master and two slaves); given below are their IP

addresses.

 Hadoop Master: 192.168.1.15 (hadoop-master)

 Hadoop Slave: 192.168.1.16 (hadoop-slave-1)

 Hadoop Slave: 192.168.1.17 (hadoop-slave-2)

Follow the steps given below to have Hadoop Multi-Node cluster setup.

Installing Java

Java is the main prerequisite for Hadoop. First of all, you should verify the existence of

java in your system using “java -version”. The syntax of java version command is given

below.

$ java -version

If everything works fine it will give you the following output.

java version "1.7.0_71"

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

If java is not installed in your system, then follow the given steps for installing java.

Step 1

Download java (JDK <latest version> - X64.tar.gz) by visiting the following link

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-

1880260.html.

Then jdk-7u71-linux-x64.tar.gz will be downloaded into your system.

Step 2

Generally you will find the downloaded java file in Downloads folder. Verify it and extract

the jdk-7u71-linux-x64.gz file using the following commands.

$ cd Downloads/

$ ls

jdk-7u71-Linux-x64.gz

10. Hadoop ─ Multi-Node Cluster

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

Hadoop

45

$ tar zxf jdk-7u71-Linux-x64.gz

$ ls

jdk1.7.0_71 jdk-7u71-Linux-x64.gz

Step 3

To make java available to all the users, you have to move it to the location “/usr/local/”.

Open the root, and type the following commands.

$ su

password:

mv jdk1.7.0_71 /usr/local/

exit

Step 4

For setting up PATH and JAVA_HOME variables, add the following commands to

~/.bashrc file.

export JAVA_HOME=/usr/local/jdk1.7.0_71

export PATH=PATH:$JAVA_HOME/bin

Now verify the java -version command from the terminal as explained above.

Follow the above process and install java in all your cluster nodes.

Creating User Account

Create a system user account on both master and slave systems to use the Hadoop

installation.

useradd hadoop

passwd hadoop

Mapping the nodes

You have to edit hosts file in /etc/ folder on all nodes, specify the IP address of each

system followed by their host names.

vi /etc/hosts

enter the following lines in the /etc/hosts file.

Hadoop

46

192.168.1.109 hadoop-master

192.168.1.145 hadoop-slave-1

192.168.56.1 hadoop-slave-2

Configuring Key Based Login

Setup ssh in every node such that they can communicate with one another without any

prompt for password.

su hadoop

$ ssh-keygen -t rsa

$ ssh-copy-id -i ~/.ssh/id_rsa.pub tutorialspoint@hadoop-master

$ ssh-copy-id -i ~/.ssh/id_rsa.pub hadoop_tp1@hadoop-slave-1

$ ssh-copy-id -i ~/.ssh/id_rsa.pub hadoop_tp2@hadoop-slave-2

$ chmod 0600 ~/.ssh/authorized_keys

$ exit

Installing Hadoop

In the Master server, download and install Hadoop using the following commands.

mkdir /opt/hadoop

cd /opt/hadoop/

wget http://apache.mesi.com.ar/hadoop/common/hadoop-1.2.1/hadoop-1.2.0.tar.gz

tar -xzf hadoop-1.2.0.tar.gz

mv hadoop-1.2.0 hadoop

chown -R hadoop /opt/hadoop

cd /opt/hadoop/hadoop/

Configuring Hadoop

You have to configure Hadoop server by making the following changes as given below.

core-site.xml

Open the core-site.xml file and edit it as shown below.

<configuration>

 <property>

 <name>fs.default.name</name>

 <value>hdfs://hadoop-master:9000/</value>

 </property>

 <property>

 <name>dfs.permissions</name>

 <value>false</value>

 </property>

</configuration>

Hadoop

47

hdfs-site.xml

Open the hdfs-site.xml file and edit it as shown below.

<configuration>

 <property>

 <name>dfs.data.dir</name>

 <value>/opt/hadoop/hadoop/dfs/name/data</value>

 <final>true</final>

 </property>

 <property>

 <name>dfs.name.dir</name>

 <value>/opt/hadoop/hadoop/dfs/name</value>

 <final>true</final>

 </property>

 <property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

</configuration>

mapred-site.xml

Open the mapred-site.xml file and edit it as shown below.

<configuration>

 <property>

 <name>mapred.job.tracker</name>

 <value>hadoop-master:9001</value>

 </property>

</configuration>

hadoop-env.sh

Open the hadoop-env.sh file and edit JAVA_HOME, HADOOP_CONF_DIR, and

HADOOP_OPTS as shown below.

Note: Set the JAVA_HOME as per your system configuration.

export JAVA_HOME=/opt/jdk1.7.0_17

export HADOOP_OPTS=-Djava.net.preferIPv4Stack=true

export HADOOP_CONF_DIR=/opt/hadoop/hadoop/conf

Hadoop

48

Installing Hadoop on Slave Servers

Install Hadoop on all the slave servers by following the given commands.

su hadoop

$ cd /opt/hadoop

$ scp -r hadoop hadoop-slave-1:/opt/hadoop

$ scp -r hadoop hadoop-slave-2:/opt/hadoop

Configuring Hadoop on Master Server

Open the master server and configure it by following the given commands.

su hadoop

$ cd /opt/hadoop/hadoop

Configuring Master Node

$ vi etc/hadoop/masters

hadoop-master

Configuring Slave Node

$ vi etc/hadoop/slaves

hadoop-slave-1

hadoop-slave-2

Format Name Node on Hadoop Master

su hadoop
$ cd /opt/hadoop/hadoop
$ bin/hadoop namenode –format

11/10/14 10:58:07 INFO namenode.NameNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = hadoop-master/192.168.1.109
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 1.2.0
STARTUP_MSG: build =
https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.2 -r 1479473;
compiled by 'hortonfo' on Mon May 6 06:59:37 UTC 2013
STARTUP_MSG: java = 1.7.0_71

Hadoop

49

**/
11/10/14 10:58:08 INFO util.GSet: Computing capacity for map BlocksMap
editlog=/opt/hadoop/hadoop/dfs/name/current/edits

………………………………………………….

………………………………………………….

………………………………………………….
11/10/14 10:58:08 INFO common.Storage: Storage directory
/opt/hadoop/hadoop/dfs/name has been successfully formatted.
11/10/14 10:58:08 INFO namenode.NameNode: SHUTDOWN_MSG:
/**
SHUTDOWN_MSG: Shutting down NameNode at hadoop-master/192.168.1.15
**/

Starting Hadoop Services

The following command is to start all the Hadoop services on the Hadoop-Master.

$ cd $HADOOP_HOME/sbin

$ start-all.sh

Adding a New DataNode in the Hadoop Cluster

Given below are the steps to be followed for adding new nodes to a Hadoop cluster.

Networking

Add new nodes to an existing Hadoop cluster with some appropriate network

configuration. Assume the following network configuration.

For New node Configuration:

IP address : 192.168.1.103

netmask : 255.255.255.0

hostname : slave3.in

Adding a User and SSH Access

Add a User

On a new node, add "hadoop" user and set password of Hadoop user to "hadoop123" or

anything you want by using the following commands.

useradd hadoop

passwd hadoop

Hadoop

50

Setup Password less connectivity from master to new slave.

Execute the following on the master

mkdir -p $HOME/.ssh

chmod 700 $HOME/.ssh

ssh-keygen -t rsa -P '' -f $HOME/.ssh/id_rsa

cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

chmod 644 $HOME/.ssh/authorized_keys

Copy the public key to new slave node in hadoop user $HOME directory

scp $HOME/.ssh/id_rsa.pub hadoop@192.168.1.103:/home/hadoop/

Execute the following on the slaves

Login to hadoop. If not, login to hadoop user.

su hadoop ssh -X hadoop@192.168.1.103

Copy the content of public key into file "$HOME/.ssh/authorized_keys" and then

change the permission for the same by executing the following commands.

cd $HOME

mkdir -p $HOME/.ssh

chmod 700 $HOME/.ssh

cat id_rsa.pub >>$HOME/.ssh/authorized_keys

chmod 644 $HOME/.ssh/authorized_keys

Check ssh login from the master machine. Now check if you can ssh to the new node

without a password from the master.

ssh hadoop@192.168.1.103 or hadoop@slave3

Set Hostname of New Node

You can set hostname in file /etc/sysconfig/network

On new slave3 machine

NETWORKING=yes

HOSTNAME=slave3.in

To make the changes effective, either restart the machine or run hostname command

to a new machine with the respective hostname (restart is a good option).

On slave3 node machine:

hostname slave3.in

Hadoop

51

Update /etc/hosts on all machines of the cluster with the following lines:

192.168.1.102 slave3.in slave3

Now try to ping the machine with hostnames to check whether it is resolving to IP or

not.

On new node machine:

ping master.in

Start the DataNode on New Node

Start the datanode daemon manually using $HADOOP_HOME/bin/hadoop-

daemon.sh script. It will automatically contact the master (NameNode) and join the

cluster. We should also add the new node to the conf/slaves file in the master server.

The script-based commands will recognize the new node.

Login to new node

su hadoop or ssh -X hadoop@192.168.1.103

Start HDFS on a newly added slave node by using the following

command

./bin/hadoop-daemon.sh start datanode

Check the output of jps command on a new node. It looks as follows.

$ jps

7141 DataNode

10312 Jps

Removing a DataNode from the Hadoop Cluster

We can remove a node from a cluster on the fly, while it is running, without any data

loss. HDFS provides a decommissioning feature, which ensures that removing a node is

performed safely. To use it, follow the steps as given below:

Step 1: Login to master.

Login to master machine user where Hadoop is installed.

$ su hadoop

Hadoop

52

Step 2: Change cluster configuration.

An exclude file must be configured before starting the cluster. Add a key named

dfs.hosts.exclude to our $HADOOP_HOME/etc/hadoop/hdfs-site.xml file. The value

associated with this key provides the full path to a file on the NameNode's local file

system which contains a list of machines which are not permitted to connect to HDFS.

For example, add these lines to etc/hadoop/hdfs-site.xml file.

<property>

<name>dfs.hosts.exclude</name>

<value>/home/hadoop/hadoop-1.2.1/hdfs_exclude.txt</value>

<description>>DFS exclude</description>

</property>

Step 3: Determine hosts to decommission.

Each machine to be decommissioned should be added to the file identified by the

hdfs_exclude.txt, one domain name per line. This will prevent them from connecting to

the NameNode. Content of the "/home/hadoop/hadoop-1.2.1/hdfs_exclude.txt"

file is shown below, if you want to remove DataNode2.

slave2.in

Step 4: Force configuration reload.

Run the command "$HADOOP_HOME/bin/hadoop dfsadmin -refreshNodes"

without the quotes.

$ $HADOOP_HOME/bin/hadoop dfsadmin -refreshNodes

This will force the NameNode to re-read its configuration, including the newly updated

‘excludes’ file. It will decommission the nodes over a period of time, allowing time for

each node's blocks to be replicated onto machines which are scheduled to remain active.

On slave2.in, check the jps command output. After some time, you will see the

DataNode process is shutdown automatically.

Step 5: Shutdown nodes.

After the decommission process has been completed, the decommissioned hardware can

be safely shut down for maintenance. Run the report command to dfsadmin to check the

status of decommission. The following command will describe the status of the

decommission node and the connected nodes to the cluster.

$ $HADOOP_HOME/bin/hadoop dfsadmin -report

Hadoop

53

Step 6: Edit excludes file again.

Once the machines have been decommissioned, they can be removed from the

‘excludes’ file. Running "$HADOOP_HOME/bin/hadoop dfsadmin -refreshNodes"

again will read the excludes file back into the NameNode; allowing the DataNodes to

rejoin the cluster after the maintenance has been completed, or additional capacity is

needed in the cluster again, etc.

Special Note: If the above process is followed and the tasktracker process is still

running on the node, it needs to be shut down. One way is to disconnect the machine as

we did in the above steps. The Master will recognize the process automatically and will

declare as dead. There is no need to follow the same process for removing the

tasktracker because it is NOT much crucial as compared to the DataNode. DataNode

contains the data that you want to remove safely without any loss of data.

The tasktracker can be run/shutdown on the fly by the following command at any point

of time.

$ $HADOOP_HOME/bin/hadoop-daemon.sh stop tasktracker

$ $HADOOP_HOME/bin/hadoop-daemon.sh start tasktracker

