
cs378: Concurrency: Lab 3 Writeup Template

You
Department of Computer Science

UT Austin

January 19, 2018

1 Step 1: Sequential Solution

0

0.5
1

1.5

2

2.5
3

3.5

4

4.5

coarse.txt fine.txt

Ti
m

e 
in

 m
s

Sequential Runtime

hash hash+insert compare

Figure 1: Step 1 sequential runtime graph. Note: data is not accurate.

Using Go’s time package, report the time taken by your serial implementation to perform the
following tasks. You can report the runtimes using graph(s) or table(s). See Figure 1 for reference.

• Generate the hashes

• Generate the hashes and insert them into the data structure

• Perform the tree comparisons and store the results in the adjacency matrix

2 Step 2: Parallelize Hash Operations

Using graphs, report the following data:

• The speedup over sequential from using goroutine and thread pool parallelism to perform hashing
with both coarse.txt and fine.txt. Use several different values for the number of threads and
make them interesting (powers of 2, the number of cores / hyperthreads on your CPU, and twice
the number of cores / hyperthreads on your CPU are good). See Figure 2 for reference.

1



0
1
2
3
4
5
6
7
8

coarse.txt fine.txt

Sp
ee

du
p 

vs
. s

eq
ue

nt
ia

l

Hashing Threads

Hashing Only Speedup

goroutines 1-thread 2-threads 4-threads 8-threads 16-threads

Figure 2: Step 2 hashing speedup graph. Note: data is not accurate.

0
1
2
3
4
5
6
7
8

coarse.txt fine.txt

Sp
ee

du
p 

vs
. s

eq
ue

nt
ia

l

Hashing Threads

Hash + Insert Speedup

goroutines 1-thread 2-threads 4-threads 8-threads 16-threads

Figure 3: Step 2 hashing + insert speedup graph. Note: data is not accurate.

0

2

4

6

8

10

12

coarse.txt fine.txt

Sp
ee

du
p 

vs
. s

eq
ue

nt
ia

l

Data structure parallelism

(Optional) Hash + Multiple Insert Speedup

1-channel 2-channels 4-channels 8-channels 16-channels 1-mutex 2-mutexes 4-mutexes 8-mutexes 16-mutexes

Figure 4: Step 2 (optional) hashing + multiple insert speedup graph. Note: data is not accurate.

2



• The same data as above, but including the time it takes to insert into the shared data structure.
See Figure 3 for reference.

• If doing the optional fine-grain parallelism exercise, also report similar speedups over sequential
for different numbers of channels and mutexes. See Figure 4 for reference.

In addition, answer the following questions with a brief (about 2 sentences) answer:

• Was either approach to parallelism significantly faster at hashing or hashing and inserting? If
so, why do you think this was the case?

• Which approach had more overhead when accessing the data structure (if either)?

• How did the fine.txt input affect your scalability?

• If you implemented fine-grain data-structure access, did this significantly improve performance?
If not, why do you think this was the case?

• After having tried both approaches, which do you prefer and why?

3 Step 3: Parallelize Tree Comparisons

0

1

2

3

4

5

6

7

goroutines 1-thread 2-threads 4-threads 8-threads 16-threads

Sp
ee

du
p 

vs
. s

eq
ue

nt
ia

l

Comparison Threads

Tree Comparison Speedup

Figure 5: Step 3 tree comparison speedup graph. Note: data is not accurate.

Using a graph, report the speedup over sequential from using goroutine and thread pool parallelism
to perform tree comparison with coarse.txt. Use several different values for the number of threads
and make them interesting (powers of 2, the number of cores / hyperthreads on your CPU, and twice
the number of cores / hyperthreads on your CPU are good). See Figure 5 for reference. In addition,
briefly answer the following questions:

• Was either approach signficantly faster? If so, why do think this was the case?

• How did the complexity of the approaches compare? Did you find that one was much simpler?

• Now that your implementation is finished, how did you like Go? Would you still prefer working
with C++ in the future (for performance and/or usability)?

3


