
Yesquel: scalable SQL storage for Web applications

Marcos K. Aguilera
VMware Research Group

Joshua B. Leners
UT Austin, NYU

Michael Walfish
NYU

Abstract
Web applications have been shifting their storage systems
from SQL to NOSQL systems. NOSQL systems scale well
but drop many convenient SQL features, such as joins, sec-
ondary indexes, and/or transactions. We design, develop, and
evaluate Yesquel, a system that provides performance and
scalability comparable to NOSQL with all the features of a
SQL relational system. Yesquel has a new architecture and a
new distributed data structure, called YDBT, which Yesquel
uses for storage, and which performs well under contention
by many concurrent clients. We evaluate Yesquel and find
that Yesquel performs almost as well as Redis—a popu-
lar NOSQL system—and much better than MYSQL Cluster,
while handling SQL queries at scale.

1. Introduction
Web applications—email, online social networks, e-
commerce, photo sharing, etc.—need a low-latency back-
end storage system to store critical user data, such as emails,
account settings, public postings, shopping carts, and photos.
Traditionally, the storage system had been a SQL database
system [48], which is convenient for the developer [34].
However, with the emergence of large Web applications
in the past decade, the SQL database became a scalabil-
ity bottleneck. Developers reacted in two ways. They used
application-specific techniques to improve scalability (e.g.,
caching data in a cache server to avoid the database [46],
partitioning the data in the application across many database
instances)—which is laborious and complicates application
code. Or they replaced database systems with specialized
NOSQL systems that scaled well by shedding functionality.

However, NOSQL has three issues. First, because NOSQL
systems drop functionality, they shift complexity to the ap-
plication. Second, there is a plethora of systems (Figure 1),
with different subsets of features. A developer can have a
hard time deciding which system is best suited for the appli-
cation at hand: it may be unclear what features are needed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSP’15, 4–7 October 2015, Monterey, CA.
Copyright c© 2015 ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815413

now, what might be needed tomorrow, what data model to
use, etc. By contrast, SQL has a broad feature set (trans-
actions, secondary indexes, joins, subqueries, etc.). Third,
each NOSQL system has its own specialized interface, which
creates a lock-in problem: once an application is developed
for one NOSQL system, it is hard to replace it with another
NOSQL system. By contrast, SQL has a well-known industry-
standard interface.

In this paper, we propose Yesquel, a storage system that
provides all of the features of a SQL relational database,
but scales as well as NOSQL on NOSQL workloads. Yesquel
is designed for serving Web applications, not as a general-
purpose database system. It introduces an architecture that
is well suited for Web workloads. (Section 3 explains why
Yesquel does not scale as well under other workloads.)

A SQL database system has two main components: a
query processor and a storage engine. The query proces-
sor parses and executes SQL queries; it is an active compo-
nent that drives the computation of the query. The storage
engine stores tables and indexes; it is a passive component
that responds to requests from the query processor to manip-
ulate data. To scale SQL, we must scale both components.
Yesquel does that through a new architecture, which scales
the query processor using a well-known technique: paral-
lelization of computation [19, 55, 60, 67, 68]. Each client
gets its own query processor (Figure 2) so that, as the number
of SQL clients increases, the SQL processing capacity also
increases. Scaling the storage engine is harder; this is a key
technical challenge addressed by this paper. The problem is
contention: the storage engine must serve requests by many
query processors, possibly operating on the same data, and it
must return fast and sensible results. To tackle this challenge,
Yesquel introduces a new scalable distributed data structure
for sharding data.

Specifically, the Yesquel storage engine uses a new type
of distributed balanced tree or DBT [2, 42, 61]. A DBT
spreads the nodes of a balanced tree across a set of servers,
while ensuring that consecutive keys are often stored to-
gether at the leaves. The DBT in Yesquel, YDBT, has features
that are targeted for Yesquel and its Web workloads.

First, YDBT balances load on the servers even if the work-
load is skewed and even if it changes over time. This is
needed to ensure that Yesquel scales well in a variety of
settings, not just when access is uniformly distributed. Sec-
ond, data can be efficiently inserted, searched, deleted, and
enumerated in order, often in only one network round trip.

This is useful to efficiently perform sorting, joins, unions,
intersections, range queries, and other common operations
of SQL. Third, the data structure provides strong consistency
and fault tolerance. This is expected of a database system.
Fourth, operations can be grouped and executed as ACID
transactions. This is needed to implement SQL transactions.

YDBT introduces a new caching scheme, new mecha-
nisms and policies to split nodes, new ways to handle and
avoid contention, and a new approach to tree snapshots (§4).

We evaluate the performance of YDBT (§6). Compared to
previous DBTs, YDBT eliminates or drastically reduces scal-
ability bottlenecks, eliminates disruption from snapshots,
and improves transaction throughput by up to 25×. We also
compare Yesquel to Redis, a popular NOSQL system. On
NOSQL workloads, Yesquel’s throughput is at most 21%
worse than Redis’s under reads, updates, or scans; and
Yesquel scales well up to 48 servers—the maximum we
could experiment with—with a scalability factor (improve-
ment over one server) of at least 40. Finally, we test Yesquel
on the SQL queries of Wikipedia and find that Yesquel scales
its throughput well up to 48 servers, with a scalability fac-
tor of 41.2, a throughput of 95K pages/s (≈8 billion pages
a day), and a 99th percentile latency of 69 ms. The cost
of these benefits is that (1) Yesquel consumes additional
network bandwidth, memory, and client-side CPU, and (2)
Yesquel underperforms traditional database systems on cer-
tain workloads outside its target domain, such as data ana-
lytics with long-running queries that access many rows.

Yesquel’s results show that, contrary to various claims
made about the inevitability of NOSQL, SQL storage can
offer performance and scalability similar to NOSQL for Web
applications.

2. Overview
2.1 Setting and goals
Web applications in datacenters have multiple tiers. The Web
front-end tier communicates with end users; the middle (or
application) tier provides the application logic; and a storage
tier holds persistent user data (account settings, wall posts,
comments, etc.). This paper’s focus is the storage tier. Until
the late 1990s, this tier consisted of a SQL database system;
as applications grew, this component became a performance
bottleneck, and NOSQL emerged as a scalable alternative, but
with limited functionality.

Our goal is to design a SQL storage system that scales
well when used to serve Web applications. We do not wish
to design a general-purpose database system. Indeed, Stone-
braker et al. [64] have advocated against such one-size-fits-
all solutions, by showing that they can be dramatically out-
performed by designs optimized for a domain.

Web applications have lots of data and users. Queries
used to serve Web pages are small and numerous: each
query touches a small amount of data, but because there are
many simultaneous queries, in aggregate they access large

data dura- distributed secondary aggre-
system model bility transactions indexes joins gation

Sinfonia bytes yes lim no no no
COPS/Eiger kv yes lim no no no
Dynamo kv yes no no no no
Hyperdex kv yes yes yes no no
Memcached kv no no no no no
Riak kv yes no yes no no
Scalaris kv no yes no no no
Redis kv yes no no no no
Voldemort kv yes no no no no
Walter kv yes yes no no no
AzureTable table yes no no no no
BigTable table yes no no no no
Cassandra table yes no lim no no
HBase table yes no no no no
Hypertable table yes no lim no no
PNUTS table yes no no no no
SimpleDB table yes no yes no yes
CouchDB doc yes no yes no lim
MongoDB doc yes no yes no lim

Figure 1—A partial list of NOSQL systems. In the data model col-
umn, “kv” stands for key-value, while “doc” stands for a document
data model. Other columns are typical features of SQL systems;
“lim” means the feature is available partially or requires program-
mer assistance.

amounts of data. Queries are latency-sensitive, as Web pages
must display quickly (less than a second [50]). These char-
acteristics contrast with data analytics applications, where
queries are long (a single query may run for hours or days)
but there are relatively few of them, and they can tolerate
seconds of setup time.

We target deployment within a datacenter. We assume
that the datacenter has a low-latency, high-bandwidth net-
work, and that computers do not fail in Byzantine ways (but
computers may crash). We assume that clocks are often syn-
chronized fairly closely (via NTP, for example), but we do
not assume that this is always true; clocks can drift.

2.2 Drawbacks of existing scaling techniques
There are currently two broad approaches to scaling a Web
application. One approach is to retain the SQL database and
use application-level techniques to lessen or spread the load
on the database. With manual caching, the developer makes
the application cache the results of a SQL query (e.g., in
memcached [46]) so that subsequently it can lookup the re-
sult in the cache if the query recurs. With manual database
sharding, the developer divides the data set into several dis-
joint databases (for example, usernames that begin with A–N
and usernames that begin with O–Z); the application code is
aware of the division and manually selects the appropriate
database to execute a query. With denormalization, applica-
tions break down a database’s relational structure, to avoid
queries that touch multiple tables. For example, to avoid
joins, the developer may store multiple attributes in a sin-
gle column (e.g., as a comma-delimited string), or she may
replicate the columns of one table into another.

Application-level techniques are effective and widely
used today. However, they transfer complexity to the ap-
plication, they are error-prone, and they are limited. With
manual caching, the developer must carefully choose what
and when to cache; also, when data changes, the application
must invalidate the cache manually or live with stale results.
And while there are, intriguingly, caches that maintain them-
selves automatically [31, 52, 57], they require application-
specific tuning or do not support all of SQL. With manual
database sharding, rebalancing is difficult and there is little
support for queries across databases. With denormalization,
the developer must manually ensure that the replicas or the
result of joins remain correct when data changes.

Application-level techniques are complementary to our
approach. By making the SQL database more scalable, we
can lessen or avoid their use, simplifying the application.
Arguably, this shifts the scalability burden and complexity to
Yesquel, but this is sensible because Yesquel can be designed
and implemented only once while benefiting all its Web
applications.

The second broad approach to scale the storage system is
to replace the SQL database with one of a large selection of
NOSQL systems (Figure 1). However, NOSQL has significant
disadvantages, as noted in the Introduction.

2.3 Architecture of a database system
We give a brief overview of the architecture of a database
system; we refer the reader to [29] for a thorough treatment.
A SQL database system has two core components:
• The query processor takes a SQL query, parses and com-

piles it into a query plan, and executes the plan by issuing
requests to the storage engine.
• The storage engine executes requests to read and write

rows of tables and indexes, to traverse them, and to start
and commit transactions.

Database systems provide a modular interface between
these two components. In MYSQL, for example, this interface
is exposed to developers, which has led to many storage
engines (MyISAM, InnoDB, ndb, etc.) that work with the
same query processor. At the core of the storage engine is a
data structure used to store tables and indexes. In a central
database system, this structure is typically a B-tree.

2.4 Key idea and challenges
Yesquel scales the database system through its architecture.
The basic idea is to supply a query processor per client (a
client is a Web application process) and design a storage
engine that can handle all query processors. For this to work,
the storage engine must be scalable and highly concurrent.

Different storage engines have different capabilities, such
as transactions and indexing, which affect the features and
efficiency of the database system. To support all SQL features
efficiently, a common choice is for the storage engine to
implement transactional ordered maps. Yesquel adopts this

choice. Roughly, each ordered map stores a SQL table or
index, with efficient operations to insert, lookup, delete, and
enumerate items in order. In addition, the engine supports
transactions that span many ordered maps.

To scale, Yesquel’s storage engine, YDBT, needs to par-
tition the data of an ordered map across the storage servers.
Doing so requires solving the following five challenges:

• Provide locality, so that neighboring keys are often in the
same server, allowing them to be fetched together during
enumeration.
• Minimize the number of network round trips for locating

keys.
• Balance load by spreading keys across servers, even if the

workload is non-uniform and changes over time. This re-
quires continuous and adaptive rebalancing without paus-
ing or disrupting other operations.
• Provide reasonable semantics under concurrent opera-

tions. For example, while a client changes an ordered
map, another client may be enumerating its keys, and the
result should be sensible.
• Provide good performance under concurrent operations.

To provide locality, YDBT arranges the data as a tree
where consecutive keys are stored in the leaves. To minimize
round trips, YDBT combines an optimistic caching scheme
with a new technique called back-down search. With this
combination, clients search the tree in two steps: the first
goes upwards toward the root, the second downward toward
the leaves. To balance load, YDBT splits its nodes as in bal-
anced trees, but with different policies and mechanisms to
split. The policy is based on load, and the mechanism is
based on transactions and a technique called replit that is a
hybrid of splitting and replication. To provide reasonable se-
mantics under concurrent operations, YDBT provides snap-
shots. Thus, a client can enumerate keys using an immutable
snapshot, while other clients change the map. To provide ad-
equate performance under concurrent operations, YDBT in-
troduces techniques to avoid conflicting updates to the tree.

Other important features of YDBT are the following. First,
YDBT offers strong consistency and transactions. This is ex-
pected from the storage engine of a database system. Second,
YDBT can provide fault tolerance by replicating the nodes of
the tree across servers. Third, YDBT is latency efficient: in-
sert, lookup, delete, and enumeration operations often take
one round trip to a server.

Technically, YDBT is a type of distributed balanced tree
(DBT), which is the generic name of a distributed data struc-
ture based on a tree whose nodes are spread over many
machines. We are not the first to propose a DBT, but prior
DBTs [2, 42, 61] are ill-suited for our setting: some of them
do not provide the required functionality (e.g., transactions,
snapshots), and none scale well. We delve into these points
when discussing related work (§8).

client
application

...

client
application

Yesquel
library

...

query processor

storage engine
(YDBT)

node storage
client library

node
storage
server

node
storage
server

node
storage
server

storage engine

client library

Yesquel
library

node
storage
server

client application

query processor

storage engine (YDBT)

transactional node storage

(a)

(b)

Figure 2—Logical (a) and physical (b) architecture of Yesquel,
with its components shown in gray. Each client application has
its own query processor as part of the Yesquel library. The query
processor transforms SQL queries into operations on tables and
indexes in the storage engine. At the core of the storage engine
is YDBT, a distributed balanced tree which stores its nodes on a
transactional node storage system, which is distributed across many
storage servers.

SQL table

userid firstname lastname
5 Jane Roe
9 John Doe

ordered map 1
key value

5 [Jane, Roe]
9 [John, Doe]

ordered map 2
key value

Doe 9
Roe 5

Figure 3—Example showing how a SQL table with primary key
userid and a secondary index on lastname is stored as two ordered
maps: one maps the primary key to the rest of the row, the other
maps the secondary index to the primary key.

3. Architecture
Figure 2 shows the architecture of Yesquel. Each Yesquel
client has its own SQL query processor, to which it submits
SQL queries. The query processor is part of a library that is
linked to the client application.

The query processor takes a SQL query and issues opera-
tions on ordered maps. The ordered maps are an abstraction
provided by the storage engine. They maintain a map from
keys to values, with efficient operations to search values by
key and to enumerate the keys in order. Figure 3 shows how
ordered maps store SQL tables and indexes.

To store the ordered map, the Yesquel storage engine uses
YDBT, which consists of a tree whose nodes are spread over
a set of storage servers. Leaf nodes store keys and values (or
pointers to values if values are large); interior nodes store
keys and pointers to other nodes.

To store tree nodes, YDBT uses a distributed storage sys-
tem with multi-version distributed transactions and mostly
commutative operations, which provides highly concurrent

Operation Description
[Transactional operations]

start() start a transaction
rollback/commit() rollback or try to commit transaction

[Traversal operations]
createit() create an iterator, return it
seek(it, ix,k) move it to k in ix
first/last(it, ix) move it to smallest or largest key in ix
next/prev(it) move it to next or prev key

[Data operations]
createix(db) create index in db, return ix
destroyix(ix) destroy index
insert(ix,k,v) insert (k,v) in ix
delete(ix,k) delete (k,∗) from ix
deref(it) dereference it, return (k,v)

Figure 4—Interface to the YDBT distributed data structure, where
k is a key, v a value, ix an index, and it an iterator.

access. Fault tolerance and availability are provided at each
storage server, by optionally logging updates in stable stor-
age (disk, flash, battery-backed RAM, etc.) and replicating
state using known techniques.

This architecture has three new features:
• Each client has a dedicated SQL query processor. There-

fore, as the number of SQL clients increases, the SQL pro-
cessing capacity also increases.
• The storage engine is shared among a large number of

query processors—as many as the number of clients.
Thus, it must be efficient under a highly concurrent load.
• Distributed transactions are provided at the lowest logical

layer (node storage), thus inverting the order of the DBT
and the transactional layer in other architectures [37].
This frees the distributed data structure, YDBT, from con-
cerns of concurrency control, improving efficiency and
simplifying its design (it can use the distributed transac-
tions of the node storage layer).

This architecture could perform poorly in workloads out-
side Yesquel’s target of Web applications. A data analytics
workload, for example, has long-lived queries that touch a
lot of data (e.g., computing an average over all data). In
Yesquel, such queries would move all data from storage
servers to the query processors. A better architectural choice
for this case would be to ship the computation to the data
(e.g., computing partial averages at each server).

Client API. Figure 4 shows the interface exposed by YDBT.
Basically, there are operations to store, retrieve, and delete
key-value pairs; to enumerate keys in order using iterators;
and to start, commit, and abort transactions.

More precisely, there are three classes of operations.
Transactional operations start and end transactions. Traver-
sal operations manipulate ordered iterators. Data operations
read and write data.

When a transaction starts, it sets a transactional con-
text for subsequent operations. To support many outstand-

ing transactions per process, there is an extended interface
with the transactional context as a parameter to each opera-
tion (not shown). Each index belongs to a database, which is
an organizational unit that groups the data of an application.
Note that we distinguish “database” and “database system”:
the former is a data collection while the latter is a system
such as Yesquel.

The operation to create an index takes a database identi-
fier db and returns a fresh index id ix. Operations to insert
and delete keys take an index ix and a key k.

Iterators provide ordered enumeration of the keys, and
they can be dereferenced to obtain the key that they point
to. Seeking an iterator to a nonexistent key is allowed; it sets
the iterator to the previous existing key or to the end if there
are none. This is useful for range queries, which seek the
iterator to the beginning of the range and advance it until the
end of the range.

4. The YDBT distributed balanced tree
YDBT is a key technical contribution of this paper. It is a dis-
tributed data structure with efficient operations for insertion,
lookup, deletes, ordered enumeration, and transactions (Fig-
ure 4). It is used for storing Yesquel tables and indexes, one
per YDBT instance.

The design of YDBT was initially inspired by B+trees,
but deviates from B+trees in many ways. A B+tree is a tree
data structure that implements a key-to-value ordered map; it
stores all keys and values at leaf nodes, each of which stores
a contiguous key interval. YDBT spreads the nodes of the tree
across many servers, where a node is identified by a nodeid
with a tree id, a server id, and a local object id. Pointers in
the tree refer to nodeids.

Distributed B+trees have been proposed [2, 42, 61], but
YDBT differs from them to improve performance and scal-
ability: it has a new caching mechanism (§4.1), it per-
forms splits differently (§4.2), it has new mechanisms to
handle concurrent access (§4.4, §4.5), it supports snapshots
(§4.7), and it uses a decentralized allocation scheme to ob-
tain unique names for its nodes (§4.8).

Because YDBT spreads its nodes over the network, the
clients of YDBT—the many SQL processors in Yesquel—
need to fetch tree nodes across the network. (Henceforth, we
use “fetch” to mean reading a node remotely from the server
that stores it.) There are three immediate challenges: latency
due to network round trips, load balancing as servers get
overloaded, and concurrent access as multiple clients modify
the tree simultaneously, or some clients search the tree while
others modify it.

The design of YDBT is guided by two principles:
• Drop cache coherence: speculate and validate. Clients of

YDBT will cache tree nodes without coherence, then ex-
ecute speculatively and validate the results before taking
irrevocable actions. This idea makes sense when enough
of a client’s cache remains valid over time.

procedure search-tree(k)
n←well-known nodeid of root node
node← read-cache-or-fetch(n)
while (node not leaf and k ∈ node.fence) // search in cache

push(n)
n← find-child(node,k)
node← read-cache-or-fetch(n)

while (k 6∈ node.fence) // back phase
n← pop()
node← fetch(n)

while (node is not leaf node) // down phase
n← find-child(node,k)
node← fetch(n)

Figure 5—Back-down search algorithm of YDBT.

• Eliminate contention. Use structures and operations that
allow many clients to execute without creating conflict-
ing accesses.

4.1 Caching and back-down searches
Searching a tree is the operation of finding the leaf node
that stores a given key. This operation forms the basis for
all others (lookup, insertion, deletion, etc.).

To search efficiently, clients have a cache of inner nodes
of the tree. Because the nodes have a large fan-out, the tree
has relatively few inner nodes, so clients can cache all of
them even for large trees [2]. Therefore, clients can search
the tree almost entirely in its cache, with the exception of
the final leaf, which it fetches. A client’s cache becomes
stale as other clients modify the tree; thus, when the client
searches the tree using its cache, it may fetch a wrong leaf.
This problem is detected by having the client validate the
leaf that it fetched using range fields[59]/fence intervals [22,
61]. Specifically, all tree nodes—leaves and inner nodes—
have an interval of keys (the fence interval) that they are
responsible for; this interval appears as a field in the node
itself. When a client fetches a leaf, it checks that the key that
it is searching for falls within the fence. If it does, the client
is done; otherwise, the client knows that something is wrong.

The innovation in YDBT enters in this latter case; the
client uses a new technique, which we call back-down
search. Consider the path that the client took from the root
to the incorrect leaf, during the search that used its cache;
this path often has a large prefix that remains valid, because
upper tree nodes rarely change. With back-down searches,
the client proceeds in two phases. In the back phase, the
client backtracks from the search it did in its cache, until it
finds a node whose fence has the key. In the down phase, the
client moves down in the tree from that node, until it reaches
the leaf. Figure 5 shows the detailed algorithm. Under this
scheme, clients search the tree with just one fetch most of
the time. The algorithm ensures that, upon termination, the
client has reached the correct leaf. But, the client cache may
not be a well-formed tree as nodes get updated at different
times. To avoid looping forever, the client limits the cache

a b c d e f

b c

a b c d e f

b

before split after split

server 2 server 3 server 2 server 4 server 3

server 1 server 1

Figure 6—A tree before and after a split. The small circles indicate
the load on each key. In a traditional B+tree, splits occur when a
node is too large. In YDBT, splits also occur when the load on a
node is too high. If the high load is caused by a single key, YDBT

could employ a replit to split the key into two replicas (not shown).

search to 100 iterations and then invalidates the cache. This
happens rarely.

The fence interval of a node can be approximated by the
interval from the smallest to the largest key in the node.
YDBT currently uses this approximation, which saves the
space required to store the fences. The back-down search
algorithm still works, but less efficiently: it might unneces-
sarily move back from the correct leaf only to descend again
to the same node. This happens when the searched key be-
longs to the fence interval but not to the approximated in-
terval. This is infrequent, except in one case: when adding
the largest (or smallest) key in the DBT. In this case, we use
the fact that the leaf that will store the key is the rightmost
(leftmost) leaf, and therefore has an empty right (left) sibling
pointer. This pointer indicates that the true fence interval ex-
tends until infinity (minus infinity). Thus, if the algorithm
arrives at this node with the largest (smallest key), it need
not move back.

4.2 Load splits and replits
A traditional B+tree balances itself by splitting nodes that
are too large (Figure 6). This idea is designed to pack nodes
into disk pages by ensuring nodes are never too large, while
bounding the depth of the tree logarithmically. In YDBT, the
design considerations are different. We are less concerned
about large nodes than about nodes with too much load: a
skewed workload might cause most accesses to hit a small
number of leaf nodes, creating load imbalance across the
storage servers.

To address this problem, we conceptually separate the
policy and mechanism implicit in B+tree splits, and then
we choose them to suit our requirements. For policy, YDBT
introduces load splits, which splits nodes with large access
rates. For mechanism, YDBT divides the node so that each
new node receives (approximately) the same load; YDBT
also introduces a mechanism called replits, which intuitively
splits the load of a single key across many servers. As in
B+trees, YDBT also splits nodes that are too large, creating
new equally sized nodes.

To perform load splits, each server keep track of the
accesses in the past second, recording the key, tree node,
and operation. This is not much information even under

hundreds of thousands operations per second. After each
second, the server checks if the access rate of a node exceeds
a threshold, in which case the system splits the node in a way
that the each new node gets approximately half of the load.
This calculation requires determining a split key k such that
approximately half of the load of the node goes to keys less
than k, and half goes to keys k or above. Using one-second
intervals is admittedly simplistic. A more sophisticated idea
(not implemented) is to use the one-second measurements to
derive a list of popular nodes at a larger time granularity, say
tens of seconds, and split them only if they remain popular
for sufficiently long.

If a single key is extremely popular, there might be no
good split key because, even if the popular key were on the
node by itself, its load might exceed the maximum desired
load for a node. To handle this case, we can split a popular
key into two replicas using a hybrid between replication and
split, which we name replit. This is an instance of the idea
of replicating to improve scalability [23], and it works well
when most of the operations on the key are reads (we address
update operations later). To realize this idea in a search tree,
each key in the tree is appended with r bits that are usually
set to 0, where r is a small number, such as 8. If a key has a
large read rate and small update rate, we split the key in two
as follows: we create a new key by replacing the r trailing
bits randomly, and then pick a splitting key between the
old and new keys. In this way, the old and new keys go to
different nodes. When a client wishes to search for key k, it
appends r random bits to k and searches for this modified
key k′. If k′ is not in the tree, recall that the search procedure
returns the preceding key. Because each key has a copy with
the trailing bits set to 0, this guarantees that clients find the
key. Because clients pick the trailing bits randomly, if a key
has been split then in expectation the read load is balanced
across the replicas. This idea works even if a key is replit
many times. The cost of replits is that an update must change
all replicas.

If the load on a popular key is due to updates, YDBT uses
a different technique: it keeps a single replica, but places the
key in a node by itself (singleton node). If the load on the key
is higher than what the server can handle, one could place the
singleton node in a more powerful machine.

4.3 Node placement
In what server are new nodes placed? The nodeid of a node
determines its placement (§4.8). The system periodically
samples the load at servers and allocates new nodes at the
server with the least load.

In some cases, the load may be balanced across tree
nodes, but a server may be overloaded due to having too
many nodes. This problem is resolved by moving some of its
nodes to a new server, which requires (a) copying the content
of the node to a new node with an appropriate nodeid, and
(b) updating the reference at the parent node.

4.4 Handling concurrency
As many parties read and write nodes on the tree simultane-
ously (searching nodes, splitting nodes, moving nodes), we
need to ensure that the results of operations are correct and
that the tree is not corrupted. YDBT adopts an architectural
solution to this problem: First, build a transactional system to
store tree nodes (§4.6). Then, use the provided transactions
to read and modify nodes; the transactions ensure integrity
of the tree. For example, splitting a node requires removing
some keys from the node, creating a new node, and adding a
key to the parent node; these modifications are packaged in a
transaction, which is executed atomically and isolated from
other transactions. YDBT also uses storage system transac-
tions to implement its own transactions, by packaging multi-
ple YDBT operations within the same storage system transac-
tion. This general approach to concurrency control in DBTs
was first proposed in [2] and later used in [61]. When we im-
plemented it, however, we found that it resulted in poor scal-
ability (reported in Section 6.1) because of a large number
of aborted transactions when many clients executed concur-
rently. We now explain how YDBT overcomes this problem.

4.5 Improving concurrency
YDBT introduces several techniques to eliminate conflicts
when updating the tree, to reduce the number of aborted
transactions and improve concurrency. Roughly, a transac-
tion aborts when another transaction touches the same data.
YDBT relies on four techniques to avoid this situation:

1. Multi-version concurrency control. Prior DBTs use op-
timistic concurrency control, which aborts transactions at
any signs of contention. YDBT uses more advanced concur-
rency control (§4.6).

2. Delegated splits. In YDBT, clients delegate the coordi-
nation of the split to remote splitter processes; each is re-
sponsible for serializing the splits to a disjoint set of nodes.
The advantage of this approach, versus having the clients co-
ordinate the splits, is twofold. First, per node, there is a sin-
gle splitter, so the problem of concurrent, mutually inhibiting
splits disappear. Second, because splitting is done separately,
insert operations can return before the split, thereby improv-
ing latency. Currently, the splitter process responsible for a
node runs at the storage server of that node, which has the
advantage that the splitter can access the node locally.

3. Mostly commutative operations. YDBT uses mostly
commutative operations to modify a node, so that two par-
ties can often modify the same node concurrently without
conflicts (hence without aborting their transactions). To do
so, the node content is treated as an ordered list of keys, with
operations to add an element e and delete an interval i; pro-
vided that i does not cover e, the operations commute. Also
commutative are operations that modify the values of differ-
ent keys in the same leaf node.

4. Right splits. There are two ways to split a node: keep
the first half of keys and move the second half to a new

Operation Description
[Transactional operations]

start() start a transaction
rollback()/commit() rollback or try to commit

[Node data operations]
insert(n,k,v,dir) insert (k,v) into n
lookup(n,k) lookup k in n, return value/pointer
delrange(n,k1,k2,dir) delete keys in [k1,k2] from n
setattr(n,at,v)/getattr(n,at) set or get attribute at in n

[Whole node operations]
read(n) read n
create(n, type,ks,vs,ats) create and populate node n
delete(n) delete node n

Figure 7—API for the transactional node storage, where n is a
nodeid (128 bits), k is a key, v is a value or pointer, dir is “left” or
“right” (indicating where an inserted or deleted pointer is situated
relative to the key), at is an attribute id, type is “inner” or “leaf”,
ks is a list of keys, vs is a list of values or pointers, ats is a list of
attribute ids and values.

node (we call this “left split”); or keep the second half and
move the first half (“right split”). B-trees sometimes use left
splits because it is easier to delete the end of an array rather
than the beginning. We observe, however, that right splits
are better to avoid contention in Yesquel. Specifically, keys
are often added to a tree in increasing order, especially in
tables with autoincrement columns—a popular SQL feature
that automatically picks keys with unique increasing values.
These inserts land at the tail end of the rightmost leaf node.
By using a right split, YDBT ensures that the tail remains in
the same node, allowing inserts to occur concurrently with a
node split, using the third technique above.

4.6 Multi-version distributed transactional storage
YDBT stores tree nodes in a transactional storage system
that shards the nodes across a set of storage servers. These
servers can store data in stable storage for durability, and
they can be replicated for high availability using standard
techniques such as Paxos [35] or primary-backup [6]. Each
server manages a log and local storage for tree nodes, where
each node consists of a type, keys, values or pointers to other
nodes, sibling pointers, and fence keys:

lptr rptr

type: internal
k ,kb efence:

k1 k2

lptr rptr

type: leaf
k ,kb efence:

k1 k2

v1 v2

The clients of this system are (1) the YDBT operations
executed by the Yesquel query processors, and (2) the splitter
processes. Clients have a simple API to read and manipulate
the nodes (Figure 7).

The key design choices of the storage system are these:

Provide fine-grained operations. Many operations in the API
modify a small part of a node’s state, ensuring that opera-

tions mostly commute with each other to minimize aborts of
transactions (§4.5).

Use multi-version concurrency control (MVCC). Transac-
tions can be implemented in many ways. We use multi-
version concurrency control (MVCC) [8], which manages
multiple versions of data to improve concurrency. In partic-
ular, read-only transactions, the most common type, never
need to lock any data and never abort. The trade-off is larger
consumption of storage, since the system keeps many ver-
sions of each node. This trade-off is reasonable because
(a) storage is cheap, and (b) old versions need to be kept
only for the duration of transactions, which last for less than
a second (see Section 2.1).

Run commit at the clients. Latency is key, and so clients
themselves run the commit protocol instead of delegating
to an external coordinator, as in some distributed systems.
Doing this complicates recovery from crashes, but this is the
right trade-off since crashes are relatively infrequent. To re-
cover, we use the protocol in Sinfonia [5, Section 4.3]. Its
key idea is that the transaction outcome is a sole function of
the votes: the transaction has committed iff all participants
have voted yes. Since the coordinator state is irrelevant for
determining the transaction outcome, the system can recover
without the coordinator (client). This is done by a recovery
process that periodically visits the servers to check on pend-
ing transactions.

Use clocks, but not for safety. Clocks can efficiently or-
der events in a distributed system. But clocks are unreli-
able: time drifts even under synchronization protocols such
as NTP (e.g., due to errors in the client configuration or in
firewall rules), or time may move backwards due to the syn-
chronization protocol. Fortunately, these problems are rare;
most of the time, clocks are correct (e.g., within millisec-
onds or less of real time). It is therefore desirable to use pro-
tocols that can use clocks when they are correct, but that
do not violate safety when they misbehave. We use a trans-
actional protocol similar to the ones in [15, 66], which com-
bine many existing ideas: two-phase commit [24], two-phase
locking [17], timestamp-ordering [8, 56], and mixed multi-
version schemes [9]. We omit the details for brevity’s sake.

4.7 Snapshots
A snapshot refers to the state of the data (the nodes of all
trees) at a given moment. Snapshots are immutable by def-
inition and they are useful to support iterators when data
may change. YDBT obtains snapshots for free from its trans-
actional storage, which ensures that each transaction reads
from a snapshot (§4.6). Compared to the approach in [61],
in which the DBT directly implements snapshots, YDBT is
simpler and faster (§6.1.6). This is a case where, when func-
tionality is provided at the right layer (the low-level storage
layer rather than the data structure layer), it becomes both
simpler and more efficient.

4.8 Choosing nodeids
Each tree node is identified by a 128-bit nodeid, which is
used in the storage API (Figure 7) and serves as a pointer to
the node. The higher 64 bits of the nodeid indicate the tree
and server to which the node belongs.

dbtid
localoid

issuerid counter

32 bits 48 bits 16 bits32 bits

serverid

The lower 64 bits are the localoid. The root node has localoid
0. For other nodes, the localoid is divided in two parts: 48
bits for an issuerid and 16 bits for a monotonic counter. An
issuer is a process that wants to allocate new nodes (e.g.,
the splitter processes); each issuer is assigned an issuerid
and creates new localoids locally, by incrementing the 16-bit
counter. This scheme can support 248≈281 trillion issuers
and 216=64K localoids per issuer. Should an issuer need
more localoids, it obtains a new issuerid to get another 64K
localoids. There is no need to recycle issuerids or localoids
after deletion: with 48 bits, there are enough ids to serve 5K
new issuers per second for 1700 years.

When an issuer starts, it contacts a management server
to obtain a new issuerid; the server issues issuerids using a
monotonic counter that starts with 1. To ensure monotonicity
despite failures, the management server stores the last issued
issuerid in a special node in the storage system. This needs
to be done before the server returns the id to the issuer, but it
can be batched: if many issuers ask for ids in a short period,
the server can store only the value of the largest id before
returning to the issuers.

5. Implementation details and optimizations
Excluding its query processor, Yesquel is implemented in
33K lines of C++, where roughly a third is the DBT, a
third is the node transactional storage system, and a third is
general-purpose modules (data structures, RPC library, etc.).
Yesquel uses the query processor of SQLITE [62] version
3.7.6.3. SQLITE is an embedded database system used in
many commercial applications.

Optimizations. SQLITE’s query processor is designed for
local storage and produces inefficient access patterns for
remote storage. We implemented several optimizations in
Yesquel to reduce the number of RPCs that a client must
issue. Some of them are the following:

• Per-transaction cache. The Yesquel query processor of-
ten reads the same data multiple times in the same
transaction. Therefore, we implemented a local-to-the-
transaction cache within the client library of the node
storage system (§4.6). Note that this cache does not affect
consistency because a transaction reads from a snapshot.
• Reading keys without values. A DBT leaf stores keys and

values, but values can be very large. To save network
bandwidth, when performing a seek the client library

reads a leaf node without its values. Later, it can request
the specific value that it wants.
• Deferred seek. The Yesquel query processor sometimes

seeks an iterator with the sole intention of dereferencing
it to obtain a key-value pair. The previous optimization
creates an inefficiency in this case: seeking an iterator
causes an RPC to fetch a leaf node without its values,
while dereferencing the iterator causes another RPC to
fetch the desired value. To save an RPC, another opti-
mization defers execution of the seek until the iterator
is dereferenced or moved. If the iterator is dereferenced,
YDBT fetches the required value from the leaf without
the keys. If the iterator is instead moved, YDBT fetches
the keys from the leaf without the values.
• Deferred write. The node storage system buffers small

writes of a transaction at the client, until the transac-
tion commits. Later, the writes are piggybacked onto the
prepare phase of the commit protocol. This optimization
saves RPCs on writes.
• Optimistic insert. Without this optimization, inserting an

element into a DBT is performed using a back-down
search (§4.1) to fetch the appropriate leaf node and then
insert the element into that leaf node. This takes two
RPCs. The optimization avoids fetching the leaf node
by embedding the insert into the back-down search al-
gorithm. Specifically, the client first searches in its cache
of inner nodes to find a probable leaf node. Then, rather
than fetching the leaf, the client optimistically requests
the storage server to insert the element into that node,
which costs one RPC (if successful). The server’s fence
interval prevents insertion into an incorrect node.

Design differences. Yesquel’s implementation differs from
its design in one significant way: the implementation does
not yet replicate storage servers (using Paxos, as discussed
in Section 4.6) or keys (using replits, as discussed in Sec-
tion 4.2). This is future work.

6. Evaluation
Our evaluation proceeds in two stages. First, we take
Yesquel’s architecture as a given and inspect a key compo-
nent:
• How well does YDBT perform, and how effective are its

new techniques? (§6.1)
Next, we compare architectures. We assess whether Yesquel
meets its top-level goal of providing the features of SQL with
performance and scalability akin to NOSQL systems:
• Is Yesquel competitive with NOSQL key-value systems on

workloads designed for them? (§6.2)
• Is Yesquel competitive, in terms of functionality and per-

formance, with existing SQL systems on the SQL queries
of a real Web application? Does it scale? (§6.3)

Figure 8 summarizes this section’s results.

• YDBT performs and scales well, significantly outpacing prior
DBTs; its new techniques enable this performance. §6.1

• Yesquel’s scalability, single-server throughput, and latency are
almost as good that of Redis (a commonly used NOSQL system)
under reads, updates, and scans.

§6.2

• While offering the same functionality as MYSQL (a popular SQL
database system), Yesquel has significantly better single-server
throughput and latency.

§6.2.1
§6.3.1

• Yesquel has significantly better scalability than MYSQL-NDB (a
distributed database system). §6.2.2

• Compared to the aforementioned baselines, Yesquel’s principal
resource cost is additional network bandwidth, memory, and CPU
cycles at clients.

§6.2.1
§6.3.1

• Given the SQL workload of the Wikipedia Web app, Yesquel
provides good latency and near-linear scalability. §6.3

Figure 8—Summary of evaluation results.

Testbed. Our testbed consists of a shared cloud environ-
ment with 144 virtual machines (VMs), each with one vir-
tual CPU, running Linux (v3.16.0-30). Each VM has 6 GB
of RAM. There are 16 physical hosts, each running up to 10
VMs. We ensure that communicating VMs are not placed in
the same physical host, so that communication crosses the
physical network. The physical hosts were reserved for our
exclusive use (we first shared the physical hosts among cloud
users but this led to unrepeatable measurements.) A physical
host has two 10 Gb network adapters, and the ping round-trip
latency between VMs in different hosts is 0.14 ms. Through-
out this section, “machine” refers to a VM.

6.1 Evaluation of YDBT

This section compares YDBT against prior DBTs that offer
the same functionality. Our experiments present YDBT with
various workloads (listed in Figure 9); some are chosen to
isolate YDBT’s individual techniques and others to measure
its overall ability to handle concurrency and to scale.

Baselines. The baselines are the previous transactional
DBTs in the literature: the Sinfonia DBT [2] and Minuet [61].
Source code is unavailable, so we provide our own imple-
mentation, using YDBT’s code base:

DBT description

BASE Represents [2, 61]. Optimistic concurrency control
(instead of multi-version concurrency control as
in YDBT); no back-down searches, load splits, or
delegated splits.

BASE+ Adds YDBT’s back-down searches to BASE

Setup. We experiment with different workloads, DBTs (the
two baselines and YDBT), number of clients, and number
of servers. We almost always assign two clients per server,
each with 32 threads in closed loop (there are two excep-
tions noted later). Each thread issues requests, according to
the given workload, to the DBT client library. Servers operate
in memory only, with disk persistence disabled. Our princi-

workload description models what in SQL?

Read, Read-2
(§6.1.1–§6.1.3)

10k keys in DBT (200 keys in
DBT for Read-2). Read
randomly chosen keys.

SELECT statements (SQL
row or index read causes
DBT read)

*Update
(§6.1.1, §6.1.2)

10k keys in DBT. Change
values for random keys.

UPDATE statements

*Insert
(§6.1.1)

10k keys in DBT to begin.
Insert new random keys.

INSERT statements

*Insert-mono
(§6.1.4)

Same as prior, but new keys
inserted in increasing order.

Autoincrement (§4.5). Also,
loading a table in key order.

*Scan-up-tx
(§6.1.5)

10k keys in DBT. DBT
transaction: scan n items (at
random starting point), then
update on a random key.

Explicit SQL transactions
and multi-key operations
(e.g., store result computed
from many keys).

*Update-scan
(§6.1.6)

106 keys in DBT. Update on
random keys; a scan runs
concurrently.

scans come from SELECTs
with range queries, some
joins, enumerations.

Figure 9—Workloads for DBT experiments; asterisk indicates
transactional use of the DBT. Keys always have 64 bits; values have
100 bytes unless stated otherwise in the text.

update/read insert

clients YDBT BASE YDBT BASE
1 0% 0% 0% 0%
5 0% 0% 0.02% 5.1%
10 0% 0% 0.03% 10.8%
20 0% 0% 0.06% 20.3%
30 0% 0% 0.10% 28.0%
40 0% 0% 0.13% 34.5%
50 0% 0% 0.16% 39.8%

Figure 10—Fraction of operations that access the root node as we
vary the number of clients. Numbers for BASE+ are identical to
YDBT in all cases (omitted).

pal measurement is throughput of successful or committed
operations, taken over one-second intervals.

Standard deviations are always under 5% of the mean.
Throughout the paper, ± in tables indicate the standard de-
viations; graphs omit error bars.

6.1.1 Root node load
A key challenge for a DBT is reducing load on the root
node. We evaluate YDBT’s response to this challenge with
the Read, Update, and Insert workloads. In each experiment,
we fix a DBT and number of clients, and we measure the
number of accesses to the root for 5 million operations.

Figure 10 depicts the results. For the Read and Update
workloads, YDBT and BASE both avoid accesses to the root,
YDBT by using back-down searches (§4.1) and BASE by
replicating its version numbers [2]. For the Insert workload,
YDBT’s back-down searches ensure that clients access the
root only when it is modified, which happens rarely. By
contrast, in BASE, as the number of clients increases, an
increasing fraction of inserts access the root (up to ≈40%
in our experiments). The reason is that when a node splits—

10
4

10
5

10
6

10
7

 1 2 4 8 16 32 48

th
ro

u
g

h
p

u
t

(t
x
/s

)

number of servers

read base+
read YDBT

update base+
update YDBT

n f read f update
1 1.0 1.0

16 14.8 14.4
48 39.9 33.9

Figure 11—Read and update performance of YDBT and BASE+.
For reads and updates, performance coincides in both systems and
scales well. With one server, performance of YDBT is 152K reads/s
and 74K updates/s. The table shows the scalability factor f for
n servers (improvement over a one-server system) for reads and
updates on either YDBT or BASE+.

10
5

10
6

10
7

 1 2 4 8 16 32 48

th
ro

u
g

h
p

u
t

(o
p

s/
s)

number of servers

YDBT
base+

n f ydbt f base+
1 1.0 1.0
8 7.9 7.8
32 27.3 8.0
48 36.3 7.9

Figure 12—Small-tree read performance of YDBT (with load
splits, §4.2) and BASE+ (with size splits).

which happens often with inserts—clients eventually trip on
it, owing to outdated caches, which requires restarting the
search by reading from the root. Thus, each split ultimately
causes≈c reads of the root, where c is the number of clients.
This ultimately overloads the root, presenting a scalability
bottleneck. Thus, to study other scalability issues below, we
augment BASE with back-down searches—this is BASE+.

6.1.2 Reads and updates
We next consider the one-server performance and scala-
bility of read and update operations. These are operations
for which prior DBTs perform and scale well (linearly, in
fact [2, 61]), and we investigate whether YDBT can match
that. These experiments also establish the base overall per-
formance of our testbed. Specifically, we run the Read and
Update workloads, modified to use 64-bit data values, which
are common for database indexes. Each experiment runs for
two minutes; we discard the first and final 15 seconds (to en-
sure that all clients participate in the measurement interval
despite possibly starting at slightly different times).

Figure 11 depicts the results. We can see that BASE+ and
YDBT are similar and fast, executing 10–100K op/s on a
single server, and that performance scales well.

6.1.3 Load splits
We measure the effects of YDBT’s technique of load
splits (§4.2). We compare YDBT to BASE+, which uses the
standard technique of size splits (§4.2), configured for 50
keys per node. We use the Read-2 workload (which con-
centrates load), varying the number of servers. Each experi-
ment runs for two minutes, and we discard the first and final
15 seconds.

 0

 3000

 6000

 9000

 12000

 0 10 20 30 40 50 60 70 80

th
ro

u
g

h
p

u
t

(i
n

se
rt

s/
s)

time (s)

YDBT
base+

Figure 13—Effect of contention on throughput of increasing-key
inserts as more clients execute, in Yesquel and BASE+.

Figure 12 shows the results. With load splits, the DBT
scales up to 48 servers (the maximum we experimented
with). With size splits, the DBT stops scaling at 8 servers.
The reason is that the tree has few leaves and cannot use
the additional servers; indeed, with 48 servers, we find that
most are idle. To be sure that we have isolated the effect
of load splits, we experimented with a version of YDBT
that has BASE+’s split mechanism. This alternative performs
identically to BASE+ under this workload.

We have not done this experiment with an update-heavy
workload, but we expect the same result: under size splits,
servers without tree nodes will be idle, impairing scalability.

6.1.4 Insert contention
We assess YDBT’s ability to handle concurrent conflicting
accesses to the same node, as results from SQL’s popular au-
toincrement columns (§4.5). We use the Insert-mono work-
load and 16 servers. At the beginning, a single client with
one thread inserts increasing keys in a closed loop; every 10
seconds a new client with one thread joins the system doing
the same. The inserted keys are handed out by a single server
so that each client inserts the largest key thus far.

Figure 13 depicts the time series of throughput in our ex-
periments. Performance does not scale in BASE+, because
of conflicting operations on the rightmost leaf of the DBT,
causing frequent transaction aborts. In contrast, YDBT scales
well. We also run the experiment with various features of
YDBT individually disabled (delegated splits, mostly com-
mutative ops, right splits). We observe that throughput drops
significantly without these techniques, up to 80% or 5×
slower (due to thrashing caused by aborted transactions):

technique disabled performance drop

delegated splits 55.0%
mostly commutative ops 80.0%
right splits 80.7%

6.1.5 Multi-key transactions
We assess the union of the techniques in Sections 4.1–4.6,
by investigating the two DBTs’ ability to handle multiple-key
transactions of different sizes at different system scales. We
use the Scan-up-tx workload, configured as small, medium,
large (corresponding to the number of items retrieved by
the scan portion of the transaction: 2, 10, 100) and vary the
number of servers. Each experiment runs for two minutes;
we discard the first and final 15 seconds.

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 2 4 8 16 32 48

re
la

ti
v

e
th

ro
u

g
h

p
u

t

number of servers

small
medium

large

1 server 48 servers

transaction size YDBT BASE+ YDBT BASE+

small 28.9 23.4 625.5 374.5
medium 11.0 9.8 347.9 88.3
large 1.5 0.93 54.7 2.2

Table shows thousands transactions per second

Figure 14—Throughput of YDBT and BASE+ for small, medium,
and large multi-key transactions. The graph shows the relative
throughput of BASE+ over YDBT.

Figure 14 depicts the results. BASE+’s performance drops
by 11–38% with one server and 40–96% with 48 servers.
The reason is that BASE+ uses optimistic concurrency con-
trol, which has two drawbacks: (1) when each transaction
completes, the system must check to see if the scanned items
have changed, which incurs additional RPCs, and (2) the
transaction aborts if another transaction writes to any of the
scanned items. Both drawbacks intensify with larger scans.
The second drawback also intensifies with larger system
sizes, which in our setup has more clients, increasing the
conflicts between update and scan of different transactions.

6.1.6 Snapshots
What is the effect of snapshotting (§4.7) on the performance
of concurrent updates? To answer this question, we run the
Update-scan workload with 16 servers and 32 clients issu-
ing updates. After 20 seconds, a single client thread begins
a long scan operation (which implies a snapshot) to retrieve
10% of all keys. The time series of this experiment is be-
low, where the y-axis is normalized to the average through-
put before the scan starts (around 1M updates/s for YDBT).
We overlay the graph with published results of a similar ex-
periment with Minuet [61, Fig. 14]:1

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40 50 60

n
o
rm

al
iz

ed
th

ro
u
g
h
p
u
t

time (s)

YDBT

Minuet

The scans have no observable effect on the update through-
put of YDBT; Minuet’s throughput, in contrast, drops around
80%. The reason for YDBT’s low overhead is that multi-
versioning—provided in YDBT by its transactional storage
layer (§4.6)—in general yields snapshots for free.

1 In Minuet, a scan is preceded by an explicit request to create a snapshot,
whereas in YDBT, every transaction establishes a snapshot for itself.

6.2 Yesquel under key-value operations
This section investigates whether Yesquel matches the per-
formance and scalability of NOSQL systems. We compare
the two under workloads of simple key-value operations. We
also include SQL database systems in this study. This is for
completeness: if the SQL database systems could perform
similarly to NOSQL systems—which we do not expect to
happen—then there would be little or no role for Yesquel.
We separately consider single-server performance and scal-
ability. The former establishes a benchmark for judging the
latter; also, if the former is poor, then the latter is moot.

Baselines. The baselines are Redis (v2.8.4), a NOSQL key-
value storage system; MYSQL (v5.5.44), a central database
system; and MYSQL-NDB (v7.4.7), a distributed database
system. Redis is a very popular NOSQL system; it is used
in many Web sites (Twitter, Pinterest, Instagram, StackOver-
flow, Craigslist, etc.). MYSQL is also popular, but it is limited
to a single server. MYSQL-NDB consists of the MYSQL front-
end with the NDB distributed storage engine. We configure
all systems to operate in memory only: for Redis we disable
persistence, for MYSQL we use its memory storage engine,
and for MYSQL-NDB we enable the diskless option.

Redis servers are set up to replicate the entire dataset; one
server is the primary, the others are backups. A client con-
nects to one Redis server, where it executes all its operations.

MYSQL-NDB is set up to run a MYSQL front-end
(MYSQLD) at each client, which connects to MYSQLD lo-
cally, while each storage server runs a storage engine dae-
mon (NDBD).

Workloads. All workloads presume an initial dataset with
one million key-value pairs or rows, each with a 64-bit key
and a 100-byte value. We consider three workloads:

1. Read reads the value of a varying key k, each read opera-
tion accessing a key uniformly at random.

2. Update transactionally reads the value of key k, again
selected uniformly at random, and then writes key k with
another value;

3. Scan has a 95-5 mix of scan and update operations; each
scan operation is a transaction that enumerates n (chosen
randomly from 1. . .5) consecutive key-value pairs, start-
ing from an existing (random) key k.

These workloads exercise common operations in a
NOSQL key-value storage system. We have optimized the
current Yesquel prototype to handle these workloads, by
minimizing the number of RPCs that Yesquel generates to
execute these operations. Of course, NOSQL systems have
other operations—Redis, for example, implements many
data structures, such as lists, sets, and bit arrays. A produc-
tion version of Yesquel might optimize other simple NOSQL
operations too; we explain how in Section 6.4.

Setup. For Redis, the workload is generated by invoking
the required operations using its official C interface. Redis

20
40
60
80

100
120
140
160

read update scanth
ro

u
g
h
p
u
t

(x
1
0
0
0
 o

p
s/

s)

yesquel
redis

mysql
mysql-ndb

throughput (x1000 ops/s)
workload Yesquel Redis MYSQL MYSQL-NDB
read 127 ± 0.4 150 ± 0.3 13 ± 0.0 9.8 ± 0.0
update 61 ± 0.2 74 ± 0.2 16 ± 0.1 9.7 ± 0.1
scan 32 ± 0.1 37 ± 0.1 13 ± 0.0 3.4 ± 0.0

50th (99th) percentile latency (ms)
workload Yesquel Redis MYSQL MYSQL-NDB
read 0 (0) 0 (0) 4 (8) 5 (9)
update 1 (1) 0 (1) 3 (7) 7 (11)
scan 2 (3) 1 (2) 4 (9) 18 (24)

Figure 15—One-server performance of Yesquel and baselines.

has no indexes for ordered traversals of keys, and we cannot
use Redis’s scan operation because its starting key is not
user-chosen. To implement scans, therefore, we manually
pre-populate an index over all keys in a given experiment
(without their associated values), using a sorted set; a “scan”
is then just iteration over the sorted set.

For Yesquel, MYSQL, and MYSQL-NDB, clients execute
the workload operations using the following SQL statements:

read(k) SELECT value FROM table WHERE key=k
update(k) UPDATE table SET value=f(value) WHERE key=k
scan(k,n) SELECT value FROM table WHERE key≥ k LIMIT n

These statements execute transactionally, which is pes-
simistic for the performance of the SQL systems and
Yesquel.

We always assign two clients to a server; each client
runs 32 threads in a closed loop. Experiments run for two
minutes, and we discard the first and final 15 seconds. For
throughput, we record measurements over 1-second inter-
vals, and we report averages and standard deviations over
these measurements. For latency, we record histograms with
buckets of 0.1ms granularity, and report median and 99th
percentile values. For resource consumption, we measure
memory using top, and network bandwidth using ifstat, both
with 1-second granularity, and we compute averages across
1-second periods. For network bandwidth, we add inbound
and outbound bandwidth and divide by operation through-
put to obtain bytes per operation. For CPU consumption, we
compute the difference of CPU time between the beginning
and end of the measurement period, and we divide by the
number of operations to obtain CPU time per operation. For
all client resources, we report averages across clients.

6.2.1 One-server performance
Figure 15 reports performance and Figure 16 reports re-
source costs; we omit read costs because they are similar.
We can see that Yesquel performs almost as well as Redis:

2
-3

2
-2

2
-1
1

2

4

8

16

32

client CPU
(Update)

server CPU
(Update)

Network
(Update)

client Mem
(Update)

server Mem
(Update)

client CPU
(Scan)

server CPU
(Scan)

Network
(Scan)

client Mem
(Scan)

server Mem
(Scan)

m
u
lt

ip
le

 o
f

Y
es

q
u
el

p
o
si

ti
v
e,

 l
ar

g
er

 i
s

b
et

te
r

fo
r

Y

Redis
MySQL

MySQL-NDB

2
1
.
u
s/

o
p

6
.6

 u
s/

o
p

6
8
0
 B

/o
p

0
.9

9
 G

B

3
.4

 G
B

4
3
.
u
s/

o
p

8
.6

 u
s/

o
p

2
2
0
0
 B

/o
p

0
.7

5
 G

B

2
.5

 G
B

Figure 16—Resource costs—CPU (µs/op), Network (Bytes/op), Memory (GB)—for single-server experiments under scan and update.
Bars are normalized to Yesquel and plotted on a log scale; labels indicate absolute data for Yesquel. Positive bars means higher resource
consumption by the other systems; negative bars mean the reverse. For example, the others use less memory than Yesquel.

its throughput is at most 18% lower for any workload. In ab-
solute numbers, Yesquel performs at 127 Kops/s, 61 Kops/s,
and 32 Kops/s for reads, updates, and scans, with a 99th per-
centile latency of a few milliseconds. Redis performs better
than Yesquel because it uses a hash table to lookup keys and
keeps a single version of data. MYSQL is worse than Yesquel
because (a) it processes all SQL requests at the central server,
causing its CPU to saturate while clients are less loaded, and
(b) its SQL processing is heavier than that of SQLITE (the
query processor of Yesquel, §5). MYSQL-NDB is worse than
Yesquel because it has a heavier query processor and, for
each read or update, it incurs multiple round trips between
client and storage server, whereas Yesquel incurs one or two
round trips; for scans, MYSQL-NDB’s performance reflects
its mechanisms to coordinate access to shared data using
coarse-grained locking.

The costs of Yesquel are the following. First, Yesquel
consumes more network bandwidth than Redis or MYSQL
because its clients bring data to the computation. Second,
Yesquel consumes more memory than other systems because
the current implementation uses large node caches at the
client and keeps many data versions at the server.2 Third,
on scans, Yesquel consumes more client CPU than Redis and
MYSQL. This is fundamental to Yesquel’s architecture, and
this cost increases with the complexity of the query (scans
are significantly more complex than updates).

6.2.2 Scalability to many servers
We now examine the scalability of Yesquel as we add more
servers to the system, up to 48 servers and 96 clients. MYSQL
cannot run with more than one server, so we do not consider
it. MYSQL-NDB supports many servers, but we cannot run it
with 48 servers (and 96 clients) due to its internal limits; we
thus report its numbers with up to 32 servers.

Figure 17 depicts the scalability of read, update, and scan
workloads for each system. For reads and updates, the three
systems scale almost linearly; for scans Redis and Yesquel

2 It should be possible to save memory with greater limits on cache sizes
and more aggressive garbage collection of versions; however, more investi-
gation is needed to understand how this would impact performance.

scale almost linearly. For scans, MYSQL-NDB does not scale
since its performance is limited by coarse-grained locking
(§6.2.1). In absolute numbers, with 48 servers Yesquel per-
forms at 5321 Kops/s, 2454 Kops/s, and 1385 Kops/s for
reads, updates, and scans.

6.3 Yesquel under a real Web application
For Yesquel to achieve its goal, it must handle ac-
tual SQL, scalably. We investigate whether it does so in
this section, by focusing on a real Web application. We
choose Wikipedia [69] because its underlying system, Me-
diaWiki [44], already uses SQL.

Baseline. For single-server experiments, the baseline is
MYSQL; for multi-server experiments, we compare Yesquel
against idealized linear scalability. Wikipedia cannot run
with the MYSQL memory storage engine because the engine
does not support all the required SQL functionality; there-
fore, we use the standard MYSQL engine, InnoDB. InnoDB
is designed for disk operation, but we make it run in mem-
ory by (1) disabling log flushing, (2) configuring a memory
cache large enough to hold all of the Wikipedia dataset, and
(3) populating the cache by loading the entire database at the
beginning of the experiment.

Workload and setup. In each experiment, we load the sys-
tems with all 190K pages (430 MB) of the Simple En-
glish Wikipedia. To avoid bottlenecks elsewhere in the sys-
tem (Apache, PHP), we run our experiments directly against
the database system. We derive the workload by tracing the
(multiple) database queries generated when a user visits one
Wikipedia article. These queries populate the contents of
the displayed page, which can have hundreds of KB. We
modify the traced queries so that the visited article is a pa-
rameter that can be driven by a workload generator, which
chooses articles to visit uniformly at random. We remove a
few queries from the workload, namely queries that access
tables that are empty in Wikipedia’s public dataset (e.g., the
user table). In the resulting workload, each Wikipedia page
visit generates at least 13 SQL queries, with an additional
query for each link on the page. A sample query is

READ WORKLOAD

10
4

10
5

10
6

10
7

 1 2 4 8 16 32 48

re
ad

 t
h

ro
u

g
h

p
u
t

(o
p
s/

s)

number of servers

redis
yesquel

mysql-ndb

scalability
of Yesquel
n f
1 1.0
16 16.2
48 41.8

latency at max servers
50th (99th) percentile (ms)
Yesquel 0 (3)
Redis 0 (1)
MYSQL-NDB 6 (12)

UPDATE WORKLOAD

10
4

10
5

10
6

10
7

 1 2 4 8 16 32 48

u
p
d

at
e

th
ro

u
g

h
p
u

t
(o

p
s/

s)

number of servers

redis
yesquel

mysql-ndb

scalability
of Yesquel
n f
1 1.0

16 15.5
48 40.3

latency at max servers
50th (99th) percentile (ms)
Yesquel 1 (7)
Redis 1 (2)
MYSQL-NDB 6 (11)

SCAN WORKLOAD

10
3

10
4

10
5

10
6

10
7

 1 2 4 8 16 32 48

sc
an

 t
h

ro
u
g

h
p

u
t

(o
p
s/

s)

number of servers

redis
yesquel

mysql-ndb

scalability
of Yesquel
n f
1 1.0

16 15.5
48 43.2

latency at max servers
50th (99th) percentile (ms)
Yesquel 2 (8)
Redis 2 (3)
MYSQL-NDB 497 (829)

Figure 17—Scalability of reads, updates, and scans. Graphs show throughput, left tables show the scalability factor f for n servers, right
tables show latency at the maximum number of servers for each system.

SELECT * FROM page LEFT JOIN page props ON (pp propname =
’hiddencat’ AND (pp page = page id)) WHERE (page namespace = ’14’ AND
page title IN (’Database’, ’Structured query language’))

As before, we assign two clients to each server; each
client has 32 threads querying the database in a closed loop.
Experiments run for two minutes; we discard the first and
final 15 seconds. We measure the throughput in terms of
page views aggregated over one-second intervals.

6.3.1 One-server performance
The single-server results are the following:

throughput 50th percentile 99th percentile
(views/s) latency (ms) latency (ms)

MYSQL 913±3 68 102
Yesquel 2301±5 27 54

memory network use CPU use per op
client/server (MB) per op (KB) client/server (µs)

MYSQL 271/908 11 521/1091
Yesquel 1097/4030 51 646/68

Yesquel performs well at a single server at roughly
two times the performance of MYSQL. In absolute num-
bers, Yesquel serves 2.3K pages/s, while MYSQL serves 913
pages/s. Latency is acceptable in both systems, but Yesquel’s
is smaller by half. Yesquel consumes more memory due to
its client cache and multi-version storage, and it consumes
more network bandwidth as it moves data to the client for
computation (§6.2.1). MYSQL spends significant CPU at the
server, its bottleneck; Yesquel consumes more client CPU.

6.3.2 Scalability to many servers
Figure 18 depicts throughput scaling. With 48 servers,
Yesquel scales to 95K pages/s, which is ≈41 times better
than one server, representing near-linear scalability. Latency
at the median and 99th percentile are 41 ms and 69 ms, re-
spectively, which suits Web applications.

6.4 Discussion
Yesquel’s evaluation and current prototype have some lim-
itations. First, we have not yet run Yesquel under standard

10
3

10
4

10
5

 1 2 4 8 16 32 48

th
ro

u
g

h
p
u

t
(v

ie
w

s/
s)

number of servers

yesquel n f
1 1.0
4 3.9

16 14.9
48 41.2

Figure 18—Throughput and scalability factor for Wikipedia work-
load. The horizontal line at the bottom represents the throughput of
a single MYSQL server.

SQL benchmarks, but we expect Yesquel to perform well on
those for online transaction processing.

Second, we optimized Yesquel for certain common
NOSQL operations (read, update, scan) and demonstrated
that it performs well under those operations. Optimizing
other NOSQL operations is future work. For example, a blind
write (a write without a previous read) incurs one RPC in
Redis and two RPCs in Yesquel: the first checks that the row
exists, the second writes the row. This is due to Yesquel’s
query processor (from SQLITE), which is not optimized for
remote storage, but it is not a fundamental limitation: the
query processor could issue a single RPC that conditionally
writes the row if it exists. As another example, increment-
ing a value in Yesquel incurs two RPCs: one reads the value,
the other writes it back. In contrast, Redis increments with
one RPC since it supports counters. This difference is not
fundamental either: Yesquel could be augmented with server
stored procedures (§7).

Third, our evaluation uses 64-bit integer primary keys.
Meanwhile, Yesquel is optimized for such keys: non-integer
keys incur an additional RPC on many operations. This is
because SQLITE implements non-integer primary keys via a
level of indirection: it maps a non-integer key to an integer
key using an index, and then maps the integer key to the
rest of the row through another index. Again, this is not
a fundamental limitation, since the query processor could
support non-integer primary keys directly.

A fundamental limitation of Yesquel is that it performs
poorly on data analytics queries that operate on lots of data.

For example, computing the average access count across all
Wikipedia pages takes 19 s in Yesquel and less than 10 ms
in MYSQL. Such queries are better handled by a different
database system design (§3).

7. Extensions
Yesquel can be extended in many ways. These extensions
are common in traditional database systems, but they require
additional study to be applied to Yesquel, which we leave as
open directions for research.

1. Row stored procedures. Currently, Yesquel updates a
row with two RPCs, one to read the row, the other to write its
new value. The extension is to have procedures at the storage
servers that can update a row locally, requiring a single
RPC. These procedures might, for example, increment or
decrement a selected column within the row.

2. Operators at the storage server. Currently, Yesquel
executes all relational operators at the client. For example,
to compute an average over all rows, a client reads each row.
The extension is to run operators at the storage server for
distributing the computation. For instance, a query processor
computes the average by invoking at each server an operator
that returns the count and sum of all values in a DBT.

3. Statistics and query optimization. Often, a SQL query
can be executed in many ways; a query optimizer tries to
predict the most efficient way based on statistics (e.g., data
selectivity, cardinality, server load). Currently, Yesquel has a
simple query optimizer from SQLITE, which is not designed
for distributed systems. The extension is to create a better
optimizer and determine the relevant statistics for Yesquel.

8. Related Work
Yesquel’s architecture was broadly described before in a
patent filing [4] and a keynote [3]; this paper elaborates on
the architecture, describes the DBT in detail, and evaluates
the performance of a prototype.

Scaling SQL database systems. We are far from the first
to want to scale SQL systems. Below, we outline existing
approaches to this problem.

Big Data and data analytics. There has been much work on
systems that process massive data sets at many hosts (e.g.,
[12, 18, 26–28, 45, 54]). Some of these systems support SQL
(e.g., Shark [70], AsterData [20], Facebook Presto [53], Im-
pala [32], LinkedIn Tajo [65], MapR Drill [14]). However,
they are intended for data analytics applications and are not
directly applicable to serving Web applications: the queries
in these two application domains have very different char-
acteristics, as noted in Section 2.1. HANA SOE [21] sup-
ports both data analytics and online transaction processing,
but scalability is limited by a centralized transaction broker.
See Mohan [47] for a useful survey of Big Data systems.

Replication. Database replication is widely deployed, and
most database systems provide some form of replication.

Replication can scale reads, but it is less effective to scale
writes [23] because adding more replicas increases the work
incurred by writes proportionately. This problem can be mit-
igated by several techniques: lazy replication, atomic broad-
cast, weaker replica consistency and isolation levels, com-
mutative operations, abstract data types, escrow methods,
etc. A good overview is given in [10].

Distributed database systems. Traditionally, there have been
two broad architectures for distributing and scaling a SQL
database system: shared nothing and shared disk [38]. Each
has advantages, and there is a long-running debate about the
two approaches, with commercial vendors supporting one
or the other, and sometimes both. To scale, shared nothing
systems need to carefully partition data so that queries can
be efficiently decomposed—but this partition may not ex-
ist or may require a (well-paid) database administrator to
identify [63]. Shared disk systems need distributed locking
and caching protocols for coordinating access to the shared
disks; these protocols can become a scalability bottleneck
(as shown in §6.2 for MYSQL Cluster).

Yesquel is a variant of shared disk. Under Yesquel, the
“shared piece” is not a collection of network-attached disks
but rather a distributed storage system. This picture is not
unique to Yesquel; it appears in MoSQL, F1, FoundationDB,
and Tell, as we discuss shortly.

NEWSQL. This is a class of SQL database systems that have
adopted new architectures or ideas to improve upon tradi-
tional database systems. The class includes systems for data
analytics (covered above) and for online transaction process-
ing. The latter includes in-memory centralized systems such
as Hekaton [13] and distributed systems. Since centralized
systems do not scale beyond one server, we focus on dis-
tributed systems below.

H-Store/VoltDB [30, 51] is an in-memory shared-nothing
system. As noted earlier, shared-nothing systems require a
good data partition for good performance; software such as
VoltDB’s can help with this issue, but not in all cases.

MoSQL [67, 68], F1 [55, 60], FoundationDB [19], and
Tell [40] implement a SQL database system atop a NOSQL
storage system, following an architectural decomposition
due to Deuteronomy [37]. In Deuteronomy, the storage en-
gine is decomposed into a transactional component running
above a data component without transactions. Yesquel’s ar-
chitecture reverses this idea: it layers a transactional compo-
nent below a data component (YDBT). Doing so can simplify
the system and enhance performance (§3,§4,§6.1.6).

MoSQL is mostly unoptimized: its baseline performance
(reported 3× slower than MYSQL [68], which is one of our
evaluation baselines) is somewhat below our performance
goal. More fundamentally, MoSQL’s DBT uses a different
design from Yesquel’s DBT; MoSQL’s is based on optimistic
concurrency control, and (though we cannot be sure because

the description is not detailed) appears to resemble [2, 61],
whose performance is studied in Section 6.1.

F1, by contrast, is designed for performance. Its SQL
query processors run over Spanner transactions [11], which
run over the BigTable data component. Although F1 and
Yesquel have similar high-level descriptions, they represent
different design points due to different architectures (noted
above) and goals. The authors of F1 indicate that it was
designed for one critical application—Google’s AdWords—
and indeed, F1 uses application-specific techniques. In par-
ticular, F1 uses denormalization (described in Section 2.2),
and it exposes a manually designed, non-relational hierar-
chical model. These choices contrast with Yesquel’s goal
of presenting an unmodified SQL interface. Finally, F1 as-
sumes special infrastructure, such as GPS, atomic clocks,
etc. (while Yesquel works even if clocks are not synchro-
nized). On the other hand, F1 can handle short and long
queries, by dividing queries into parts executed by many
query processors (while Yesquel is mainly designed for short
queries); and F1 provides strict serializability (while Yesquel
provides snapshot isolation).

FoundationDB runs atop a transactional multi-version
key-value storage system, but little is known about its stor-
age engine and whether it uses DBTs.

Very recently, Tell implemented snapshot isolation trans-
actions atop a key-value storage system using load-link and
storage-conditional (LLSC) primitives. Indexes are stored in
DBTs, which are also implemented with LLSC. Evaluating
Yesquel’s performance against Tell is future work.

Finally, Dixie [49] distributes SQL queries among many
database servers with replicated and partitioned tables, but
requires manual replication and partitioning.

Distributed and concurrent data structures. Predating
NOSQL systems, scalable distributed data structures [25]
were proposed for constructing Internet services; these data
structures provide an interface similar to key-value storage
systems. Subsequently, distributed balanced trees [2, 42, 61],
or DBTs, were proposed; however, previous DBTs, in con-
trast to YDBT, either do not provide ACID transactions [42]
or suffer under contention [2, 61] (§6.1). Distributed skip
graphs (e.g., [7]) are another data structure that can store
indexes; however, they do not support transactions. Hyper-
space hashing [16] provides simultaneous indexing of many
attributes; however, Yesquel needs to index individual at-
tributes, in which case hyperspace hashing reduces to par-
titioning by static ranges.

Concurrent B-trees are search data structures accessed by
many threads in a multiprocessor system (e.g., [33, 36, 41,
43, 58, 59])—which is a different context from Yesquel’s.
YDBT draws ideas from this body of work. Back-down
search (§4.1) is inspired by the give-up technique [59], which
addresses the problem that a process may arrive at the wrong
node during a search because of concurrent updates. The
give-up technique detects this situation using fence intervals,

and reacts by moving to some ancestor of the node. This is
similar to our back-down search but differs in three ways: it
starts every search from the root (we use client caches), it
locks and unlocks nodes during the search (we do not lock),
and it backtracks to an ancestor (we speculate and backtrack
to a node in the cache). Delegated splits (§4.5) is related to
splitting nodes at a later time [43, 59]; the former performs
the splits of a node at a designated process, while the latter
simply postpones the splits.

Other work. Liskov proposes the notion of algorithms that
“depend on clocks for performance but not for correct-
ness” [39]; this notion is later applied to optimistic con-
currency control [1]. Yesquel’s notion of clock safety (§4.6)
is similar to that notion, but it is more precise and weaker,
hence easier to satisfy. This is because (a) clock safety refers
to safety not correctness (safety is a precise notion, correct-
ness is vague), (b) clock safety refers to progress not perfor-
mance (progress is weaker than performance), and (c) clock
safety does not refer to clock dependency in any way (i.e., a
protocol that does not depend on clocks for anything satisfies
clock safety but not the notion in [39]).

9. Conclusion
Large-scale Web systems have been changing their storage
back end from SQL to NOSQL. This transition destroys func-
tionality (transactions, secondary indexes, joins, aggregation
functions, subqueries), forcing developers to reimplement
them for each Web application. While NOSQL systems have
recently reincorporated some of the lost functionality, they
still lag behind the richness of SQL. Yesquel’s goal was to
offer the power of SQL without sacrificing the performance
and scalability of NOSQL. We believe that, at least in the do-
main of Web applications, Yesquel has met this goal.

Acknowledgements
We thank Dan Abadi, Miguel Castro, Curt Kolovson, Rama
Kotla, Dennis Shasha, and our anonymous reviewers for
many helpful comments that improved this paper. We are
indebted especially to Roy Levin and Michael D. Schroeder
for creating a rich and fertile research environment, where
this work could blossom, at the late MSR Silicon Valley.

References
[1] ADYA, A., GRUBER, R., LISKOV, B., AND MAHESHWARI,

U. Efficient optimistic concurrency control using loosely syn-
chronized clocks. In International Conference on Manage-
ment of Data (May 1995), pp. 23–34.

[2] AGUILERA, M. K., GOLAB, W., AND SHAH, M. A practical
scalable distributed B-tree. Proceedings of the VLDB Endow-
ment 1, 1 (Aug. 2008), 598–609.

[3] AGUILERA, M. K., LENERS, J. B., KOTLA, R., AND WAL-
FISH, M. Yesquel: Scalable SQL storage for Web applica-
tions. In International Conference on Distributed Computing
and Networking (Jan. 2015). Invited keynote presentation.

[4] AGUILERA, M. K., LENERS, J. B., AND WALFISH, M.
Distributed SQL query processing using key-value stor-
age system, Dec. 2012. United States Patent Application
20140172898, filed 13 December 2012.

[5] AGUILERA, M. K., MERCHANT, A., SHAH, M., VEITCH,
A., AND KARAMANOLIS, C. Sinfonia: A new paradigm for
building scalable distributed systems. ACM Transactions on
Computer Systems 27, 3 (Nov. 2009), 5:1–5:48.

[6] ALSBERG, P. A., AND DAY, J. D. A principle for resilient
sharing of distributed resources. In International Conference
on Software Engineering (Oct. 1976), pp. 562–570.

[7] ASPNES, J., AND SHAH, G. Skip graphs. ACM Transactions
on Algorithms 3, 4 (Nov. 2007), 37.

[8] BERENSON, H., ET AL. A critique of ANSI SQL isolation
levels. In International Conference on Management of Data
(May 1995), pp. 1–10.

[9] BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN,
N. Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[10] CHARRON-BOST, B., PEDONE, F., AND SCHIPER, A., Eds.
Replication: Theory and Practice. Springer, 2010.

[11] CORBETT, J. C., ET AL. Spanner: Google’s globally-
distributed database. In Symposium on Operating Systems De-
sign and Implementation (Oct. 2012), pp. 251–264.

[12] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data
processing on large clusters. In Symposium on Operating
Systems Design and Implementation (Dec. 2004), pp. 137–
150.

[13] DIACONU, C., FREEDMAN, C., ISMERT, E., LARSON, P.-
A., MITTAL, P., STONECIPHER, R., VERMA, N., AND

ZWILLING, M. Hekaton: SQL Server’s memory-optimized
OLTP engine. In International Conference on Management of
Data (June 2013), pp. 1243–1254.

[14] https://www.mapr.com/products/apache-drill.

[15] DU, J., ELNIKETY, S., AND ZWAENEPOEL, W. Clock-SI:
Snapshot isolation for partitioned data stores using loosely
synchronized clocks. In IEEE Symposium on Reliable Dis-
tributed Systems (Sept. 2013), pp. 173–184.

[16] ESCRIVA, R., WONG, B., AND SIRER, E. G. HyperDex: A
distributed, searchable key-value store for cloud computing.
In ACM SIGCOMM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communica-
tions (Aug. 2012), pp. 25–36.

[17] ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND

TRAIGER, I. L. The notions of consistency and predicate
locks in a database system. Commun. ACM 19, 11 (Nov.
1976), 624–633.

[18] FLORATOU, A., MINHAS, U. F., AND ÖZCAN, F. SQL-on-
Hadoop: Full circle back to shared-nothing database archi-
tectures. Proceedings of the VLDB Endowment 7, 12 (Aug.
2014), 1295–1306.

[19] http://foundationdb.com.

[20] FRIEDMAN, E., PAWLOWSKI, P., AND CIESLEWICZ, J.
SQL/MapReduce: A practical approach to self-describing,
polymorphic, and parallelizable user-defined functions. Pro-

ceedings of the VLDB Endowment 2, 2 (Aug. 2009), 1402–
1413.

[21] GOEL, A. K., POUND, J., AUCH, N., BUMBULIS, P.,
MACLEAN, S., FÄRBER, F., GROPENGIESSER, F., MATHIS,
C., BODNER, T., AND LEHNER, W. Towards scalable real-
time analytics: An architecture for scale-out of OLxP work-
loads. Proceedings of the VLDB Endowment 8, 12 (Aug.
2015), 1716–1727.

[22] GRAEFE, G. Write-optimized B-trees. In International Con-
ference on Very Large Data Bases (Aug. 2004), pp. 672–683.

[23] GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D.
The dangers of replication and a solution. In International
Conference on Management of Data (June 1996), pp. 173–
182.

[24] GRAY, J., AND REUTER, A. Transaction processing: con-
cepts and techniques. Morgan Kaufmann Publishers, 1993.

[25] GRIBBLE, S. D., BREWER, E. A., HELLERSTEIN, J. M.,
AND CULLER, D. Scalable, distributed data structures for
Internet service construction. In Symposium on Operating
Systems Design and Implementation (Oct. 2000), pp. 319–
332.

[26] GUPTA, A., ET AL. Mesa: Geo-replicated, near real-time,
scalable data warehousing. Proceedings of the VLDB Endow-
ment 7, 12 (Aug. 2014), 1259–1270.

[27] http://hadoop.apache.org.

[28] http://hbase.apache.org.

[29] HELLERSTEIN, J. M., STONEBRAKER, M., AND HAMIL-
TON, J. Architecture of a database system. Foundations and
Trends in Databases 1, 2 (Feb. 2007), 141–259.

[30] KALLMAN, R., ET AL. H-Store: a high-performance, dis-
tributed main memory transaction processing system. Pro-
ceedings of the VLDB Endowment 1, 2 (Aug. 2008), 1496–
1499.

[31] KATE, B., KOHLER, E., KESTER, M. S., NARULA, N.,
MAO, Y., AND MORRIS, R. Easy freshness with Pequod
cache joins. In Symposium on Networked Systems Design and
Implementation (Apr. 2014), pp. 415–428.

[32] KORNACKER, M., ET AL. Impala: A modern, open-source
SQL engine for Hadoop. In Conference on Innovative Data
Systems Research (Jan. 2015).

[33] KUNG, H. T., AND LEHMAN, P. L. Concurrent manipula-
tion of binary search trees. ACM Transactions on Database
Systems 5, 3 (Sept. 1980), 354–382.

[34] http://en.wikipedia.org/wiki/LAMP (software bundle).

[35] LAMPORT, L. The part-time parliament. ACM Transactions
on Computer Systems 16, 2 (May 1998), 133–169.

[36] LEHMAN, P. L., AND YAO, S. B. Efficient locking for con-
current operations on B-trees. ACM Transactions on Database
Systems 6, 4 (Dec. 1981), 650–670.

[37] LEVANDOSKI, J. J., LOMET, D., MOKBEL, M. F., AND

ZHAO, K. K. Deuteronomy: Transaction support for cloud
data. In Conference on Innovative Data Systems Research
(Jan. 2011), pp. 123–133.

https://www.mapr.com/products/apache-drill
http://foundationdb.com
http://hadoop.apache.org
http://hbase.apache.org
http://en.wikipedia.org/wiki/LAMP_(software_bundle)

[38] LEVIN, K. D., AND MORGAN, H. L. Optimizing distributed
data bases: a framework for research. In National computer
conference (May 1975), pp. 473–478.

[39] LISKOV, B. Practical uses of synchronized clocks in dis-
tributed systems. Distributed Computing 6, 4 (July 1993),
211–219.

[40] LOESING, S., PILMAN, M., ETTER, T., AND KOSSMANN,
D. On the design and scalability of distributed shared-data
databases. In International Conference on Management of
Data (May 2015), pp. 663–676.

[41] LOMET, D. B., SENGUPTA, S., AND LEVANDOSKI, J. J. The
Bw-tree: A B-tree for new hardware platforms. In Interna-
tional Conference on Data Engineering (Apr. 2013), pp. 302–
313.

[42] MACCORMICK, J., MURPHY, N., NAJORK, M.,
THEKKATH, C. A., AND ZHOU, L. Boxwood: Abstractions
as the foundation for storage infrastructure. In Symposium on
Operating Systems Design and Implementation (Dec. 2004),
pp. 105–120.

[43] MANOLOPOULOS, Y. B-trees with lazy parent split. Infor-
mation Sciences 79, 1-2 (July 1994), 73–88.

[44] http://www.mediawiki.org.

[45] MELNIK, S., GUBAREV, A., LONG, J. J., ROMER, G.,
SHIVAKUMAR, S., TOLTON, M., AND VASSILAKIS, T.
Dremel: Interactive analysis of web-scale datasets. Proceed-
ings of the VLDB Endowment 3, 1–2 (Sept. 2010), 330–339.

[46] http://memcached.org.

[47] MOHAN, C. Big data: Hype and reality. http://bit.ly/
CMnMDS.

[48] http://www.mysql.com.

[49] NARULA, N., AND MORRIS, R. Executing Web application
queries on a partitioned database. In USENIX Conference on
Web Application Development (June 2012), pp. 63–74.

[50] NIELSEN, J. Usability Engineering. Morgan Kaufmann, San
Francisco, 1994.

[51] PAVLO, A., CURINO, C., AND ZDONIK, S. B. Skew-aware
automatic database partitioning in shared-nothing, parallel
OLTP systems. In International Conference on Management
of Data (May 2012), pp. 61–72.

[52] PORTS, D. R. K., CLEMENTS, A. T., ZHANG, I., MADDEN,
S., AND LISKOV, B. Transactional consistency and automatic
management in an application data cache. In Symposium on
Operating Systems Design and Implementation (Oct. 2010),
pp. 279–292.

[53] http://prestodb.io.

[54] RABKIN, A., ARYE, M., SEN, S., PAI, V. S., , AND FREED-
MAN, M. J. Aggregation and degradation in JetStream:
Streaming analytics in the wide area. In Symposium on
Networked Systems Design and Implementation (Apr. 2014),
pp. 275–288.

[55] RAE, I., ROLLINS, E., SHUTE, J., SODHI, S., AND VIN-
GRALEK, R. Online, asynchronous schema change in F1.
Proceedings of the VLDB Endowment 6, 11 (Aug. 2013),
1045–1056.

[56] REED, D. P. Implementing atomic actions on decentralized
data. ACM Transactions on Computer Systems 1, 1 (Feb.
1983), 3–23.

[57] http://www.scalearc.com.

[58] SEWALL, J., CHHUGANI, J., KIM, C., SATISH, N., AND

DUBEY, P. PALM: Parallel architecture-friendly latch-free
modifications to B+ trees on many-core processors. Proceed-
ings of the VLDB Endowment 4, 11 (Aug. 2011), 795–806.

[59] SHASHA, D., AND GOODMAN, N. Concurrent search struc-
ture algorithms. ACM Transactions on Database Systems 13,
1 (Mar. 1988), 53–90.

[60] SHUTE, J., ET AL. F1: A distributed SQL database that
scales. Proceedings of the VLDB Endowment 6, 11 (Aug.
2013), 1068–1079.

[61] SOWELL, B., GOLAB, W. M., AND SHAH, M. A. Minuet:
A scalable distributed multiversion B-tree. Proceedings of the
VLDB Endowment 5, 9 (May 2012), 884–895.

[62] http://www.sqlite.org.

[63] STONEBRAKER, M. The case for shared nothing. IEEE
Database Engineering Bulletin 9, 1 (Mar. 1986), 4–9.

[64] STONEBRAKER, M., MADDEN, S., ABADI, D. J., HARI-
ZOPOULOS, S., HACHEM, N., AND HELLAND, P. The end of
an architectural era (it’s time for a complete rewrite). In Inter-
national Conference on Very Large Data Bases (Sept. 2007),
pp. 1150–1160.

[65] http://tajo.incubator.apache.org.

[66] TERRY, D., PRABHAKARAN, V., KOTLA, R., BALAKRISH-
NAN, M., AND AGUILERA, M. K. Transactions with con-
sistency choices on geo-replicated cloud storage. Tech. Rep.
MSR-TR-2013-82, Microsoft Research, Sept. 2013.

[67] TOMIC, A. MoSQL, A Relational Database Using NoSQL
Technology. PhD thesis, Faculty of Informatics, University of
Lugano, 2011.

[68] TOMIC, A., SCIASCIA, D., AND PEDONE, F. MoSQL: An
elastic storage engine for MySQL. In Symposium On Applied
Computing (Mar. 2013), pp. 455–462.

[69] http://www.wikipedia.org.

[70] XIN, R. S., ROSEN, J., ZAHARIA, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Shark: SQL and rich analytics
at scale. In International Conference on Management of Data
(June 2013), pp. 13–24.

http://www.mediawiki.org
http://memcached.org
http://bit.ly/CMnMDS
http://bit.ly/CMnMDS
http://www.mysql.com
http://prestodb.io
http://www.scalearc.com
http://www.sqlite.org
http://tajo.incubator.apache.org
http://www.wikipedia.org

	Introduction
	Overview
	Setting and goals
	Drawbacks of existing scaling techniques
	Architecture of a database system
	Key idea and challenges

	Architecture
	The ydbt distributed balanced tree
	Caching and back-down searches
	Load splits and replits
	Node placement
	Handling concurrency
	Improving concurrency
	Multi-version distributed transactional storage
	Snapshots
	Choosing nodeids

	Implementation details and optimizations
	Evaluation
	Evaluation of ydbt
	Root node load
	Reads and updates
	Load splits
	Insert contention
	Multi-key transactions
	Snapshots

	Yesquel under key-value operations
	One-server performance
	Scalability to many servers

	Yesquel under a real Web application
	One-server performance
	Scalability to many servers

	Discussion

	Extensions
	Related Work
	Conclusion

