
Chris Rossbach and Calvin Lin

cs380p

GPU Optimization

Outline

Over the last several classes:

Background from many areas
Architecture

Vector processors

Hardware multi-threading

Graphics
Graphics pipeline

Graphics programming models

Algorithms

parallel architectures → parallel algorithms

Programming GPUs
CUDA

Basics: getting something working

Advanced: making it perform

Outline

Over the last several classes:

Background from many areas
Architecture

Vector processors

Hardware multi-threading

Graphics
Graphics pipeline

Graphics programming models

Algorithms

parallel architectures → parallel algorithms

Programming GPUs
CUDA

Basics: getting something working

Advanced: making it perform This
lecture

Review

3

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

3

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

Vector units use hardware multi-threading

3

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

Vector units use hardware multi-threading
Execution → a grid of thread blocks (TBs)

Each TB has some number of threads

3

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

Vector units use hardware multi-threading
Execution → a grid of thread blocks (TBs)

Each TB has some number of threads

3

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

Vector units use hardware multi-threading
Execution → a grid of thread blocks (TBs)

Each TB has some number of threads

3

Thread block scheduler

Review

Each SM has multiple vector units (4)
32 lanes wide → warp size

Vector units use hardware multi-threading
Execution → a grid of thread blocks (TBs)

Each TB has some number of threads

3

Thread block scheduler warp (thread) scheduler

GPU Memory Hierarchy

Constant Cache

Global variables marked by __constant__
constant and can’t be changed in device.

Will be cached by Constant Cache

Located in global memory

Good for threads that access the same address

__constant__ int a=10;

__global__ void kernel()

{

a++; //error

}

...

Memory addresses

Texture Cache

Tex

SM

L2

TexTexTex

Read-only

Data Cache

Texture Cache

Tex

SM

L2

TexTexTex

Read-only

Data Cache

Save Data as Texture :
Provides hardware accelerated filtered
sampling of data (1D, 2D, 3D)
Read-only data cache holds fetched
samples
Backed up by the L2 cache

Texture Cache

Tex

SM

L2

TexTexTex

Read-only

Data Cache

Save Data as Texture :
Provides hardware accelerated filtered
sampling of data (1D, 2D, 3D)
Read-only data cache holds fetched
samples
Backed up by the L2 cache

Why use it?
Separate pipeline from shared/L1
Highest miss bandwidth
Flexible, e.g. unaligned accesses
What if your problem takes a large
number of read-only points as input?

How many threads/blocks should I use?

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

How many threads/blocks should I use?

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

How many threads/blocks should I use?

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

• Usually things are correct if grid×block dims >= input size
• Getting good performance is another matter

Internals

__host__

void vecAdd()

{

dim3 DGrid = ceil(n/256,1,1);

dim3 DBlock = (256,1,1);

addKernel<<<DGrid,DBlock>>>(A_d,B_d,C_d,n);

}

Internals

__host__

void vecAdd()

{

dim3 DGrid = ceil(n/256,1,1);

dim3 DBlock = (256,1,1);

addKernel<<<DGrid,DBlock>>>(A_d,B_d,C_d,n);

}

__global__

void addKernel(float *A_d,

float *B_d,

float *C_d,

int n){

int i = blockIdx.x * blockDim.x

+ threadIdx.x;

if(i<n)

C_d[i] = A_d[i] + B_d[i];

}

Internals

__host__

void vecAdd()

{

dim3 DGrid = ceil(n/256,1,1);

dim3 DBlock = (256,1,1);

addKernel<<<DGrid,DBlock>>>(A_d,B_d,C_d,n);

}

__global__

void addKernel(float *A_d,

float *B_d,

float *C_d,

int n){

int i = blockIdx.x * blockDim.x

+ threadIdx.x;

if(i<n)

C_d[i] = A_d[i] + B_d[i];

}

KernelBlk 0 Blk N-1

• • •

GPU
M0

RAM

Mk• • •

Schedule onto multiprocessors

Internals

__host__

void vecAdd()

{

dim3 DGrid = ceil(n/256,1,1);

dim3 DBlock = (256,1,1);

addKernel<<<DGrid,DBlock>>>(A_d,B_d,C_d,n);

}

__global__

void addKernel(float *A_d,

float *B_d,

float *C_d,

int n){

int i = blockIdx.x * blockDim.x

+ threadIdx.x;

if(i<n)

C_d[i] = A_d[i] + B_d[i];

}

KernelBlk 0 Blk N-1

• • •

GPU
M0

RAM

Mk• • •

Schedule onto multiprocessors

How are threads
scheduled?

Kernel Launch

Kernel Launch

• Commands by host issued through streams

Kernel Launch

• Commands by host issued through streams

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially

❖ Kernels in different streams may be executed concurrently

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues
❖ Done by “kernel management unit” (KMU)

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues
❖ Done by “kernel management unit” (KMU)

❖ Multiple streams mapped to each queue → serializes some kernels

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues
❖ Done by “kernel management unit” (KMU)

❖ Multiple streams mapped to each queue → serializes some kernels

• Kernel launch distributes thread blocks to SMs

CUDA streams

Host
Processor

HW Queues

Kernel Management Unit (Device)

Kernel
dispatch to

SMs

Thread Blocks, Warps, Scheduling

Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

SMs

……

……

SM_0 SM_1 SM_12

Thread Blocks

• SMs split blocks into warps
• Unit of HW scheduling for SM
• 32 threads each

Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

SMs

……

……

SM_0 SM_1 SM_12

Thread Blocks

• SMs split blocks into warps
• Unit of HW scheduling for SM
• 32 threads each

Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

SMs

……

……

SM_0 SM_1 SM_12

Thread Blocks

• SMs split blocks into warps
• Unit of HW scheduling for SM
• 32 threads each

Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

SMs

……

……

SM_0 SM_1 SM_12

Thread Blocks

• SMs split blocks into warps
• Unit of HW scheduling for SM
• 32 threads each

Thread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

SMs

……

……

SM_0 SM_1 SM_12

Thread Blocks

• SMs split blocks into warps
• Unit of HW scheduling for SM
• 32 threads each

Remaining TBs are queued

SIMD vs. SIMT

SISD SIMD

MISD MIMD

Data Streams

In
st

ru
ct

io
n

 S
tr

ea
m

s

Flynn’s Taxonomy

SIMD vs. SIMT

SISD SIMD

MISD MIMD

Data Streams

In
st

ru
ct

io
n

 S
tr

ea
m

s

Register File

+

Single Scalar Thread

Flynn’s Taxonomy
e.g., SSE/AVX

SIMD vs. SIMT

SISD SIMD

MISD MIMD

Data Streams

In
st

ru
ct

io
n

 S
tr

ea
m

s

Register File

+

Loosely synchronized threads

Single Scalar Thread

Flynn’s Taxonomy

e.g., pthreads

e.g., SSE/AVX

SIMD vs. SIMT

SISD SIMD

MISD MIMD

Data Streams

In
st

ru
ct

io
n

 S
tr

ea
m

s

Register File

+

Loosely synchronized threads
Multiple threads

Synchronous operation

RFRF RF RF

Single Scalar Thread

SIMT

Flynn’s Taxonomy

e.g., pthreads

e.g., SSE/AVX

e.g., PTX, HSA

A Taco Bar

A Taco Bar

A Taco Bar

• Where is the parallelism here?

GPU: a Multi-lane Taco Bar

GPU: a Multi-lane Taco Bar

1 Taco,
please

GPU: a Multi-lane Taco Bar

1 Taco,
please • Where is the parallelism here?

GPU: a Multi-lane Taco Bar

1 Taco,
please • Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU: a Multi-lane Taco Bar

1 Taco,
please • Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU: a Multi-lane Taco Bar

• Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU: a Multi-lane Taco Bar

• Where is the parallelism here?

• There’s none!
• This only works if you can keep

every lane full at every step
• Throughput == Performance
• Goal: Increase Occupancy!

GPU Performance Metric: Occupancy

GPU Performance Metric: Occupancy

Occupancy = (#Active Warps) /(#MaximumActive Warps)
Measures how well concurrency/parallelism is utilized

GPU Performance Metric: Occupancy

Occupancy = (#Active Warps) /(#MaximumActive Warps)
Measures how well concurrency/parallelism is utilized

Occupancy captures:
Which resources can be dynamically shared
How to reason about resource demands of a kernel
Enables device-specific tuning of kernel parameters

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

SM – Stream Multiprocessor

SP – Stream Processor

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

SM – Stream Multiprocessor

SP – Stream Processor

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

Limits the #threads

SM – Stream Multiprocessor

SP – Stream Processor

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

Limits the #threads

Limits the #threads

SM – Stream Multiprocessor

SP – Stream Processor

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

Limits the #threads

Limits the #thread blocks

Limits the #threads

SM – Stream Multiprocessor

SP – Stream Processor

CUDA Occupancy

CUDA Occupancy

Occupancy = (#Active Warps) /(#MaximumActive Warps)
Measure of how well max capacity is utilized

CUDA Occupancy

Occupancy = (#Active Warps) /(#MaximumActive Warps)
Measure of how well max capacity is utilized

What is the performance impact of varying kernel resource demands?

CUDA Occupancy

Occupancy = (#Active Warps) /(#MaximumActive Warps)
Measure of how well max capacity is utilized

Limits on the numerator:
Registers/thread
Shared memory/thread block
Number of scheduling slots: blocks, warps

What is the performance impact of varying kernel resource demands?

CUDA Occupancy

Occupancy = (#Active Warps) /(#MaximumActive Warps)
Measure of how well max capacity is utilized

Limits on the numerator:
Registers/thread
Shared memory/thread block
Number of scheduling slots: blocks, warps

Limits on the denominator:
Memory bandwidth
Scheduler slots

What is the performance impact of varying kernel resource demands?

Impact of Thread Block Size

Impact of Thread Block Size

Consider Fermi: 1536 threads/SM

Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?

Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?

3

Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?
With 128 threads/block?

3

Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?
With 128 threads/block?

3

12

Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?
With 128 threads/block?

Consider HW limit of 8 thread blocks/SM @ 128 threads/block:
Suppose only 1024 active threads at a time
Occupancy = 0.666 (1024/1536)

3

12

Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?
With 128 threads/block?

Consider HW limit of 8 thread blocks/SM @ 128 threads/block:
Suppose only 1024 active threads at a time
Occupancy = 0.666 (1024/1536)

To maximize utilization, thread block size should balance
demand for thread blocks vs.
thread slots

3

12

Impact of #Registers Per Thread

Impact of #Registers Per Thread

Assume 10 registers/thread and a thread block size of 256

Impact of #Registers Per Thread

Assume 10 registers/thread and a thread block size of 256
Number of registers per SM = 16K

Impact of #Registers Per Thread

Assume 10 registers/thread and a thread block size of 256
Number of registers per SM = 16K
A TB requires 2560 registers →max of 6 thread blocks per SM

Uses all 1536 thread slots (6 blocks * 256 threads/block)
2560 regs/block * 6 block/SM = 15,360 registers

Impact of #Registers Per Thread

Assume 10 registers/thread and a thread block size of 256
Number of registers per SM = 16K
A TB requires 2560 registers →max of 6 thread blocks per SM

Uses all 1536 thread slots (6 blocks * 256 threads/block)
2560 regs/block * 6 block/SM = 15,360 registers

What is the impact of increasing number of registers by 2?

Impact of #Registers Per Thread

Assume 10 registers/thread and a thread block size of 256
Number of registers per SM = 16K
A TB requires 2560 registers →max of 6 thread blocks per SM

Uses all 1536 thread slots (6 blocks * 256 threads/block)
2560 regs/block * 6 block/SM = 15,360 registers

What is the impact of increasing number of registers by 2?
Granularity of management is a thread block!

Impact of #Registers Per Thread

Assume 10 registers/thread and a thread block size of 256
Number of registers per SM = 16K
A TB requires 2560 registers →max of 6 thread blocks per SM

Uses all 1536 thread slots (6 blocks * 256 threads/block)
2560 regs/block * 6 block/SM = 15,360 registers

What is the impact of increasing number of registers by 2?
Granularity of management is a thread block!
Loss of concurrency of 256 threads!
(12 regs/thread * 256 threads/block * 5 blocks/SM = 15360 registers)

Impact of Shared Memory

Shared memory is allocated per thread block
Can limit the number of thread blocks executing concurrently per SM

gridDim and blockDim parameters impact demand for
shared memory

number of thread slots

number of thread block slots

Pragmatic Strategy: Strike a Balance

#Thrds/Block

#Thread
Blocks

Shared
memory/

Thread
block

#Registers/
Thread

• Navigate the tradeoffs

❖ maximize core utilization and memory bandwidth utilization

❖ Device-specific

• Goal: Increase occupancy until one or the other is saturated

Pragmatic Strategy: Strike a Balance

#Thrds/Block

#Thread
Blocks

Shared
memory/

Thread
block

#Registers/
Thread

• Navigate the tradeoffs

❖ maximize core utilization and memory bandwidth utilization

❖ Device-specific

• Goal: Increase occupancy until one or the other is saturated

Parallel Memory Accesses

Coalesced main memory access (16/32x faster)
HW combines multiple warp memory accesses → single coalesced access

Bank-conflict-free shared memory access (16/32)
No alignment or contiguity requirements

CC 1.3: 16 different banks per half warp or same word

CC 2.x+3.0 : 32 different banks + 1-word broadcast each

Parallel Memory Architecture

In a parallel machine, many threads access memory
Therefore, memory is divided into banks

Essential to achieve high bandwidth

Each bank can service one address per cycle
A memory can service as many simultaneous

accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict
Conflicting accesses are serialized

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Coalesced Main Memory Accesses

single coalesced access one and two coalesced accesses*

Bank Addressing Examples

No Bank Conflicts
Linear addressing

stride == 1

• No Bank Conflicts
• Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank Addressing Examples

2-way Bank Conflicts
Linear addressing

stride == 2

• 8-way Bank Conflicts
• Linear addressing

stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

Linear Addressing

Given:

__shared__ float shared[256];

float foo =

shared[baseIndex + s *

threadIdx.x];

This is only bank-conflict-free if s shares no
common factors with the number of banks
16 on G80, so s must be odd

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=3

s=1

Summary

Understanding u-arch resources is critical for optimization

Need to balance threads, blocks, registers

Memory level parallelism is sensitive to your access patterns!

Often suffices to just explore parameter space

