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GPU Memory Hierarchy



Constant Cache

Global variables marked by __constant__ 
constant and can’t be changed in device.

Will be cached by Constant Cache

Located in global memory

Good for threads that access the same address

__constant__ int a=10;

__global__ void kernel()

{

a++; //error

}

...

Memory addresses
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Texture Cache

Tex

SM

L2

TexTexTex

Read-only

Data Cache

Save Data as Texture :
Provides hardware accelerated filtered 
sampling of data (1D, 2D, 3D)
Read-only data cache holds fetched 
samples
Backed up by the L2 cache

Why use it?
Separate pipeline from shared/L1
Highest miss bandwidth
Flexible, e.g. unaligned accesses
What if your problem takes a large 
number of read-only points as input?



How many threads/blocks should I use?

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;
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How many threads/blocks should I use?

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N/THREADS_PER_BLOCK,,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

• Usually things are correct if grid×block dims >= input size
• Getting good performance is another matter
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float *C_d, 
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int i = blockIdx.x * blockDim.x
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C_d[i] = A_d[i] + B_d[i];

}

KernelBlk 0 Blk N-1

• • •

GPU
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Mk• • •

Schedule onto multiprocessors

How are threads 
scheduled?



Kernel Launch



Kernel Launch

• Commands by host issued through streams



Kernel Launch

• Commands by host issued through streams

CUDA streams

Host 
Processor

HW Queues

Kernel Management Unit (Device)

Kernel 
dispatch to 

SMs



Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially 

CUDA streams

Host 
Processor

HW Queues

Kernel Management Unit (Device)

Kernel 
dispatch to 

SMs



Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially 

❖ Kernels in different streams may be executed concurrently

CUDA streams

Host 
Processor

HW Queues

Kernel Management Unit (Device)

Kernel 
dispatch to 

SMs



Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially 

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues

CUDA streams

Host 
Processor

HW Queues

Kernel Management Unit (Device)

Kernel 
dispatch to 

SMs



Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially 

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues
❖ Done by “kernel management unit” (KMU)

CUDA streams

Host 
Processor

HW Queues

Kernel Management Unit (Device)

Kernel 
dispatch to 

SMs



Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially 

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues
❖ Done by “kernel management unit” (KMU)

❖ Multiple streams mapped to each queue → serializes some kernels

CUDA streams

Host 
Processor

HW Queues

Kernel Management Unit (Device)

Kernel 
dispatch to 

SMs



Kernel Launch

• Commands by host issued through streams
❖ Kernels in the same stream executed sequentially 

❖ Kernels in different streams may be executed concurrently

• Streams mapped to GPU HW queues
❖ Done by “kernel management unit” (KMU)

❖ Multiple streams mapped to each queue → serializes some kernels

• Kernel launch distributes thread blocks to SMs

CUDA streams

Host 
Processor

HW Queues

Kernel Management Unit (Device)

Kernel 
dispatch to 

SMs
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Suppose one TB (threadblock) has 64 threads (2 warps)

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

Register File

Cores

L1 Cache/Shared Memory

SMs

……

……

SM_0 SM_1 SM_12

Thread Blocks

• SMs split blocks into warps
• Unit of HW scheduling for SM
• 32 threads each 

Remaining TBs are queued
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Loosely synchronized threads
Multiple threads

Synchronous operation

RFRF RF RF

Single Scalar Thread

SIMT

Flynn’s Taxonomy

e.g., pthreads

e.g., SSE/AVX

e.g., PTX, HSA
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GPU Performance Metric: Occupancy

Occupancy = (#Active Warps) /(#MaximumActive Warps)
Measures how well concurrency/parallelism is utilized

Occupancy captures:
Which resources can be dynamically shared
How to reason about resource demands of a kernel
Enables device-specific tuning of kernel parameters
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CUDA Occupancy

Occupancy = (#Active Warps) /(#MaximumActive Warps)
Measure of how well max capacity is utilized

Limits on the numerator:
Registers/thread
Shared memory/thread block
Number of scheduling slots: blocks, warps

Limits on the denominator:
Memory bandwidth
Scheduler slots

What is the performance impact of varying kernel resource demands?



Impact of Thread Block Size



Impact of Thread Block Size

Consider Fermi: 1536 threads/SM



Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?



Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?

3



Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?
With 128 threads/block? 

3



Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?
With 128 threads/block? 

3

12



Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?
With 128 threads/block? 

Consider HW limit of 8 thread blocks/SM @ 128 threads/block:
Suppose only 1024 active threads at a time
Occupancy = 0.666 (1024/1536)

3

12



Impact of Thread Block Size

Consider Fermi: 1536 threads/SM
At 512 threads/block, how many blocks can execute (per SM)?
With 128 threads/block? 

Consider HW limit of 8 thread blocks/SM @ 128 threads/block:
Suppose only 1024 active threads at a time
Occupancy = 0.666 (1024/1536)

To maximize utilization, thread block size should balance
demand for thread blocks vs. 
thread slots

3

12
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Impact of #Registers Per Thread

Assume 10 registers/thread and a thread block size of 256
Number of registers per SM = 16K
A TB requires 2560 registers →max of 6 thread blocks per SM

Uses all 1536 thread slots (6 blocks * 256 threads/block)
2560 regs/block * 6 block/SM = 15,360 registers

What is the impact of increasing number of registers by 2?
Granularity of management is a thread block!
Loss of concurrency of 256 threads!
(12 regs/thread * 256 threads/block * 5 blocks/SM = 15360 registers)



Impact of Shared Memory

Shared memory is allocated per thread block
Can limit the number of thread blocks executing concurrently per SM

gridDim and blockDim parameters impact demand for 
shared memory

number of thread slots

number of thread block slots
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#Thrds/Block

#Thread 
Blocks

Shared 
memory/

Thread 
block

#Registers/
Thread

• Navigate the tradeoffs 

❖ maximize core utilization and memory bandwidth utilization

❖ Device-specific

• Goal: Increase occupancy until one or the other is saturated



Parallel Memory Accesses

Coalesced main memory access (16/32x faster)
HW combines multiple warp memory accesses → single coalesced access

Bank-conflict-free shared memory access (16/32)
No alignment or contiguity requirements

CC 1.3: 16 different banks per half warp or same word

CC 2.x+3.0 : 32 different banks + 1-word broadcast each



Parallel Memory Architecture

In a parallel machine, many threads access memory
Therefore, memory is divided into banks

Essential to achieve high bandwidth

Each bank can service one address per cycle
A memory can service as many simultaneous 

accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict 
Conflicting accesses are serialized

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0



Coalesced Main Memory Accesses

single coalesced access                      one and two coalesced accesses*



Bank Addressing Examples

No Bank Conflicts
Linear addressing 

stride == 1

• No Bank Conflicts
• Random 1:1 Permutation
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Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0



Bank Addressing Examples

2-way Bank Conflicts
Linear addressing 

stride == 2

• 8-way Bank Conflicts
• Linear addressing 

stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8



Linear Addressing

Given:

__shared__ float shared[256];

float foo = 

shared[baseIndex + s * 

threadIdx.x];

This is only bank-conflict-free if s shares no 
common factors with the number of banks 
16 on G80, so s must be odd

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1
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Thread 15

Thread 7

Thread 6

Thread 5
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Thread 2
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Bank 1
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Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=3

s=1



Summary

Understanding u-arch resources is critical for optimization

Need to balance threads, blocks, registers

Memory level parallelism is sensitive to your access patterns!

Often suffices to just explore parameter space


