538 CHAPTER 7 Scalable Multiprocessors

7.9

7.9.1

64 KB. Thus, on a machine with 256-KB caches, the miss rate drops from 5% to 1%
as the configuration scales from four to sixteen or more processors. Indeed, the sum
of the computational time over all the processors drops as the configuration scales,
so perfect speedup is obtained even though the time spent communicating increases.
This effect is less pronounced on the SP-2 because the basic node is optimized for
operation on data that does not fit in the cache.

SYNCHRONIZATION

Scalability is a primary concern in the combination of software and hardware that
implements synchronization operations in large-scale distributed-memory
machines. With a message-passing programming model, mutual exclusion is a given
since each process has exclusive access to its local address space. Point-to-point
events are implicit in every message operation. The more interesting case is orches-
trating global or group synchronization from point-to-point messages. An important
issue here is balance: it is important that the communication pattern used to achieve
the synchronization be balanced among nodes, in which case high message rates and
efficient synchronization can be realized. In the extreme, we should avoid having all
processes communicate with or wait for one process at a given time. Machine
designers and implementers of message-passing layers attempt to maximize the mes-
sage rate in such circumstances, but only the program can relieve the load imbal-
ance. Other issues for global synchronization are similar to those for a shared
address space.

In a shared address space, the issues for mutual exclusion and point-to-point
events are essentially the same as those discussed in Chapter 5. As in small-scale
shared memory machines, the trend in scalable machines is to build user-level
synchronization operations (like locks and barriers) in software on top of basic
atomic exchange primitives. Two major differences, however, may affect the choice
of algorithms. First, the interconnection network is not centralized but has many
parallel paths. On one hand, this means that disjoint sets of processors can coordi-
nate with one another in parallel on entirely disjoint paths; on the other hand, it can
complicate the implementation of synchronization primitives. Second, physically dis-
tributed memory may make it important to allocate synchronization variables appro-
priately among memories. The importance of this depends on whether the machine
caches nonlocal shared data or not and is clearly greater for machines that do not,
such as the ones described in this chapter. This section covers new algorithms for
locks and barriers appropriate for machines with physically distributed memory and
interconnect, starting from the algorithms discussed for shared memory machines.
We will return to this comparison once we have studied scalable cache-coherent sys-
tems in the next chapter. Let us begin with algorithms for locks.

Algorithms for Locks

Section 5.5 presents the basic test&set lock, the test&set lock with backoff, the test-
and-test&set lock, the ticket lock, and the array-based lock. Each successive step

7.9 Synchronization 539

went further in reducing bus traffic and fairness but often at a cost in overhead. For
example, the ticket lock allowed only one process to issue a test&set when a lock
was released, but all processors were notified of the release through an invalidation
and a subsequent read miss to determine who should issue the test&set. The array-
based lock fixed this problem by having each process wait on a different location and
the releasing process notify only one process of the release by writing the corre-
sponding location.

However, the array-based lock has two potential problems for scalable machines
with physically distributed memory. First, each lock requires space proportional to
the number of processors. Second, and more important for machines that do not
cache remote data, there is no way to know ahead of time which location a process
will spin on since this is determined at run time through a fetch&incrernent opera-
tion. This makes it impossible to allocate the synchronization variables in such a
way that the variable a process spins on is always in its local memory (in fact, all of
the locks in Chapter 5 have this problem). On a distributed-memory machine with-
out coherent caches, such as the CRAY T3D and T3E, this is a big problem since pro-
cesses will spin on remote locations, causing inordinate amounts of traffic and
contention. Fortunately, a software lock algorithm is available that both reduces the
space requirements and ensures all spinning will be on locally allocated variables.
This lock, known as a software queuing lock, is a software implementation of a lock
originally proposed for an all-hardware implementation by the Wisconsin Multicube
project (Goodman, Vernon, and Woest 1989). The idea is to have a distributed
linked list or a queue of waiters on the lock. The head node in the list represents the
process that holds the lock. Every other node is a process that is waiting on the lock
and is allocated in that process’s local memory. A node points to the process (node)
that tried to acquire the lock just after it. There is also a tail pointer that points to the
last node in the queue, that is, the last node to have tried to acquire the lock. Let us
look pictorially at how the queue changes as processes acquire and release the lock;
then we will examine the code for the acquire and release methods.

Assume that the lock in Figure 7.39 is initially free. When process A tries to
acquire the lock, it gets it, and the queue looks as shown in Figure 7.39(a). In step
(b), process B tries to acquire the lock, so it is put on the queue and the tail pointer
now points to it. Process C is treated similarly when it tries to acquire the lock in
step (c). B and C are now spinning on local flags associated with their queue nodes
while A holds the lock. In step (d), process A releases the lock. It then “wakes up”
the next process, B, in the queue by writing the flag associated with B’'s node, and
leaves the queue. B now holds the lock and is at the head of the queue. The tail
pointer does not change. In step (e), B releases the lock similarly, passing it on to C.
There are no other waiting processes, so C is at both the head and tail of the queue.
If C releases the lock before another process tries to acquire it, then the lock pointer
will be NULL and the lock will be free again. In this way, processes are granted the
lock in FIFO order with regard to the order in which they tried to acquire it. The
latter order will be defined next.

540 CHAPTER 7 Scalable Multiprocessors

(a) (b) (©

A e l=(1) A

°|wtie

e <o

<—@ B
(d)
C ® :)
(e)

:
Lo Lo

FIGURE 7.39 States of the queue for a lock as processes try to acquire and as pro-
cesses release. The queue grows as new waiters are added to the tail. When the lock is
released, the next waiter at the head is notified. Waiters always spin on local locations.

The code for the acquire and release methods is shown in Figure 7.40. In terms of
primitives needed, the key is to ensure that changes to the tail pointer are atomic. In
the acquire method, the acquiring process wants to change the lock pointer to point
to its node. It does this using an atomic fetch&store operation, which takes two oper-
ands: it returns the current value of the first operand (here the current tail pointer)
and then sets it to the value of the second operand, returning only when it succeeds.
The order in which the atomic fetch&store operations of different processes succeed
defines the order in which they acquire the lock.

In the release method, we want to atomically check if the process doing the
release is the last one in the queue, and if so, set the lock pointer to NULL. We can do
this using an atomic compare&swap operation, which takes three operands: it com-
pares the first two (here the tail pointer and the node pointer of the releasing pro-
cess), and if they are equal, it sets the first (the tail pointer) to the third operand
(here NULL) and returns TRUE; if they are not equal, it does nothing and returns
FALSE. The setting of the lock pointer to NULL must be atomic with the comparison
since otherwise another process could slip in between and add itself to the queue, in
which case setting the lock pointer to NULL would be the wrong thing to do. Recall
from Chapter 5 that a compare&swap is difficult to implement as a single machine
instruction since it requires three operands in a memory instruction (the functional-
ity can, however, be implemented using load-locked and store-conditional instruc-
tions). It is possible to implement this queuing lock without a compare&swap—
using only a fetch&store—but the implementation is more complicated (it allows
the queue to be broken and then repairs it), and it loses the FIFO property of lock
granting (Michael and Scott 1996).

7.9 Synchronization 541

struct node {

struct node *next;

int locked;
} *mynode, *prev_node;
shared struct node *Lock;

lock (Lock, mynode) {

mynode->next = NULL; /*make me last on queue*/

prev_node = fetch&store(Lock, mynode) ;
/*Lock currently points to the previous tail of
the queue; atomically set prev_node to the
Lock pointer and set Lock to point to my node
so I am last in the queue™/

if (prev_node != NULL) ({ /*if by the time I get on the queue I am not the

only one, i.e., some other process on queue
still holds the lock™/

mynode->locked = TRUE; /*Lock is locked by other process*/
prev_node->next = mynode; /*connect me to queue™/
while (mynode->locked) ({}; /*busy-wait till I am granted the lock*/

unlock (Lock, mynode) {

if (mynode->next == NULL) { /*no one to release, it seems*/
if compare&swap (Lock, mynode, NULL) /*really no one to release*/
return; /*i.e., Lock points to me, then set Lock to
NULL and return*/
while (mynode->next == NULL); /*if I get here, someone just got on the

queue and made my c&s fail, so I should wait
till they set my next pointer to point to
them before I grant them the lock*/

}

mynode->next->1locked = FALSE; /*someone to release; release them*/

}

FIGURE 7.40 Algorithm for the software queuing lock. The data for the lock is a list of length
eqgual to the number of waiters. A node requests the lock by atomically adding an item to the tail of the
list and spinning on the local item until an unlock by a previous requestor provides notification.

It should be clear that the software queuing lock needs only as much space per
lock as the number of processes waiting on or participating in the lock, not space
proportional to the number of processes in the program. It is the lock of choice for
machines that support a shared address space with distributed memory but without
coherent caching (Kagi, Burger, and Goodman 1997).

542 CHAPTER 7 Scalable Multiprocessors

7.9.2 Algorithms for Barriers

In both message-passing and shared address space models, global events like barri-
ers are a key concern. A question of considerable debate is whether special hardware
support is needed for global operations or whether sophisticated software algo-
rithms upon point-to-point operations are sufficient. The CM-5 represented one end
of the spectrum, with a special “control” network providing barriers, reductions,
broadcasts, and other global operations over a subtree of the machine. The CRAY
T3D provided hardware support for barriers also. Since it is easy to construct barri-
ers that spin only on local variables or use only point-to-point messages, many scal-
able machines provide no special support for barriers at all but build them in
software libraries.

In the centralized barrier used on bus-based machines, all processors used the
same lock to increment the same counter when they signaled their arrival, and all
waited on the same flag variable until they were released. On a large machine, the
allowing for all processors to access the same lock and to read and write the same
variables can lead to a lot of traffic and contention. Again, this is particularly true of
machines that are not cache coherent, where the variable quickly becomes a hot spot
as several processors spin on it without caching it.

It is possible to implement the arrival and departure in a more distributed way, in
which not all processes have to access the same variable or lock. The coordination of
arrival or release can be performed in phases or rounds with subsets of processes
coordinating with one another in each round, such that after a few rounds all pro-
cesses are synchronized. The coordination of different subsets can proceed in paral-
lel with no serialization needed across them. In a bus-based machine, distributing
the necessary coordination actions wouldn't matter much since the bus serializes all
actions that require communication anyway; however, it can be very important in
machines with distributed memory and interconnect where different subsets can
coordinate in different parts of the network. The techniques used in a shared address
space closely reflect natural message-passing approaches. Let us examine a few such
distributed-barrier algorithms.

Software Combining Trees

A simple distributed way to coordinate the arrival or release of processes is through
a tree structure (see Figure 7.41), just as was suggested for avoiding hot spots in
Chapter 3. An arrival tree is a tree that processors use to signal their arrival at a bar-
rier. It replaces the single lock and counter of the centralized barrier by a tree of
counters. The tree may be of any chosen degree or branching factor, say, k. In the
simplest case, each leaf of the tree is a process that participates in the barrier. When
a process arrives at the barrier, it signals its arrival by performing a fetch&increment
on the counter associated with its parent (or by sending a message to the parent). It
then checks the value returned by the fetch&increment to see if it was the last of its
siblings to arrive. If not, its work for the arrival is done and it simply waits for the
release. If so, it considers itself chosen to represent its siblings at the next level of the

7.9 Synchronization 543

. - Contention Little contention
A N = - _»

71 R

O

Flat Tree structured

FIGURE 7.41 Replacing a flat arrival structure for a barrier by an arrival tree (here of degree
2). A deeper tree with smaller branching utilizes the many paths through the network of a large-scale
machine to avoid serialization.

tree and so does a fetch&increment on the counter at that level. In this way, each
tree node sends only a single representative process up to the next higher level in the
tree when all the processes represented by that node’s children have arrived. For a
tree of degree k, it takes log;, p levels and hence that many steps to complete the
arrival notification of p processes. If subtrees of processes are placed in different
parts of the network and if the counter variables at the tree nodes are distributed
appropriately across memories, fetch&increment operations on nodes that do not
have an ancestor-descendent relationship need not be serialized at all.

A similar tree structure can be used for the release as well, so all processors don’t
busy-wait on the same flag. That is, the last process to arrive at the barrier sets the
release flag associated with the root of the tree, on which only k - 1 processes are
busy-waiting. Each of the k processes then sets a release flag at the next level of the
tree, on which k — 1 other processes are waiting, and so on down the tree until all
processes are released. (Similarly, messages can be passed down the tree.) The criti-
cal path length of the barrier in terms of the number of dependent or serialized oper-
ations (e.g., network transactions) is thus O(log;, p) as opposed to O(p) for the
centralized barrier or O(p) for any barrier on a centralized bus. The code for a simple
combining tree barrier with sense reversal is shown in Figure 7.42.

Although this tree barrier distributes traffic in the interconnect, it has the same
problem as the simple lock for machines that do not cache remote shared data: the
variables that processors spin on are not necessarily allocated in their local memory.
Multiple processors spin on the same variable, and which processors reach the
higher levels of the tree and spin on the variables there depends on the order in
which processors reach the barrier and perform their fetch&increment instructions,
which is impossible to predict. This leads to a lot of network traffic while spinning.

Tree Barriers with Local Spinning

There are two ways to ensure that a processor spins on a local variable. One is to pre-
determine which processor moves up from a node to its parent in the tree, based on
the process identifier and the number of processes participating in the barrier. In this

544 CHAPTER 7 Scalable Multiprocessors

struct tree_node {

int count = 0; /*counter initialized to 0%/
int local_sense; /*release flag implementing sense reversal*/
struct tree_node *parent;
}
struct tree_node treel[P]; /*each element (node) allocated in a different
memory*/
private int sense = 1;

private struct tree_node *myleaf; /*pointer to this process’s leaf in the tree*/

barrier () {
barrier_helper (myleaf) ;

sense = ! (sense); /*reverse sense for next barrier call*/
}
barrier_helper (struct tree_node *mynode) {
if (fetch&increment (mynode->count) == k-1){ /*last to reach node*/
if (mynode->parent != NULL)
barrier_helper (mynode->parent) ; /*go up to parent node*/
mynode->count = 0; /*set up for next time*/
mynode->local_sense = ! (mynode->local_sense); /*release*/
endif
while (sense != mynode->local_sense) []; /*busy-wait*/

FIGURE 7.42 A software combining barrier algorithm with sense reversal. Each time the bar-
rier is used, the sense of the flag is reversed, so the flag does not need to be reset.

case, a binary tree makes local spinning easy since the flag to spin on can be allo-
cated in the local memory of the spinning processor rather than the one that goes up
to the parent level. In fact, in this case, it is possible to perform the barrier without
any atomic operations like fetch&increment but with only simple reads and writes
as follows. For arrival, one process arriving at each node simply spins on an arrival
flag associated with that node. The other process associated with that node simply
writes the flag when it arrives. The process whose role was to spin now simply spins
on the release flag associated with that node while the other process now proceeds
up to the parent node. Such a static binary tree barrier has been called a “tourna-
ment barrier” in the literature, since one process can be thought of as dropping out
of the tournament at each step in the arrival tree. (As an exercise, think about how
you might modify this scheme to handle the case where the number of participating
processes is not a power of two and to use a nonbinary tree.)

The other way to ensure local spinning is to use p-node trees to implement a bar-
rier among p processes, where each tree node (leaf or internal) is assigned to a
unique process. The arrival and wake-up trees can be the same, or they can be main-

7.9 Synchronization 545

struct tree_node {
struct tree_node *parent;

int parent_sense = 0;
int wkup_child flags([2]; /*flags for children in wake-up tree*/
int child_readyl(4]; /*flags for children in arrival tree*/

int child exists[4];

/*nodes are numbered from 0 to P — 1 level-by-level starting
from the root*/
struct tree_node treel[P]; /*each element (node) allocated in a different memory*/
private int sense = 1, myid;
private me = treel[myid];

barrier () {
while (me.child_ready is not all TRUE) {}; /*busy-wait*/
set me.child _ready to me.child_exists; /*reinitialize for next barrier call*/
if (myid '=0) { /*set parent’s child_ready flag, and wait for release*/

tree[LwJ].child_ready[(myid-1) mod 4] = true;

4
while (me.parent_sense != sense) {};
}
me.child _pointers([0] = me.child_pointers[l] = sense;
sense = !sense;

FIGURE 7.43 A combining tree barrier that spins on local variables only. Each tree node is
assigned to a unique process and allocated in the memory that is local to the process.

tained as different trees with different branching factors. Each internal node (pro-
cess) in the tree maintains an array of arrival flags, with one entry per child,
allocated in that node’s local memory. When a process arrives at the barrier, if its tree
node is not a leaf, then it first checks its arrival flag array and waits until all its chil-
dren have signaled their arrival by setting the corresponding array entries. Then it
sets its entry in its parent’s (remote) arrival flag array and busy-waits on the release
flag associated with its tree node in the wake-up tree. When the root process arrives
and when all its arrival flag array entries are set, this means that all processes have
arrived. The root then sets the (remote) release flags of all its children in the wake-
up tree; these processes break out of their busy-wait loop and set the release flags of
their children, and so on until all processes are released. The code for this barrier is
shown in Figure 7.43, assuming an arrival tree of branching factor 4 and a wake-up
tree of branching factor 2. In general, choosing branching factors in tree-based barri-
ers is largely a trade-off between contention and critical path length counted in
network transactions. Either of these types of barriers may work well for scalable
machines without coherent caching.

546 CHAPTER 7 Scalable Multiprocessors

F-8 7-0

O

FC B-8 7-4 3-0

F-E D-C B-A

9-8 7-6 5-4 3-2 1-0

FIGURE 7.44 Upward sweep of the parallel prefix operation. Each node receives two elements
from its children, combines them and passes the result to its parent, and holds the element from the
least significant (right) child.

_ Parallel Prefix

In many parallel applications, a point of global synchronization is associated with
combining information that has been computed by many processors and distribut-
ing a result based on the combination. Parallel prefix operations are an important,
widely applicable generalization of reductions and broadcasts (Blelloch 1993).
Given some associative binary operator ®, we want to compute S;=x; ®x;_; ... ®
xgfori=0,...,P A canonical example is a running sum, but several other operators
are useful. The carry-lookahead operator from adder design is actually a special case
of a parallel prefix circuit. The surprising fact about parallel prefix operations is that
they can be performed as quickly as a reduction followed by a broadcast, with a sim-
ple pass up a binary tree and back down. Figure 7.44 shows the upward sweep, in
which each node applies the operator to the pair of values it receives from its
children and passes the result to its parent, just as with a binary reduction. (The
value that is transmitted is indicated by the range of indices next to each arc; this is
the subsequence over which the operator is applied to get that value.) In addition,
each node holds onto the value it received from its least significant child (rightmost
in the figure). Figure 7.45 shows the downward sweep. Each node waits until it
receives a value from its parent. It passes this value along unchanged to its rightmost
child. It combines this value with the value that was held over from the upward pass
and passes the result to its left child. The nodes along the right edge of the tree are

7.9 Synchronization 547

FIGURE 7.45 Downward sweep of the parallel prefix operation. When a node receives an ele-
ment from above, it passes the data down to its right child, combines it with its stored element, and
passes the result to its left child. Nodes along the rightmost branch need nothing from above.

special because they do not need to receive anything from their parent. This parallel
prefix tree can be implemented either in hardware or in software.

All-to-All Personalized Communication

All-to-all personalized communication occurs when each process has a distinct set
of data to transmit to every other process. The canonical example of this is a trans-
pose operation, say, where each process owns a set of rows of a matrix and needs to
access data in a set of columns. Another important example is remapping a data
structure between blocked and cyclic layouts. Many other permutations of this form
are widely used in practice. Quite a bit of work has been done in implementing all-
to-all personalized communication operations efficiently on specific network topol-
ogies (i.e., with no contention internal to the network). If the network is highly scal-
able, the internal communication flows within the network become secondary, but
contention at the endpoints of the network is critical, regardless of the quality of the
network. A simple, widely used scheme is to schedule the sequence of communica-
tion events so that P rounds of disjoint pairwise exchanges are performed. In round
i, process p transmits the data it has for process g = p @ i obtained as the exclusive-or
of the binary number for p and the binary representation of i. Since exclusive-or is
commutative, p = ¢ @ i, and the round is indeed an exchange.

