
RaceTrack: Efficient Detection of Data Race Conditions via
Adaptive Tracking

Yuan Yu
Microsoft Research

1065 La Avenida Ave.
Mountain View, CA 94043

yuanbyu@microsoft.com

Tom Rodeheffer
Microsoft Research

1065 La Avenida Ave.
Mountain View, CA 94043

tomr@microsoft.com

Wei Chen
Computer Science Division

University of California
Berkeley, CA 94720

wychen@cs.berkeley.edu

ABSTRACT
Bugs due to data races in multithreaded programs often ex-
hibit non-deterministic symptoms and are notoriously dif-
ficult to find. This paper describes RaceTrack, a dynamic
race detection tool that tracks the actions of a program and
reports a warning whenever a suspicious pattern of activity
has been observed. RaceTrack uses a novel hybrid detection
algorithm and employs an adaptive approach that automat-
ically directs more effort to areas that are more suspicious,
thus providing more accurate warnings for much less over-
head. A post-processing step correlates warnings and ranks
code segments based on how strongly they are implicated in
potential data races. We implemented RaceTrack inside the
virtual machine of Microsoft’s Common Language Runtime
(product version v1.1.4322) and monitored several major,
real-world applications directly out-of-the-box, without any
modification. Adaptive tracking resulted in a slowdown ra-
tio of about 3x on memory-intensive programs and typically
much less than 2x on other programs, and a memory ratio
of typically less than 1.2x. Several serious data race bugs
were revealed, some previously unknown.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging—diagnostics, moni-
tors

General Terms: Reliability, Performance.

Keywords: Race detection, virtual machine instrumenta-
tion.

1. INTRODUCTION
A data race occurs in a multithreaded program when two

threads access the same memory location without any inter-
vening synchronization operations, and at least one of the
accesses is a write. Data races almost always indicate a pro-
gramming error and such errors are notoriously difficult to
find and debug, due to the non-deterministic nature of multi-
threaded programming. Since the exact schedule of threads

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05, October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 ...$5.00.

that trigger a data race is timing sensitive, data races are
difficult to reproduce, even when the program is executed
repeatedly with the same inputs. Furthermore, since a data
race typically results in corrupted shared data structures
rather than an immediate crash, programs may continue
to execute, leading to mysterious failures later in unrelated
code. Automatically finding data races in a program thus is
widely recognized as an important research problem.

1.1 Related Work
Automated tools for race detection generally take either

a static or a dynamic approach. For static race detection,
the most common approach is to employ compile-time anal-
ysis on the program source, reporting all potential races that
could occur in any possible program execution [10, 14, 32].
The primary drawback of this approach is excessive false
positives (reporting a potential data race when none exists),
since the compile-time analysis is often unable to determine
the precise set of possible thread interleavings and thus must
make a conservative estimate. Scaling is also difficult, since
the entire program must be analyzed. Another approach
is to augment the programming language’s type system to
express common synchronization relationships, so that any
well-typed program is guaranteed to be free of data races [2,
11]. This language-level approach eliminates data races alto-
gether, but requires a substantial amount of code annotation
and also restricts the kinds of synchronization that can be
expressed.

For dynamic race detection, the program is executed and
a history of its memory accesses and synchronization oper-
ations is recorded and analyzed. Because the history is in
fact a feasible execution, dynamic detectors typically suffer a
lower false positive rate than static detectors. On the other
hand, since not all possible execution paths are considered,
the dynamic technique is not sound and thus cannot certify
a program to be free of data races. The dynamic technique
also imposes runtime overhead which must be kept within
limits while still providing reasonably accurate race detec-
tion. The post-mortem approach records events during pro-
gram execution and analyzes them later [1], or records only
critical events and then carefully replays the program [5,
27]. This approach is unsuitable for long-running applica-
tions that have extensive interactions with their environ-
ment. The other approach is to record and analyze infor-
mation as efficiently as possible on-the-fly.

Existing analysis techniques used in dynamic race detec-
tors are lockset analysis and happens-before analysis. Lockset-

based detectors verify that the program execution conforms
to a locking discipline, a programming methodology that
ensures the absence of data races. Eraser [28], for example,
enforces the locking discipline that every shared variable is
protected by some lock. Basically, each shared variable is
associated with a lockset that keeps track of all common
locks held during accesses, and a warning is issued when the
lockset becomes empty. Later lockset-based detectors [21,
25] refine Eraser’s lockset algorithm with more states and
transitions to reduce the number of false positives.

Happens-before detectors [1, 5, 6, 7, 18, 27, 30] are based
on Lamport’s happens-before relation [15], which combines
program order and synchronization events to establish a
partial temporal ordering on program statements. A data
race occurs when there is no established temporal order-
ing between two conflicting memory accesses—neither ac-
cess “happens before” the other. Compared to the lockset
method, happens-before detection is more general and can
be applied to programs using non-lock-based synchroniza-
tion primitives such as fork/join or signal/wait. Happens-
before also never reports a false positive in the absence of
a data race. However, it is less efficient to implement than
lockset analysis and is much more likely to suffer false neg-
atives (failing to detect a potential race) because of its sen-
sitivity to the particular thread schedule. Many detectors
attempt to get the advantages of both lockset and happens-
before analysis by combining the techniques in some way [13,
22, 24, 33]; in fact, Dinning and Schonberg originated the
idea of lockset-based race detection as an improvement to a
happens-before detector [8].

Dynamic race detectors also vary in the technique used
to monitor program execution. In one approach, the pro-
gram binary is modified to instrument each load and store
instruction that accesses global memory [13, 23, 28]. While
this approach is language independent and requires no pro-
gram source, it also results in high overhead in both time
and space. Using Eraser, for example, applications typically
run 10 to 30 times slower and a shadow word is required for
each word in global memory to store lockset information.
When applied to modern programming languages, binary
instrumentation also suffers from an inability to utilize type
information to generate more accurate reports and reduce
execution overhead. Furthermore, hooks are needed into
the runtime’s memory allocator so that the shadow memory
can correctly reflect the state of newly-allocated memory.
A modern runtime that uses a copying garbage collector
presents even more problems.

Race detectors for modern object-oriented programming
languages have therefore generally adopted a higher-level
approach [6, 21, 22, 24, 25]. These tools modify the source
code, the compiler, intermediate bytecodes, or the virtual
machine in order to instrument memory accesses and syn-
chronization operations. This approach enables race detec-
tors to choose the appropriate detection granularity based
on language-defined data structures, instead of using a fixed-
size detection unit such as a word. For object-oriented lan-
guages, fields are the natural choice for a detection unit, as
each field represents a distinct program variable. However,
since fully monitoring every field often introduces unaccept-
able overhead, many current tools place the detection granu-
larity at the object level, assuming that accesses to different
fields in an object will be protected by the same lock. This
technique reduces overhead significantly, often lowering the

Windows COM+ Services

Common Language Runtime

Base Class Library

Data and XML Classes

ASP.NET Windows Forms

Common Language Specification

VB C++ C# JScript …

Figure 1: The .NET framework

running time to within a factor of two of the original pro-
gram. The performance improvement, however, is achieved
at the expense of detection accuracy, as the coarser detec-
tion unit leads to many false alarms. More advanced tools
provide a mechanism for focusing the analysis. Posniansky
and Schuster provide a parameterized detection granularity:
the program is initially run using a generous detection gran-
ularity of say, 256 bytes, and if potential races are detected
the program can be re-run using a smaller granularity to get
more accuracy [24]. O’Callahan and Choi provide a two-pass
solution: the program is initially run using lockset analysis
to identify problematic fields (“simple mode”) and if any
are detected the program is re-run using a combined lockset
and happens-before analysis for just those fields (“detailed
mode”) [22]. Choi et al. apply compile-time analysis tech-
niques, such as points-to and escape analysis, to determine
which accesses can never participate in data races and thus
do not need to be monitored [4].

1.2 The RaceTrack Approach
In this paper, we present RaceTrack, a practical, on-the-

fly race detection tool for large multithreaded object-oriented
programs on the Microsoft .NET platform. Figure 1 illus-
trates the .NET framework. At the core of the framework
is the Common Language Runtime (CLR) [12], a language-
independent layer that provides a managed execution en-
vironment for applications. Applications written in vari-
ous languages are translated into the Common Intermediate
Language (IL) [9], a stack-based language with memory ac-
cess, arithmetic, and method call instructions and descrip-
tive metadata containing type and version information. As
an application executes, the IL is converted into native ma-
chine code by a just-in-time (JIT) compiler in the CLR. The
CLR also manages the tasks of object allocation, thread cre-
ation, exception handling, and garbage collection.

Like some earlier Java-based race detectors [6, 21], Race-
Track performs instrumentation at the virtual machine level.
RaceTrack uses a modified JIT compiler that emits inlined
RaceTrack calls during native code generation and a modi-
fied garbage collector that allocates space with each object
to store RaceTrack information. Applications run on top of
the RaceTrack-modified runtime, with no user modification
required. Also running on top of the CLR is a vast library
of IL code that is also monitored by the RaceTrack-modified
runtime.

To be practical for large, long-running programs, Race-
Track must limit itself to a reasonable overhead in proces-
sor and memory usage. To this end, RaceTrack employs a
novel adaptive approach that dynamically adjusts both de-
tection granularity and monitoring technique. When suspi-
cious activity is detected, RaceTrack reports a warning. A
post-processing warning analyzer correlates and ranks the
reports.

RaceTrack does not attempt to detect all concurrent ac-
cesses. An access to location x is concurrent with another
access to x if their threads hold no locks in common and
neither access happens-before the other. Computing this
on-the-fly requires remembering an access history for x that
records a thread’s lockset at the time of each access. This
is in fact the basic approach of Dinning and Schonberg [8]
and O’Callahan and Choi [22]. Actually, some accesses can
be shown to be redundant, but you still have to keep a lot
of history. For a long-running program, it becomes imprac-
tical to keep a sufficient access history for every monitored
location. So instead, RaceTrack uses happens-before analy-
sis to estimate the present number of concurrent accesses to
location x. When RaceTrack monitors an access to x that
it estimates is not concurrent with any prior access to x, it
judges that no potential race is present and, furthermore,
it resets the location’s lockset to the lockset of the access-
ing thread. Pozniansky and Schuster introduced the idea
of resetting a location’s lockset at an explicit synchroniza-
tion barrier [24]. RaceTrack improves on this by, in effect,
dynamically estimating when a synchronization barrier has
been crossed. RaceTrack’s estimation technique permits it
to monitor long-running programs without incurring exces-
sive memory overhead. Of course, due to estimation, some
races may be missed. The real test of whether the result is
useful is if RaceTrack can direct a programmer’s attention
to serious race condition bugs that were otherwise unknown.
We find in practice that this has been the case.

The adaptive approach of RaceTrack automatically con-
centrates effort to more accurately detect data races in areas
that have raised suspicion, based on the assumption that a
past data race access pattern is likely to be repeated in the
future. However, suspicious activity of low accuracy is also
reported, so that the post-process warning analyzer can in-
corporate it into its summary. Furthermore, at the per-field
level RaceTrack also reports a subsequent access by a sec-
ond or third thread, so that the warning analyzer can collate
additional information about a possible race.

Specifically, RaceTrack offers the following benefits:

Coverage. Since instrumentation occurs at runtime, Race-
Track is language independent and automatically moni-
tors any managed code that executes on top of the CLR.
This includes a vast amount of library code. Due to heavy
and pervasive use, a data race bug in a library is likely
to be quite dangerous. Equally importantly, a data race
inside library code is most likely caused by misuse of the
library, a very common class of bugs in the application
code. Using RaceTrack we have found several data race
bugs in the .NET Base Class Library [19] (see Section 4).
These bugs have been reported and corrected in a later
release.

Accuracy. RaceTrack automatically adapts to monitor mem-
ory accesses at the field level, which makes its race re-
porting fundamentally more accurate than coarse-grained

object race checkers. Furthermore, it can detect races on
individual array elements, which many existing checkers
avoid for performance reasons. RaceTrack also automat-
ically adapts to employ happens-before checking, which
permits filtering out lockset-only false positives that stem
from fork/join parallelism and asynchronous method calls.

Performance. RaceTrack imposes a relatively low over-
head due to its adaptive tracking techniques. Experimen-
tal results show that the overhead incurred by RaceTrack
is well below that incurred by other dynamic race de-
tectors. For example, on the SpecJBB benchmark, the
lockset-based Java-runtime data race detector of Nishiyama
suffers about 8x slowdown [21]; O’Callahan and Choi re-
port a 2.9x slowdown in “simple mode” which has to be
followed by a re-run in “detailed mode” that suffers a 2.2x
slowdown [22]; whereas RaceTrack suffers only about 3x
slowdown. We should also point out that RaceTrack mon-
itored the entire 30 minute run of SpecJBB and the entire
.NET library. For other benchmarks with less memory
activity, RaceTrack typically suffers a slowdown of less
than 1.3x. Regarding memory overhead, RaceTrack with
adaptive granularity typically suffers a memory ratio of
less than 1.2x. We were unable to find comparative num-
bers in the literature. Detailed performance numbers for
RaceTrack appear in Section 4.2.

Scalability. Due to its runtime instrumentation and low
overhead, RaceTrack can be applied to large, long-running,
real-world applications. Implementing RaceTrack entirely
inside the CLR, although an admittedly rather techni-
cal undertaking for a very sophisticated runtime, makes
it completely transparent to applications. Many issues,
such as interaction between managed and native code and
object relocation by the garbage collector, are addressed
cleanly in RaceTrack. Some other tools are unable to tol-
erate the actions of a copying garbage collector, and have
to disable it [4, section 3.3]. This basically rules out run-
ning their race detectors on major applications.

The rest of the paper is organized as the follows. Sec-
tion 2 describes RaceTrack’s hybrid detection algorithms.
Section 3 discusses our novel runtime instrumentation strat-
egy, including a number of optimizations that further reduce
RaceTrack’s overhead. Section 4 reports the experimental
results for the overhead and accuracy of our tools, also show-
casing a number of real application bugs detected. Section 5
concludes the paper.

2. THE DETECTION ALGORITHM
Although lockset-based detection exhibits good perfor-

mance and a relative insensitivity to execution interleaving,
one well-observed shortcoming is its failure to take into con-
sideration threading primitives such as fork/join and asyn-
chronous calls. As a result, programs using such primitives
typically exhibit many false alarms. Our new detection al-
gorithm corrects this failure while retaining lockset’s good
properties. After describing the basic algorithm, we present
the refinements necessary to make it practical for large, real
applications.

Our improvement is based on the observation that a race
on a variable can only occur if multiple threads are concur-
rently accessing the variable. So, in addition to tracking a
lockset for each monitored variable, RaceTrack also tracks a

At t:Lock(l):
Lt ← Lt ∪ {l}

At t:Unlock(l):
Lt ← Lt − {l}

At t:Fork(u):
Lu ← {}
Bu ← Merge({〈u, 1〉}, Bt)
Bt ← Inc(Bt, t)

At t:Join(u):
Bt ← Merge(Bt, Bu)

At t:Rd(x) or t:Wr(x):
Sx ← Merge(Remove(Sx, Bt), {〈t, Bt(t)〉})
if |Sx| > 1

then Cx ← Cx ∩ Lt

else Cx ← Lt

if |Sx| > 1 ∧ Cx = {} then report race

Figure 2: Pseudocode of the basic algorithm

set of concurrent accesses that we call a threadset. We use
the popular vector clock technique [17] to determine which
actions are ordered before other actions. Each thread has
a private virtual clock that ticks at certain synchronization
operations. Synchronization operations propagate informa-
tion about clock values and each thread maintains the most
recent clock value it knows about for each other thread. The
clock values known by a thread comprise that thread’s vec-
tor clock.

The threadset method works basically as follows. Each
time a thread performs a memory access on a monitored
variable, it forms a label consisting of the thread’s identi-
fier and its current private clock value and adds this label
to the variable’s threadset. The thread also uses its vector
clock to identify and remove from the threadset labels that
correspond to memory accesses that are ordered before the
current access. Hence the threadset contains labels for ac-
cesses that are estimated to be concurrent. Whenever the
threadset is a singleton, we conclude that the variable, at
least for the moment, is no longer shared between threads.
The following sections describe our method in detail.

2.1 Vector Clocks and Threadsets
Let T be the set of all threads. We use the letters t, u,

and v to denote particular threads. Each thread has a pri-
vate virtual clock whose value ranges over the set of natural
numbers {1, 2, 3, ...}. When thread t performs a memory ac-
cess, we label the access with the pair 〈t, k〉, where k is the
current value of t’s virtual clock. For brevity, we often refer
to an access by its label.

Just because one access is executed prior to another does
not necessarily mean the former is ordered before the latter.
To determine which prior accesses are ordered before its next
memory access, thread t maintains a vector clock called Bt.
Bt maps thread identifiers to clock values. Bt(u) is thread
t’s knowledge of the largest clock value for thread u such
that any prior access 〈u, Bt(u)〉 is ordered before the next
memory access to be executed by thread t. If thread t does
not know anything about thread u, then Bt(u) = 0. We

define Bt(t) as the current value of the private virtual clock
of thread t itself. This definition is consistent because any
prior access performed by thread t has a label 〈t, k〉 where
k ≤ Bt(t) and this prior access is ordered before the next
memory access to be executed by thread t.

We use the letter x to denote a particular monitored vari-
able. To keep track of which accesses to x are concurrent, x
maintains a threadset called Sx. Sx maps thread identifiers
to clock values. Sx(u) is variable x’s knowledge of the largest
clock value for thread u such that an access 〈u, Sx(u)〉 of x
has occurred and has not been ordered before any later-
executed access of x. If x does not know of any such ac-
cess by thread u, then Sx(u) = 0. RaceTrack considers the
threadset Sx to be the present estimate of the set of concur-
rent accesses to x.

Note that even though their meanings are quite differ-
ent, threadsets and vector clocks both have the same formal
type: a map from threads to clock values. To simplify the
description of the basic algorithm, we define the following
operations on this type:

|V | �
= |{t ∈ T : V (t) > 0}|

Inc(V, t)
�
= u 	→ if u = t then V (u) + 1 else V (u)

Merge(V, W)
�
= u 	→ max(V (u), W (u))

Remove(V, W)
�
= u 	→ if V (u) ≤ W (u) then 0 else V (u)

V and W denote maps from threads to clock values and t
and u denote threads. For convenience, we consider a map
V to be equivalent to the set of all pairs 〈t, V (t)〉 such that
V (t) > 0. |V | is the size of the set, Inc(V, t) is the result of
ticking thread t’s virtual clock, Merge(V, W) is the result of
merging V and W to get the most up-to-date information,
and Remove(V, W) is the result of removing elements of V
that are ordered before W .

2.2 The Basic Algorithm
For each thread t, RaceTrack maintains a lockset Lt and

a vector clock Bt. Lt is the current set of locks held by
thread t and Bt is thread t’s most recent information about
each thread’s virtual clock. For each monitored variable x,
RaceTrack maintains a lockset Cx and a threadset Sx. Cx is
the current set of locks protecting variable x and Sx is the
current set of concurrent accesses to x. When x is allocated,
Cx is initialized to the set of all possible locks and Sx is
initialized to {}.

Figure 2 gives pseudocode showing how the data struc-
tures are updated when relevant threading primitives and
memory accesses are executed. t:Lock(l) and t:Unlock(l)
denote the acquisition and release of lock l by thread t,
t:Fork(u) denotes the creation of a new thread u by thread t,
t:Join(u) denotes that thread t blocks until the termination
of thread u, and t:Rd(x) and t:Wr(x) denote the read and
write of x by thread t. For brevity, we show only the basic
threading primitives. Asynchronous calls (BeginInvoke and
EndInvoke) and condition variables (Pulse and Wait) require
essentially the same updates as Fork and Join. Creating an
initial thread is also essentially the same as Fork.

For t:Lock(l) or t:Unlock(l), we only need to update Lt

accordingly.1 As in past work that combines the lockset and
happens-before techniques, we assume that lockset analysis

1Reentrant locks in languages such as C# and Java compli-
cate the matter only slightly.

1 t:Fork(u)

2 t:Lock(a)

3 t:Wr(x)

4 t:Unlock(a)

5 u:Lock(a)

6 u:Wr(x)

7 u:Unlock(a)

8 t:Join(u)

9 t:Wr(x)

10 t:Fork(v)

11 t:Lock(a)

12 t:Wr(x)

13 t:Unlock(a)

14 v:Lock(a)

15 v:Wr(x)

16 v:Unlock(a)

17 t:Join(v)

t

u

v

1

2

3

1

1

Figure 3: An example for the basic algorithm
Fat arrows show thread execution and skinny arrows show
synchronization. Thread clock is indicated inside the fat
arrow. Instruction numbers indicate sequential order of ex-
ecution of an example interleaving.

covers the synchronization intended by Lock and Unlock
and we ignore any happens-before ordering that results from
these operations [8, 22].

For t:Fork(u), we initialize Lu to the empty set. The vir-
tual clock of u is initialized to 1 and since any operation
ordered before t’s current point of execution is also consid-
ered to be ordered before u’s current point of execution, Bt

is merged in. The virtual clock of thread t then ticks to re-
flect the fact that any subsequent operation of t after forking
u may be concurrent with subsequent operations of u. For
t:Join(u), we merge Bu into Bt, since any operation ordered
before u’s current point of execution is also considered to be
ordered before t’s current point of execution. Note that we
don’t need to tick the virtual clock of thread t in this case.

The memory accesses t:Rd(x) and t:Wr(x) form the most
interesting case. Each 〈u, k〉 ∈ Sx represents a prior access
of x, and if k ≤ Bt(u), we know that this prior access is
ordered before the current access, so it should be removed
from Sx. Then to account for the current access, we merge
{〈t, Bt(t)〉} into Sx. Cx is updated depending on the new
value of Sx. If |Sx| > 1, we know that x is being accessed
by multiple concurrent threads, so Cx is updated to the
intersection of Cx and Lt, as in the normal operation of the
lockset algorithm. However, if |Sx| = 1, we conclude that x
is being accessed only by t, so Cx is simply set to Lt. We
only issue a race condition warning when the size of the new
Sx is greater than 1 and the new Cx is empty, which is to
say that x is being accessed concurrently by multiple threads
and there is no common lock protecting those accesses.

2.3 Example
Figure 3 shows an example execution of a simple program.

Observe that variable x is initially protected under lock a,

then there is a single-threaded phase where x is not pro-
tected at all, and then in a later phase x is again protected
under lock a. This is a fairly typical behavior found in a
parallel program. Since there is no common lock, the lock-
set method would report a false alarm. RaceTrack avoids
this problem. Let us work through the updates.

Initially we would have Lt = {}, Bt = {〈t, 1〉}, Cx = the
set of all locks, and Sx = {}. In step 1, t forks thread
u, which results in Bt = {〈t, 2〉}, Lu = {}, and Bu =
{〈t, 1〉, 〈u, 1〉}. Then in steps 2–4, t acquires a, writes x,
and releases a. This updates the state for x to be Cx = {a}
and Sx = {〈t, 2〉}. Then in steps 5–7, u acquires a, writes
x, and releases a. This leaves Cx unchanged (since a is a
common lock) and results in Sx = {〈t, 2〉, 〈u, 1〉}. Although
thread u knows that its write in step 6 is ordered after any
〈t, 1〉 access, there is no ordering with respect to the 〈t, 2〉
access, so both accesses must be left in Sx. Similar reason-
ing would apply if the interleaving happened to occur in the
opposite order, so, in fact, no matter which of the accesses 3
or 6 happens to execute first, the results for Cx and Sx are
the same.

Then in step 8, t joins thread u, which results in Bt =
{〈t, 2〉, 〈u, 1〉}. As a consequence, in step 9, thread t knows
that its access is ordered after any 〈u, 1〉 access. This results
in Cx = {} and Sx = {〈t, 2〉}. Although the lockset is empty,
only one thread has a concurrent access to x, so RaceTrack
gives no warning.

Looking ahead to steps 10–17, t forks thread v and then
both threads access x under lock a. In the example, t
makes the access first in step 12, resulting in Cx = {a} and
Sx = {〈t, 3〉}. Note that Cx was set from Lt because the
resulting Sx had only one element, indicating that no other
accesses were concurrent. Then when v makes its access
in step 15, Sx grows to two elements, indicating multiple
concurrent accesses, but Cx = {a}, indicating that all con-
current accesses are protected by a common lock. Similar
reasoning would apply if the interleaving happened to occur
in the opposite order, so, in fact, no matter which of the
accesses 12 or 15 happens to execute first, the results for Cx

and Sx are the same.

2.4 Refinements
Maintaining the locksets and threadsets of variables dur-

ing program execution as described in the preceding section
can be very expensive in both time and space. In this sec-
tion, we refine the basic algorithm to make it practical for
real-world applications.

2.4.1 Adaptive Threadset
To exploit the common case in which a variable is either

never shared, or, if shared, is always protected by the same
lock, RaceTrack employs the adaptive threadset technique
of not tracking the threadset until the lockset would report
a race. Consequently, RaceTrack’s state machine, shown in
Figure 4, is more complex than that used by Eraser and some
other similar tools. Considering a variable x, the states are
described as follows.

Virgin. x has been allocated, but not yet accessed by any
thread. On the first access we enter Exclusive0.

Exclusive0. x has been accessed exclusively by one thread
only. In this state, we track the thread id. When an access
occurs from a different thread, we enter Exclusive1.

Report-
Race

Virgin

Exclusive1

Shared-
Read

Shared-
Modify1

Exclusive2
Shared-
Modify2

first access

|S
x
|=1

|S
x
|>1∧Wr(x)

C
x
≠{}Rd(x)

Wr(x)∧C
x
≠{}

Wr(x)∧C
x
={}

C
x
={}

|S
x
|=1

|S
x
|>1

|S
x
|=1

C
x
≠{}∧|S

x
|>1

C
x
={}∧|S

x
|>1

track lockset C
x

only

track both lockset C
x

and threadset S
x

track threadset S
x

only

|S
x
|>1∧Rd(x)

Exclusive0

same thread

second thread

Figure 4: RaceTrack’s state machine

Exclusive1. x is accessed exclusively by one thread. In
this state, we track a singleton threadset Sx = {〈t, k〉}
corresponding to the most recent access to x. We remain
in this state as long as each successive access maintains
|Sx| = 1, meaning that there are no concurrent accesses to
x. Note that different threads may perform accesses—if,
for example, x is passed from one thread to another—
but all accesses must be ordered according to the threads’
vector clocks. When an access occurs that would result
in |Sx| > 1, we discard the threadset and enter Shared-
Read or Shared-Modify1.

Shared-Read. x is concurrently accessed by multiple threads,
but all accesses are reads. We enter this state from Ex-
clusive1 when a read t:Rd(x) results in the detection of
multiple concurrent accesses. In this state, we track only
the lockset Cx, which is initialized to Lt.

Shared-Modify1. x is read and written concurrently by
multiple threads. We enter this state either from Exclu-
sive1, when a write t:Wr(x) reveals multiple concurrent
accesses to x, or from Shared-Read, when a write t:Wr(x)
occurs. As in Shared-Read, we track only the lockset in
this state. If we enter from Exclusive1, the lockset Cx is
initialized to Lt.

Exclusive2. x is accessed by multiple threads and the lock-
set discipline alone is not sufficient for protection. We
track a singleton threadset in this state. The threadset
Sx is initialized to contain only the thread and virtual
clock of the access causing the transition. Similar to Ex-
clusive1, we remain in this state as long as |Sx| = 1.
When |Sx| > 1 we enter Shared-Modify2.

Shared-Modify2. x is concurrently read and written by
multiple threads. Both lockset and threadset are tracked.
Whenever Sx is reduced to contain only one element 〈t, k〉,
we go back to Exclusive2.

Report-Race. A potential race is detected and reported.
This state is reached only from Shared-Modify2 when
Cx = {} and |Sx| > 1, which means that x is concurrently
accessed by multiple threads without a common lock.

The distinction between Exclusive0 and Exclusive1 en-
ables a subtle optimization described later in Section 3.3.
The use of the singleton threadset in Exclusive1 efficiently
tracks a common object-passing style. Harrow [13] described
the same improvement in the context of Eraser, except that
we implement it more efficiently by using vector clocks in-
stead of a thread segment ordering graph. The idea of de-
ferring happens-before analysis until lockset analysis proves
insufficient appears in Pozniansky and Schuster [24]. Race-
Track adds the novel idea of returning to Exclusive2 and
resetting the lockset when the set of concurrent accesses falls
to one.

2.4.2 Adaptive Granularity
Praun and Gross observed that the fields of an object

are often treated as a single unit of protection and that
detecting races at object granularity works reasonably well
in practice [25]. The main benefit is that it enjoys a sub-
stantial reduction in memory overhead compared to tracking
each field individually. However, coarse granularity can lead
to false alarms when distinct fields of the same object are
protected by different locks.

RaceTrack employs a novel adaptive granularity technique
to avoid this problem. The basic idea is to start with object-
level detection and automatically refine it to field-level de-
tection when a potential race is detected. Essentially, we
compose two copies of the state machine shown in Figure 4.
RaceTrack first runs the detection algorithm at the object
level, treating each object as a single variable and therefore
tracking only one lockset and one threadset per object. If
Report-Race is reached, RaceTrack then switches the ob-
ject to field granularity and continues monitoring the pro-
gram, now treating each individual field as a different vari-
able. The same thing happens for arrays. RaceTrack treats
an array just like an object, with each of the elements in the
array being treated like a field.

2.4.3 Dynamic Adaptation
By dynamically adapting from object granularity to field

granularity and from lockset detection to combined lock-
set/threadset detection, RaceTrack concentrates more ef-
fort to more accurately detect data races in areas that have
raised suspicion, based on the assumption that a past data
race access pattern is likely to be repeated in the future. Of
course, if the access pattern is not repeated, the race will
be missed by the more accurate methods. For this reason,
RaceTrack generates warnings even when using methods of
low accuracy. All of the warnings are collated and ranked
by a post-processing warning analyzer, which is described
later in Section 3.6.

3. IMPLEMENTATION
We have implemented RaceTrack as modifications to the

current production version (v1.1.4322) of Microsoft’s Com-
mon Language Runtime (CLR) [12]. RaceTrack can mon-
itor any managed application out-of-the-box, with no ap-
plication modifications required. We originally prototyped
RaceTrack using the Shared Source Common Language In-
frastructure (SSCLI) [20] and we plan to release this proto-
type in the near future.

3.1 Instrumenting the Virtual Machine
We implemented RaceTrack by modifying the virtual ma-

chine of the CLR runtime. The modifications, mainly in
C++ and x86 assembly code, occurred in three main areas.

• To track the lockset and threadset for each thread, we
modified the implementation of various threading prim-
itives including thread Start, Join, and IsAlive; monitor
Enter, Exit, Wait, and Pulse; reader-writer lock Acquire
and Release; and asynchronous call BeginInvoke and End-
Invoke. Reader-writer locks are handled using the tech-
nique introduced by Eraser [28]: when performing a write
access, a thread is considered to hold only those locks
it owns in write mode, since a read mode lock offers no
protection against concurrent read accesses.

• To track the lockset and threadset for each variable, we
modified the JIT compiler to emit extra code for various
IL instructions including ldfld, stfld, ldsfld, stsfld,
ldelem, and stelem (load and store operations on instance
fields, static fields, and array elements). The extra code
consists of a helper call to a RaceTrack function that man-
ages the state machine.

• To store the lockset and threadset for each variable, we
modified the memory allocator and garbage collector to
reserve extra memory space and reclaim it when the vari-
able is garbage collected. Modifications in the garbage
collector were also needed to help manage two RaceTrack
internal tables.

Once we attained a reasonable understanding of the CLR
implementation, the modifications were fairly straightfor-
ward. Perhaps the most surprising item is the thread prim-
itive IsAlive. In our early experiments with threadset, we
encountered a program that used IsAlive to see if all its
worker threads had terminated and, if so, proceeded to mod-
ify various shared variables and then fork another batch of
workers. RaceTrack was giving false alarms on this pro-
gram. After a little thought, we realized that when IsAlive
returns false, it has the same meaning as Join. Accounting
for this suppressed the false alarms. More interesting modi-
fications were needed to store RaceTrack data structures, as
discussed next.

3.2 Managing RaceTrack Data Structures
For simplicity, we describe the treatment of objects and

their instance fields. Objects are allocated by the CLR on a
garbage-collected (managed) heap. The treatment of static
fields is technically different but conceptually the same. It
is worth pointing out that our current implementation may
not be the ideal solution, but was instead designed to avoid
any major disruption to the existing runtime system.

Like Eraser, RaceTrack maintains a lockset table that con-
tains all the distinct locksets ever created and identifies a

O
ri

g
in

a
l
o

b
je

ct
la

y
o

u
t

R
ac

eT
ra

ck
ex

te
n
si

o
n

method table pointer

f’s RaceTrack state

instance field f

object RaceTrack state

field-level state
information chunk,

allocated when needed

Figure 5: RaceTrack’s object layout

lockset uniquely by its index in the table. Each lock has
a corresponding internal unmanaged (and therefore immo-
bile) runtime data structure and we use the address of this
data structure to identify the lock.2 For efficiency, lookups
in the lockset table are lock-free while inserts are serialized
by a mutex. When the lockset table fills up, we rehash into
a bigger table. This leaves the problem of how to safely dis-
card the old table, since lookups on other threads may still
be accessing it. The solution is to employ the garbage col-
lector. The CLR arranges for all other threads to remain at
a “safe” point while the garbage collector scans for garbage
and compacts the object store. During this time it is also
safe to discard the old table.

In a similar fashion, RaceTrack maintains a threadset ta-
ble and identifies a threadset uniquely by its table index.
Now, whereas the set of distinct locksets ever created tends
to be limited, this is not true of the set of distinct threadsets.
Therefore RaceTrack uses a reference counting scheme to
discard unneeded threadsets. Again, we employ the garbage
collector to sweep the table at a safe point.

As described in Section 2.4, RaceTrack starts with object-
level tracking and adapts to field-level tracking when needed.
Figure 5 shows the object layout used by RaceTrack. For
each object, RaceTrack adds an extension to store the object-
level state information. The extension is always placed at
the very end of an object in order to preserve the original
object layout in memory. This is especially important in
the presence of native methods that assume they know the
object layout, and it is difficult to achieve with source-level
instrumentation [4] because of subclassing. An alternative
would be to place the RaceTrack extension at a negative
offset in front of the original object. Although such an al-
ternative might be simpler, we rejected it because it would
interfere with the garbage collector’s rather tricky use of
that area as scratch space during compaction.

As illustrated in Figure 5, when RaceTrack refines the ob-
ject to field-level tracking, an additional chunk of (unman-
aged) memory is allocated to store the state information of
the tracked fields of the object. The address of this chunk
is stored in the object’s extension.

2Actually, in the CLR the runtime lock data structure is
allocated in a lazy manner and associated with an object
only when needed. We had to disable a CLR optimization
that disassociated the lock if it had been released for a long
time.

…0 Virgin0

…0 Exclusive0thread id

clock1 Exclusive1thread id

…2 Shared-Readlockset index

…3 Shared-Modify1lockset index

threadset index5 Shared-Modify2lockset index

clock4 Exclusive2thread id

…6
Race-Detected

thread id

…7chunk address

second wordfirst word

Figure 6: RaceTrack’s state encoding

Obviously, an object’s extension is garbage collected along
with the object. For the chunk of field-level storage, we
modified the garbage collector to free it, if it exists, at the
time the object is determined to be unreachable.

The CLR supports finalization of unreachable objects. A
special finalizer thread retrieves the object from a finalizer
queue and executes its finalizer method, which can do any-
thing with the object, including making it reachable again.
Experience shows that finalizer methods are often a source of
data races due to scheduling interactions between the final-
izer thread, the garbage collector, and user threads; yet we
know of no prior work that handles these methods properly.
Our solution is simple and effective: before an unreachable
object is finalized, RaceTrack resets the state of the object
to Exclusive0, indicating that the object is now exclusively
“owned” by the finalizer thread.

3.3 Encoding RaceTrack State Information
RaceTrack stores the object-level or field-level state infor-

mation in two 32-bit words, as illustrated in Figure 6. The
first word contains three bits that encode the state (Fig-
ure 4) and 29 bits of other information. The interpreta-
tion of the remainder of the first word and of the second
word depends on the state. Exclusive0 records the thread
id in the first word and ignores the second word. Virgin
uses the same encoding as Exclusive0 but employs a null
thread id. Exclusive1 and Exclusive2 record the thread
id in the first word and the thread’s virtual clock in the sec-
ond word. Shared-Read and Shared-Modify1 record the
lockset index in the first word and ignore the second word.3

Shared-Modify2 records the lockset index in the first word
and the threadset index in the second word. In object-level
state information, Race-Detected records the address of
the additional chunk in the first word. In field-level state
information, Race-Detected records the offending thread
id in the first word.

To avoid unnecessary synchronization, updates of the state
information are performed in a lock-free manner. Race-
Track reads both words using ordinary memory operations,
computes what the new state information would be, and
then atomically replaces the old information with the new

3As an optimization, if the lockset contains no more than
two elements, the lock identifiers could be packed directly
into the state information. This would require a mechanism
to distinguish the packed format from the general case.

information using the x86 64-bit interlocked compare-and-
exchange instruction cmpxchg8b. A concurrent update might
interfere with this process, causing the compare-and-exchange
to fail, whereupon RaceTrack tries the process again. Failure
is very infrequent unless the monitored program is patholog-
ical.

When RaceTrack reads the state words using ordinary
memory operations, it might get an inconsistent combina-
tion: one word belonging to one atomic state information
and the other belonging to another. So RaceTrack is care-
ful when computing the new state information not to get
confused because of this possibility, even though the even-
tual compare-and-exchange will fail. RaceTrack performs
a subtle optimization in the case of a transition between
states that both use only the first word. In such a case it is
correct to use the 32-bit interlocked compare-and-exchange
instruction cmpxchg to update just the first word and, fur-
thermore, if the old and new values are identical, the update
can be skipped entirely. Exclusive0 is separated from Ex-
clusive1 precisely in order to exploit this optimization, and
Shared-Read and Shared-Modify1 also benefit. This sub-
tle optimization improves performance by about 5% on some
benchmarks.

3.4 Untracked Accesses
In theory, RaceTrack could track all static fields and all

instance fields in all objects of all classes. In practice, certain
classes of objects and accesses are not tracked.

• Field accesses by unmanaged native code are not tracked.
A non-negligible number of methods in the CLI base li-
brary are implemented by unmanaged C++ and assembly
code. Races involving memory accesses in these native
methods will be missed.

• In the CLI, strings are immutable: the contents of a string
cannot be modified. Furthermore, read-only fields cannot
be modified and thread-local variables cannot be shared.
Therefore we don’t track these cases. We don’t even allo-
cate space for RaceTrack state information for untracked
fields.

• Volatile fields and interlocked operations such as compare-
and-exchange are designed to be used by lock-free code.
To avoid spurious warnings, we decided not to track any
memory access of a volatile field or interlocked operation.

3.5 Reducing Memory Usage
In implementing RaceTrack, we took care to minimize

memory consumption. While the adaptive techniques of
Section 2.4 have, to a large extent, addressed this problem,
there are still cases in which RaceTrack could potentially
cause excessive memory consumption. Below, we discuss
two such cases along with our solutions. In both cases, we
trade accuracy in favor of performance and scalability. In
our experience, the accuracy loss occurs rarely in practice
and thus these heuristics are justified.

First, it is easy to see from Section 3.2 that the memory
overhead of RaceTrack could be worse than 8n bytes for an
array of size n. This overhead looks particularly severe for
large arrays. One approach is to give up on element-level
detection when an array exceeds certain size. RaceTrack
takes a variation of this approach by tracking the first, the
middle, and the last m elements, for a given configuration

parameter m. If the size of an array is not greater than 3m,
all its elements will be tracked independently during field-
level detection. However, for arrays having more than 3m
elements, some of the elements will not be tracked and races
could be missed because of this heuristic. In the current
implementation, m = 128.

Second, as described in Section 2.2, RaceTrack maintains
a vector clock for each thread. The vector clock can poten-
tially grow very large in size. RaceTrack therefore imposes
an upper bound on the size of a thread’s vector clock. It also
records the temporal ordering of the updates to the vector
clock. So, when the size of the vector clock reaches the upper
bound, RaceTrack shrinks it in half by removing the oldest
elements in the vector clock. In the current implementation,
the upper bound is set to 8192. By discarding some ordering
information, it is possible that this heuristic may enlarge the
threadsets of variables and hence cause false positives, but
we have not noticed any problems in practice.

3.6 Improving Warning Analysis
Even once a potential race condition is reported, it is of-

ten difficult to analyze the program to determine if the race
is real and what effect it might have. RaceTrack assists this
task by issuing generous warnings and employing a post-
process warning analyzer to collate and rank them all. Fol-
lowing are the important features of this process.

Multiple stack traces. It is valuable for debugging to have
stack traces of each of the conflicting memory accesses
that cause a potential race condition to be detected. Un-
fortunately, at the time of the earlier accesses, RaceTrack
does not yet know that a warning will ensue, and the cost
of saving every stack trace on speculation would be ex-
tremely high. We therefore took a different approach that
incurs very little additional cost, based on the assumption
that a past activity pattern is likely to be repeated in the
future. When RaceTrack first detects a potential race on a
variable, it reports the stack trace of the suspicious mem-
ory access, but it continues tracking subsequent accesses
to that variable. If the variable is accessed again by a
different thread, RaceTrack reports the stack trace of this
new access. This approach may not always produce the
best collection of stack traces, but we found it to be very
useful in practice, for most of the time it does produce two
distinct stack traces of suspicious access to the variable.

Ranking. RaceTrack ranks the warnings so that develop-
ers can focus attention on the most likely ones. As ex-
plained in Section 2.4, RaceTrack produces warnings with
different levels of accuracy. We rank field-level warnings
higher than object-level warnings, and warnings detected
at Shared-Modify2 higher than the ones detected at
Shared-Modify1. In addition, we found in practice that
the warnings for which RaceTrack failed to produce multi-
ple stack traces were less likely to be real, since the suspi-
cious variables causing those warnings were not accessed
again by another different thread. This observation led
us to the heuristic of ranking them below the ones with
multiple stack traces.

Classification. Often many identical or closely-related warn-
ings are generated. For example, if the program contains
a data race on an instance field, essentially identical warn-
ings are likely to be reported for every object of that class.

To deal with this issue, the postprocessor applies the tech-
niques of fingerprint [26] and similarity analysis [3] to clas-
sify the warnings based on stack frame similarity. Such
classification also helps to identify the relevant code so
that the warnings can be directed to the responsible de-
velopers.

To minimize any performance impact on the CLR run-
time, RaceTrack saves warnings in a file as they are de-
tected. The warning analyzer then processes the file and
generates a pretty-printed summary. Correlated warnings
for the same variable are identified by a unique identifier
assigned by RaceTrack,4 and synthesized into a single warn-
ing. The final result is a list of files containing warnings
sorted by their rankings.

3.7 Annotations
Like other similar tools, RaceTrack sometimes produces

false alarms. To allow a user to suppress warnings that are
determined to be false alarms, we provided a simple annota-
tion mechanism. Since RaceTrack tracks all managed code
dynamically loaded and executed by the virtual machine,
regardless of the source of the code, we adopted an uncon-
ventional approach to annotation that does not require any
code modification. We use a separate annotation file to tell
RaceTrack what it does not need to track. Currently, the
annotation file is simply a list of fields, methods, and classes.
The example annotation file

Field System.Collections.Hashtable.count
Method System.Environment.GetStackTrace
Class System.IO.File

instructs RaceTrack not to monitor any access to the count

field of class System.Collections.Hashtable, any field ac-
cess that appears in the GetStackTrace method of class
System.Environment, and any access to any field of class
System.IO.File. So far, we have found that such simple
annotations have worked well in practice. Annotations for
additional cases such as user-defined locks could easily be
added by simple extensions to the vocabulary of the anno-
tation file.

4. EXPERIENCE AND PERFORMANCE
Our experience with RaceTrack started with running the

Common Language Runtime (CLR) basic regression test
suite, which consists of 2122 tests designed to exercise the
CLR and associated libraries. Passing the test suite helped
assure us that our RaceTrack implementation did not inter-
fere with the expected operation of the CLR. Although the
basic CLR is written in native code, a vast collection of li-
brary code is written in C# or other languages that compile
into the Common Intermediate Language (IL), for example,
VB, Jscript, and IL itself. Since RaceTrack is implemented
in the virtual machine, it monitors all of this code as it is
executed. Running the CLR regression test suite, we esti-
mated that RaceTrack monitored about half a million lines
of code. Some of the regression tests happen to exercise
library functions in a multithreading context. Our August
2004 version of RaceTrack reported about 1200 warnings for

4The memory address of a variable can not be used to
uniquely identify the variable because the garbage collector
can move the variable to different addresses in memory.

the entire suite. We spent over a week analyzing and cate-
gorizing all of these warnings by hand. We found non-bugs,
near-bugs, and some serious bugs. Section 4.1 describes our
manual categorization effort and three of the serious bugs
we found.

RaceTrack provided an interesting perspective on the li-
brary code. Some programmers clearly assumed that locks
would be expensive and so wrote parts of their code in a
lock-free style. RaceTrack is likely to report warnings for
such code. If the lock-free code happens to be correct, these
warnings are false alarms. However, it is difficult even for
experienced programmers to write correct lock-free code. By
analyzing RaceTrack warnings, we found four real bugs in
lock-free code, of which two were unknown and the other two
had only recently been found. These bugs had existed for
many years. RaceTrack served to focus special code-review
attention on a few hundred lines of problematic lock-free
code hiding within a vast expanse of innocuous code.

The manual categorization effort led to several improve-
ments in RaceTrack. First, we noticed that about 95% of
the warnings were duplicates, implicating the same source
code as a prior warning on a different object or in a differ-
ent test. Scanning these manually got tiresome very quickly.
The solution was to add a post-process warning analyzer to
organize and summarize raw warnings into a more efficient
report. Second, we found that some of the warnings were
too difficult to analyze because a single stack trace did not
provide enough information. A data race, after all, requires
two threads by definition. The solution was to report useful
subsequent warnings for the same field and arrange for the
warning analyzer to collate this extra information. Third,
we observed that some warnings were false alarms because
the accesses were serialized by fork/join-type operations.
Adding threadset analysis eliminated these false alarms, but
maintaining a vector clock for every field consumed so much
memory that we could not monitor any decently-sized pro-
gram. The solution was to employ adaptive threadset, auto-
matically resorting to threadset analysis only where lockset
analysis was insufficient. Fourth, we observed that indi-
vidually monitoring each field consumed memory that was
unnecessary in many cases, for example, if the object was
never shared. The solution was to employ adaptive granu-
larity, automatically resorting to field-level monitoring only
where object-level monitoring was insufficient.

In August 2005 we measured the performance of our im-
proved version of RaceTrack on several large, real-world pro-
grams. (We continued to test RaceTrack on the CLR regres-
sion suite, but since the suite so rarely uses multithreading
it is not interesting as a benchmark.) The worst impact we
saw was a slowdown of about 3x and a memory consump-
tion of about 1.5x when using RaceTrack relative to the
performance of the unmonitored program, which we con-
sider acceptable. Section 4.2 reports the details. RaceTrack
reported about a dozen distinct warnings in these programs
that appear to be serious bugs based on a preliminary re-
view. However, in most cases they have not been confirmed
by the owners of the programs.

4.1 CLR Regression Test Suite
Our August 2004 version of RaceTrack reported about

1200 warnings for the basic CLR regression test suite. Elim-
inating duplicates left 70 distinct warnings, of which 22 im-
plicated code in either higher-level libraries not part of the

Category
6 A. false alarm - fork/join
2 B. false alarm - user defined locking
5 C. performance counter / inconsequential
4 D. locked atomic mutate, unlocked read
4 E. double-checked locking
2 F. cache semantics
2 G. other correct lock-free code
7 H. unlocked lazy initialization
8 I. too complicated to figure out
8 J. potentially serious bug

48 total

Table 1: Manual categorization of RaceTrack warn-
ings for the CLR regression test suite (August 2004)

class UnlockedLazyInit {
Object Compute() { ... }
Object value = null;

public Object Get() {
if (value == null) value = Compute();
return value;

}
}

Figure 7: Unlocked lazy initialization

CLR or in the test drivers. After much head-scratching,
we categorized the 48 distinct CLR warnings as shown in
Table 1.

The first two categories comprise false alarms, in which
a warning was reported but there is no race. Category
A: Different threads modified a variable at different times,
using no common lock, but the accesses were serialized by
the use of fork/join-type thread operations. Seeing these
false alarms motivated us to add threadset analysis to Race-
Track, which suppresses these warnings. Category B: The
program defined its own locking protocol. One example
involved buffers that were passed from pool to pool, with
buffer accesses protected by the lock of the buffer’s current
pool. This obeys neither the lockset nor the fork/join disci-
pline. These warnings could be suppressed by annotations.

The next five categories comprise races that are real, but
benign. Category C: An inconsequential value such as a
performance counter was read without any lock to protect
against mutations. Category D: Write accesses to a vari-
able were protected by a lock, read accesses used no lock,
reads and writes were atomic, and the code was designed so
that the variable contained the total representation of the
state. Category E: The implicated code was performing
double-checked locking [29]. Category F: The implicated
code was managing a cache. Typically mutators excluded
each other using a lock while readers ran right in with no
lock. The code tended to be grossly perilous. Fortunately,
a cache is permitted to forget answers it used to know, as
long as it never gives the wrong answer. We spent two days
analyzing one well-commented example, finally concluding
that the cache would never give the wrong answer, but not
for the reasons stated in the comments, which were all false.
Category G: Two examples of correct lock-free code in the
producer/consumer style.

Category H: The implicated code was performing un-
locked lazy initialization (see Figure 7). This is similar to
double-checked locking except there is no lock. It is benign

1. class StringBuilder {
2. thread id owner = 0;
3. String buffer = "";
4.
5. String GetBuffer() {
6. String s = buffer;
7. if (owner == me) return s;
8. return Copy(s);
9. }

10. void ReplaceBuffer(String s) {
11. owner = me;
12. buffer = s;
13. }
14. public Mutate {
15. String s = GetBuffer();
16. Mutate s;
17. ReplaceBuffer(s);
18. }
19. public String ToString() {
20. String s = buffer;
21. if (owner == me || owner == 0) {
22. owner = 0;
23. return s;
24. }
25. return Copy(s);
26. }
27. }

Figure 8: StringBuilder code sketch (has bug)

provided that the rest of the program does not depend on
the specific object being returned. Of course, verifying this
requires checking the entirety of the program, which may
be impossible for library routines. We found one example
where in fact it did depend on it, so that one got categorized
as a bug. After discussions with developers, it was decided
to treat all of them as bugs.

Category I: We could not figure out what was going
on. These examples involved code that was being invoked
in strange ways, such as via RPC callback or asynchronous
notification callback, and the stack trace told us nothing.
Seeing these cases motivated us to add subsequent-thread
reporting to RaceTrack, so that more evidence could be com-
piled to figure out what was going on.

Category J: A real race that affected correctness. Some
of these bugs were more serious than others, and some had
already been found and fixed in the production system. But
several were previously unknown. Below we describe three of
the more interesting bugs in more detail. These three bugs
had existed for years in the code base and in fact are present
in the 2002 Shared Source Common Language Infrastructure
(SSCLI) 1.0 Release [20].

4.1.1 StringBuilder Bug
In the CLR, character strings are represented as objects

of the built-in String class. Motivated by the view that a
character string is a constant, String objects are defined
to be immutable. This fact can then be exploited by, for
example, security code that examines a user’s request to
open a certain file. The security code can inspect the string
file name directly without needing first to take a safe copy.

The CLR provides the StringBuilder class to make ef-
ficient the common task of building up a large string by
editing together many smaller strings. For maximum effi-
ciency, the StringBuilder records its intermediate state in
the same representation as a String, so that when it comes

1. class Attributes {
2. int flags = 0;
3. bool CalcA () { ... }
4. bool CalcB () { ... }
5.
6. // We are not protecting against a race.
7. // If there is a race while setting flags we
8. // will have to compute the result again, but
9. // we will always return the correct result.

10. public bool IsA () {
11. if ((flags & 0x01) == 0) {
12. flags |= CalcA() ? 0x03 : 0x01;
13. }
14. return (flags & 0x02) != 0;
15. }
16. public bool IsB () {
17. if ((flags & 0x10) == 0) {
18. flags |= CalcB() ? 0x30 : 0x10;
19. }
20. return (flags & 0x20) != 0;
21. }
22. }

Figure 9: Attributes code sketch (has bug)

time to produce the final result, a String object can be
delivered immediately. Such a design is perilous in the pres-
ence of multi-threading. If one thread can deliver the String
object while another is still modifying it, the appearance of
immutability will be lost. Since it was considered too ineffi-
cient to add locking to preclude such a rare case, a lock-free
design was adopted. Figure 8 gives a sketch of the code.

The basic idea of the lock-free design is to force each mu-
tation to operate on a data structure private to its thread.
The order of memory access to owner and buffer in lines
6-7, 11-12, and 20-21 is crucial. Unfortunately, there is a
bug. It takes three threads to demonstrate. Let thread 1
pause before line 22. Then let thread 2 call Mutate twice,
pausing the second time before line 16. Then let thread 3
call ToString and pause before line 21. If thread 1 now pro-
ceeds, it clears the owner, which allows thread 3 to return
the buffer that thread 2 is about to mutate. The error was
allowing owner == 0 to be acceptable in line 21. Without
this clause, the code would be correct. This very subtle bug
escaped years of code review.

Source code of this bug may be seen in file clr/src/bcl/

system/text/stringbuilder.cs of SSCLI 1.0 [20].

4.1.2 Attributes Bug
In the CLR, the protocol used to invoke a remote method

varies depending on various attributes of the method, such
as whether the method is “one way”, whether the method
is overloaded, and so on. These attributes can be computed
by examining the method’s signature. For efficiency, the
attributes are not computed until they are actually needed
and, once computed, they are saved so that they need not
be computed again. Figure 9 shows a sketch of the code.

Two flags are used for each attribute: a “value” flag to
hold the value of the attribute and a “valid” flag to indi-
cate that the value is valid. No locks are used, so races
are clearly an issue. The intriguing comment on lines 6-9 is
quoted directly from the product code. Unfortunately, the
comment is false. The problem is that all flags are stored in
the same variable, the update operation (lines 12 and 18) is
not atomic, and the valid and value flags are read separately
(lines 11, 14 and 17, 20). By appropriately interleaving two

program Boxwood SATsolver SpecJBB Crawler Vclient
lines of code 8579 10,883 31,405 7246 165,192
active threads 10 1 various 19 69

slowdown memory slowdown memory slowdown memory slowdown memory slowdown memory
(sec) ratio (MB) ratio (sec) ratio (MB) ratio (ops/s) ratio (MB) ratio (pages) ratio (MB) ratio (%cpu) ratio (MB) ratio

no RaceTrack 312 1.00 11.5 1.00 713 1.00 102 1.00 19174 1.00 373 1.00 2364 1.00 63.9 1.00 6.4 1.00 63.9 1.00
lockset 366 1.17 15.4 1.34 1974 2.77 170 1.67 6732 2.85 655 1.76 2189 1.08 84.8 1.33 12.5 1.95 74.4 1.17
+threadset 407 1.30 16.5 1.43 2123 2.98 222 2.18 6678 2.87 752 2.02 2214 1.07 108.0 1.69 12.8 2.00 75.6 1.19
+granularity 378 1.21 11.9 1.03 1822 2.56 155 1.52 6029 3.18 441 1.18 2212 1.07 65.0 1.02 12.8 2.00 74.7 1.18

Table 2: Performance impact of RaceTrack settings on real-world programs (August 2005)

threads, it is possible to return a value that is not valid.
This subtle bug escaped years of code review.

Source code of this bug may be seen in class Remoting

MethodCachedData in file clr/src/bcl/system/runtime/

remoting/remotingattributes.cs of SSCLI 1.0 [20]. The
SSCLI version omits the intriguing comment.

4.1.3 ClearCache Bug
In the CLR, many modules use caches to improve their

performance on repeated calls. There are an enormous num-
ber of such caches: for example, every field and method po-
tentially has an associated cache of reflection data. However,
when the program is under memory pressure, it would be
appropriate to clear these caches. To provide for this, the
garbage collector implements a memory pressure callback
registry. Each cache, when it is created, registers a call-
back routine with the garbage collector. When the garbage
collector suffers from memory pressure, it removes the call-
back routines from the registry and invokes them each in
turn. Caches that continue to exist have to re-register their
callback routines.

Now, for managing a set of callback routines, the CLR has
a good primitive known as a multicast delegate. A multicast
delegate value is immutable, but a callback can be “added”
to an existing value producing a new value, and such values
can be stored in a multicast delegate variable. Invoking a
multicast delegate causes each of the component callbacks
to be invoked in turn. All of these operations are guaranteed
“thread-safe.” The garbage collector used this primitive to
implement its memory pressure callback registry.

Unfortunately, although multicast delegate operations are
“thread-safe,” updating the multicast delegate variable is
not atomic. So if separate threads try to add callbacks at the
same time, one of the callbacks might get forgotten. Forget-
ting a callback means that the associated cache would never
be cleared. The effect would look like a memory leak. Since
there are an enormous number of caches, it’s not uncommon
for multiple threads to race on the registry. This bug had
recently been detected by the product group and was fixed
in the new release.

Source code of this bug may be seen in file clr/src/bcl/

system/gc.cs of SSCLI 1.0 [20]. The code actually per-
forms the multicast delegate operation inside a user-defined
event handler. Default CLR event handlers are “synchro-
nized,” but user-defined event handlers must provide their
own locking, which was overlooked.

4.2 Performance Impact on Large Programs
We measured the performance impact of RaceTrack on

several large programs of different types. For comparison,

we ran each program under each of the following four set-
tings. Setting “no RaceTrack” is the original, unmodified
CLR. Setting “lockset” implements lockset analysis. Four
bytes of RaceTrack state per monitored field or array ele-
ment are added to the end of each object or array. Setting
“+threadset” adds adaptive threadset. Eight bytes of Race-
Track state per monitored field or array element are added
to the end of each object or array. Setting “+granularity”
adds adaptive granularity. Eight bytes of RaceTrack state
are added onto the end of each object or array (but only if
it contains a monitored field or array element). If the object
is refined to field-level granularity, an additional eight bytes
per monitored field or array element will be allocated.

The monitored programs are as follows. Boxwood is a
simulation of a distributed BTree implementation [16] per-
forming 100,000 random insertions and deletions. It uses
multiple threads, fine-grained locking, and lots of inter-thread
notification. SATsolver is an analysis of an unsatisfiable
statement containing 20,000 variables in 180,000 clauses, us-
ing a C# version of a boolean satisfiability solver. It is
single-threaded. Most of its execution consists of accessing
tiny arrays of about six elements. SpecJBB is a C# version
of a standard Java business benchmark [31] that runs twelve
successive two-minute simulations and reports a benchmark
throughput in operations per second. Crawler is a proto-
type multithreaded web crawler that runs for five minutes
and reports the number of pages downloaded from the live
Internet. Vclient is a video client displaying thirty min-
utes of MTV streaming from a server on the local network.
It has real-time deadlines and performs extensive buffering
and scheduling using many threads.

For each test program we measured slowdown and peak
memory usage under each setting. For Boxwood and SAT-
solver slowdown was based on elapsed runtime, for SpecJBB
on its reported throughput, for Crawler on the number of
pages downloaded, and for Vclient on average CPU load.
Tests were repeated several times to give an average mea-
surement. For convenience, we also show each measurement
as a ratio relative to the no-RaceTrack case. Table 2 gives
the results. The programs were not modified in any way.
Note that the number of lines of code does not count any of
the code in the .NET library, which is quite vast and all of
which is monitored by RaceTrack.

With respect to slowdown, generally the test programs
suffered when going from no RaceTrack to lockset, then suf-
fered further with the addition of threadset, and then stayed
about the same with the addition of adaptive granularity.
The additional suffering with the addition of threadset can
be explained by the additional work required to manage the

Boxwood SATsolver SpecJBB Crawler

thread clock ticks 245,807 0 239 12

objects allocated (K) 30,383 3,054 23,093 3,635
objects refined 1,161 0 3,399 120

monitored accesses (M) 1,692 28,183 6,615 997
... at object-level (M) 1,557 28,183 5,997 994
... ... in Exclusive0 (M) 984 28,183 4,550 917

Table 3: Behavior under adaptive granularity

threadsets. Adaptive granularity does not take significant
additional work.

With respect to memory usage, generally the test pro-
grams suffered significantly when going from no RaceTrack
to lockset-only RaceTrack, suffered significantly again with
the addition of threadset, and then dramatically improved
with the addition of adaptive granularity. In many cases
adaptive granularity reduced the memory overhead to only
a few percent. The memory overhead for SATsolver is ex-
plained by the fact that most of its objects are tiny arrays
containing about six elements. Since SATsolver’s execution
is completely dominated by accesses to its innumerable tiny
arrays, its slowdown ratios reflect the impact of inserting a
RaceTrack helper call for each access.

It was difficult to get Vclient to behave consistently from
run to run. Presumably depending on the characteristics of
the video stream, Vclient would alter its CPU load from 1%
to 80% over ten-second intervals. Presumably depending on
its estimate of buffering requirements, Vclient would alter its
memory usage by several megabytes. The main point of this
test was to show that RaceTrack could handle a seriously
large and long-running program. The developers were quite
interested in the race reports.

We added performance counters to investigate the inter-
nal actions of several of the test programs under adaptive
granularity, with the results shown in Table 3. (Including
these counters degrades performance significantly, so they
are not present in the data in Table 2.) Boxwood’s use
of notification is clearly reflected in the number of thread
clock ticks that it performs. The enormous ratio between
the number of objects allocated and the number of objects
refined to field-level granularity shows why adaptive granu-
larity does so well at saving memory. Looking at dynamic
behavior, the vast majority of monitored accesses occur at
object-level granularity and, of those, the majority are to an
object in Exclusive0 state, indicating that the object has
never been shared. This shows the benefit of having a state
optimized for this case.

Summarizing, RaceTrack’s performance impact was a slow-
down of about 3x on memory-intensive programs and typ-
ically much less than 2x on others, and a memory usage
ratio typically less than 1.2x. Adaptive granularity proved
to be highly effective at reducing memory overhead and also
tended to improve the slowdown somewhat.

5. CONCLUSIONS
In this paper, we have described RaceTrack, a dynamic

data race detector for programs executing in the Common
Language Runtime environment. RaceTrack monitors the
entire execution of a program transparently by modifying
the virtual machine to instrument memory accesses and syn-

chronization operations. To improve accuracy, RaceTrack
uses a hybrid detection algorithm that supports both lock-
based synchronization and fork-join parallelism, and mon-
itors memory accesses at the granularity of individual ob-
ject fields and array elements. To reduce overhead, Race-
Track uses a novel adaptive approach that dynamically ad-
justs both the detection granularity as well as the amount of
access history maintained for each detection unit. A post-
mortem analyzer provides much-needed help for program-
mers to better understand the causes of the race warnings.

We have implemented RaceTrack in the current produc-
tion version of the CLR. Experimental results suggest that
RaceTrack reports accurate warnings for a wide variety of
applications; taking the CLR regression test suite for exam-
ple, only a small number of the warnings were false positives,
and RaceTrack identified several serious bugs that have es-
caped many rounds of serious code review. Additionally, we
have shown that dynamic race detection can be done in a
non-intrusive manner that imposes only a small overhead,
despite the fact that RaceTrack performs detection at a fine
granularity and monitors both user and library code. We
have also demonstrated the scalability of RaceTrack by run-
ning it on several real-world applications. We believe that
RaceTrack is ready for prime time.

Of course, implementing RaceTrack inside the CLR is not
without its cost. Modern virtual machines are very complex
and sensitive to the kind of modifications made by Race-
Track. Considerable effort was invested to gain a good un-
derstanding of the CLR implementation. We initially proto-
typed RaceTrack using the SSCLI, and experience learned
from the prototype was highly valuable when we later ported
RaceTrack to the production CLR. One alternative we con-
sidered was to use a profiling interface supported by the
CLR. But we dismissed it because (a) we could not see how
to make certain RaceTrack modifications such as those in
the garbage collector and (b) many RaceTrack modifications
could be best and naturally implemented by direct modifi-
cations to the CLR. Overall, we believe that our implemen-
tation strategy was the right choice.

There is plenty of future work to do. Some optimizations
remain that we believe could further improve RaceTrack’s
performance. A useful extension would be to incorporate
deadlock detection into the RaceTrack framework by mon-
itoring the pattern of lock acquisitions. We believe that
static analysis and annotation would play a key role in rea-
soning about for complex code patterns such as lock-free
data structures. We plan to investigate such techniques and
their combinations with RaceTrack to further reduce false
positives.

Static race detection tools [10, 14, 32] have shown great
promise. It is thus interesting to look into the possibility
of combining them with dynamic tools like RaceTrack. A
simple combination would be to use static tools to identify
the set of objects and field accesses for RaceTrack to moni-
tor. Warnings confirmed by RaceTrack would be considered
to be more likely. Furthermore, compile-time analysis could
be used to identify fields and accesses unnecessary for Race-
Track to track. For example, RaceTrack can safely ignore a
field that can be determined statically to be properly pro-
tected by locks.

6. ACKNOWLEDGMENTS
We would like to thank Mike Burrows for valuable dis-

cussions. Roy Levin and Leslie Lamport supplied valu-
able comments on an earlier draft of this paper, and we
would also like to thank the anonymous reviewers for their
comments. Thanks to Dennis Fetterly for running his web
crawler many times under different versions of RaceTrack.
And special thanks to Jan Kotas, Michal Cierniak, Christo-
pher Brumme, Anthony Moore, and the rest of the CLR
team for taking the time to help us understand the Com-
mon Language Runtime and giving advice on how to make
our changes.

7. REFERENCES
[1] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer.

Detecting data races on weak memory systems. In Proceedings
of the 18th Annual International Symposium on Computer
Architecture (ISCA), pages 234–243, May 1991.

[2] C. Boyapati and M. Rinard. A parameterized type system for
race-free Java programs. In Proceedings of the 16th ACM
SIGPLAN conference on Object oriented programming,
systems, languages, and applications (OOPSLA), Oct. 2001.

[3] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic
clustering of the web. In Proceedings of the 6th International
World Wide Web Conference, 1997.

[4] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise data race detection for
object oriented programs. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 285–297, 2002.

[5] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for
debugging parallel programs with flowback analysis. ACM
Transactions on Programming Languages and Systems,
13(4):491–530, October 1991.

[6] M. Christiaens and K. De Bosschere. TRaDe, a topological
approach to on-the-fly race detection in Java programs. In
Proceedings of the Java Virtual Machine Research and
Technology Symposium (JVM), Apr. 2001.

[7] A. Dinning and E. Schonberg. An empirical comparison of
monitoring algorithms for access anomaly detection. In
Proceedings of the 2nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP),
pages 1–10, 1990.

[8] A. Dinning and E. Schonberg. Detecting access anomalies in
programs with critical sections. In PADD ’91: Proceedings of
the 1991 ACM/ONR workshop on Parallel and distributed
debugging, pages 85–96, New York, NY, USA, 1991. ACM
Press.

[9] Ecma International. Standard ECMA-335: Common language
infrastructure (CLI), 2002.
http://www.ecma-international.org/publications/standards/
Ecma-335.htm.

[10] D. Engler and K. Ashcraft. RacerX: Effective, static detection
of race conditions and deadlocks. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP),
pages 237–252, October 2003.

[11] C. Flanagan and S. N. Freund. Type-based race detection for
Java. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 219–232, 2000.

[12] J. Gough and K. Gough. Compiling for the .NET Common
Language Runtime. Prentice Hall PTR, 2001.

[13] J. J. Harrow. Runtime checking of multithreaded applications
with visual threads. In Proceedings of the 7th International
SPIN Workshop on SPIN Model Checking and Software
Verification, pages 331–342, London, UK, 2000.
Springer-Verlag.

[14] T. Henzinger, R. Jhala, and R. Majumder. Race checking by
context inference. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), June 2004.

[15] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[16] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou. Boxwood: Abstractions as the foundation for storage
infrastructure. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI),
pages 105–120, Dec. 2004.

[17] F. Mattern. Virtual time and global states of distributed
systems. In C. M. et al., editor, Proc. Workshop on Parallel
and Distributed Algorithms, pages 215–226, North-Holland /
Elsevier, 1989.

[18] J. Mellor-Crummey. On-the-fly detection of data races for
programs with nested fork-join parallelism. In Proceedings of
Supercomputing, November 1991.

[19] Microsoft Corporation. Basic class library communities.
http://msdn.microsoft.com/netframework/programming/
classlibraries/.

[20] Microsoft Corporation. Shared source common language
infrastructure 1.0 release, Nov. 2002.
http://msdn.microsoft.com/net/sscli.

[21] H. Nishiyama. Detecting data races using dynamic escape
analysis based on read barrier. In Proceedings of the 3rd
Virtual Machine Research and Technology Symposium (VM),
May 2004.

[22] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race
detection. In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP), pages 167–178, 2003.

[23] D. Perković and P. J. Keleher. Online data-race detection via
coherency guarantees. In The Second Symposium on
Operating Systems Design and Implementation (OSDI),
pages 47–57, Oct. 1996.

[24] E. Pozniansky and A. Schuster. Efficient on-the-fly race
detection in multithreaded C++ programs. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), 2003.

[25] C. Praun and T. Gross. Object race detection. In Proceedings
of the 16th ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications
(OOPSLA), pages 70–82, 2001.

[26] M. O. Rabin. Fingerprinting by random polynomials. Report
TR–15–81, Department of Computer Science, Harvard
University, 1981.

[27] M. Ronsse and K. De Bosschere. RecPlay: A fully integrated
practical record/replay system. ACM Transactions on
Computer Systems, 17(2):133–152, May 1999.

[28] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multi-threaded programs. ACM Transactions on Computer
Systems, 15(4):391–411, 1997.

[29] D. C. Schmidt and T. Harrison. Double-checked locking: An
optimization pattern for efficiently initializing and accessing
thread-safe objects. In M. Buschmann and D. Riehle, editors,
Pattern Languages of Program Design 3. Addison-Wesley,
Reading, MA, 1997.

[30] E. Schonberg. On-the-fly detection of access anomalies. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 285–297, 1989.

[31] Standard Performance Evaluation Corporation. SPEC
JBB2000. http://www.spec.org/jbb2000/.

[32] N. Sterling. Warlock: A static data race analysis tool. In
Proceedings of USENIX Winter Technical Conference,
January 1993.

[33] Valgrind project. Helgrind: a data-race detector, 2005.
http://valgrind.org/docs/manual/hg-manual.html.

