
Improved Error Reporting for Software
that Uses Black-Box Components

Jungwoo Ha Christopher J. Rossbach Jason V. Davis Indrajit Roy
Hany E. Ramadan Donald E. Porter David L. Chen Emmett Witchel

Department of Computer Sciences
The University of Texas at Austin

{habals,rossbach,jdavis,indrajit,ramadan,porterde,dlcc,witchel}@cs.utexas.edu

Abstract
An error occurs when software cannot complete a requested action
as a result of some problem with its input, configuration, or environ-
ment. A high-quality error report allows a user to understand and
correct the problem. Unfortunately, the quality of error reports has
been decreasing as software becomes more complex and layered.
End-users take the cryptic error messages given to them by pro-
grams and struggle to fix their problems using search enginesand
support websites. Developers cannot improve their error messages
when they receive an ambiguous or otherwise insufficient error in-
dicator from a black-box software component.

We introduce Clarify, a system that improves error reporting by
classifying application behavior. Clarify uses minimallyinvasive
monitoring to generate abehavior profile, which is a summary
of the program’s execution history. A machine learning classifier
uses the behavior profile to classify the application’s behavior,
thereby enabling a more precise error report than the outputof the
application itself.

We evaluate a prototype Clarify system on ambiguous error
messages generated by large, modern applications likegcc , La-
TeX, and the Linux kernel. For a performance cost of less than1%
on user applications and 4.7% on the Linux kernel, the prototype
correctly disambiguates at least 85% of application behaviors that
result in ambiguous error reports. This accuracy does not degrade
significantly with more behaviors: a Clarify classifier for 81 La-
TeX error messages is at most 2.5% less accurate than a classifier
for 27 LaTeX error messages. Finally, we show that without any hu-
man effort to build a classifier, Clarify can provide nearest-neighbor
software support, where users who experience a problem are told
about 5 other users who might have had the same problem. On av-
erage 2.3 of the 5 users that Clarify identifies have experienced the
same problem.

Categories and Subject Descriptors D.2.7 [Distribution, Mainte-
nance, and Enhancement]: Enhancement

General Terms Documentation, Management, Reliability

Keywords Software support, Error report, Profiling, Classifica-
tion, Machine learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM, (2007). This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version will appear in the ACM SIGPLAN 2007 Conference on Programming Lan-
guage Design and Implementation (PLDI’07). June 11–13, 2007, San Diego, Califor-
nia, USA.

1. Introduction
Bad error reporting is more than an inconvenience for most users. A
large part of modern software support cost comes from time wasted
with bad error messages, which we define as any message that does
not provide sufficient information for a user to fix the problem in
a timely fashion. One recent study concluded that up to 25 percent
of a system administrator’s time may be spent following blind al-
leys suggested by poorly constructed and unclear messages [6]. The
time and expertise required to administer modern computingsys-
tems is causing the cost of administrating, configuring and updating
a machine to surpass the cost of the hardware [22]. Improvingerror
reporting will keep down computer ownership costs and improve
end-user satisfaction.

An error or error behavioris any program behavior that is not a
successful completion of a task specified by a user. Errors include
bugs, which are program behaviors that do not match a program’s
specification. It is also an error when a program fails a consistency
check on its inputs—possibly because the user entered bad input,
or mis-configured the system. Errors cause programs to produce
error reports, which are usually text messages or dialog boxes that
inform the user that the requested action will not complete.Crashes
and hangs cause the program to output the null error message.
The user must interpret an error report to figure out how to get
the program to complete her request, often resorting to search
engines and support websites (likesupport.microsoft.com)
for more information.

Consider the following model of error reporting. A given appli-
cation has a setE of errors, and a setR of error reports. Unfor-
tunately, one elementr ∈ R can correspond to multiple elements
e ∈ E because an error report is often ambiguous across multiple
causes. For example, the Linux operating system uses the return
codeEEXIST to signal diverse error conditions, such as an attempt
to create a file whose name already exists in a directory, or anat-
tempt to put a rule in a routing table that conflicts with the routing
table’s current state. DefineS as a set of vectors of runtime statis-
tics about an application. Then the tuple(r, s)|r ∈ R, s ∈ S could
uniquely determine the propere ∈ E, even thoughr alone fails. In
fact,r might not be needed at all,s alone might suffice.

We introduce Clarify, a system to improve error reporting. Clar-
ify consists of two parts: a runtime to monitor a black-box software
component, and a classifier to interpret the output of the runtime.
Clarify monitors the program using minimally invasive techniques
like reading the program’s memory or counting function calls. The
Clarify runtime outputs abehavior profile(the s ∈ S). Clarify’s
users collect the behavior profiles generated when the program ex-
periences a particular error, and train a machine learning classifier
that recognizes the application’s error behaviors. These users also

(A) machine-learning model construction

(B) behavior classification

better error report

machine learning classifier

machine learning algorithm
+

human labeled profilesbehavior profiles

behavior profiles

Black
box

component

Clarify runtime

deployed

training

Clarify monitors application

Figure 1. Clarify consists of a runtime monitor and a machine-
learning classifier. The rectangles represent processes consuming
and producing data. The Clarify runtime monitors a black-box
component to generate a behavior profile that summarizes theex-
ecution history of the component. Section (A) shows a machine
learning classifier, trained offline from behavior profiles.Section
(B) shows the trained classifier classifying behavior profiles to pro-
duce improved error reports.

write an improved error report that describes the error behavior and
how to fix or work around it (thee ∈ E). Classifier training is
done by a small minority of technically-savvy Clarify userssuch
as support engineers who reproduce user problems in-house.End-
users get the improved error reports by classifying their behavior
profile. Clarify reduces the problem of improving error reports to
the problem of classifying error behaviors.

Figure 1 shows the major components of Clarify: the runtime
and the machine-learning classifier. Each time the black-box com-
ponent executes, the Clarify runtime generates a behavior profile.
The behavior profile includes information about the controlflow
or data values of the program execution. Simple examples of abe-
havior profile would include counts of each function execution, or
counts of how often each function returned zero.

Training the machine learning classifier happens in section(A)
of Figure 1. A machine learning algorithm takes labeled behav-
ior profiles as input and produces a classifier. The classifiertakes
a behavior profile as input and outputs a label. A label could be
a non-ambiguous error code, or a lengthy description of the prob-
lem and how to resolve it. The classifier improves error reports be-
cause users can train the classifier to recognize very specific errors
that have a generic error report. In settings where labeled data is
not available, Clarify employs a nearest-neighbor software support
method. Here, users are paired with others who have experienced
similar errors.

Non-technical end-users get improved error reports from Clar-
ify in section (B) of Figure 1. Clarify classifies an end-user’s behav-
ior profile, giving them more precise information about their error
and how to resolve it. The machine learning classifier usesfeatures
from the behavior profile to determine the error classification. A
feature is the value of a particular statistic, like the number of times
the functiondecode audio frame was called in an execution
of an mp3 player application. A value of zero can indicate an error
where no audio frames were ever played.

The contributions of this paper are:

• A system that combines runtime monitoring and machine learn-
ing in a novel way to improve error reports of black-box soft-
ware components.

• A new profiling technique calledcall-tree profiling, that rep-
resents software behaviors more accurately, on average, than
existing profiling techniques such as function profiling, orpath
profiling.

• Evaluation of a Clarify prototype on large, mature programs
that currently produce unclear error messages and confusing er-
ror behavior, such as thegcc compiler, and the Linux operating
system. Our evaluation includes an in-lab deployment of Clar-
ify.

• Introduction of nearest-neighbor software support, whereusers
are paired with other users who have experienced the same
problem.

The next section provides an example use of Clarify that moti-
vates the design presented in Sections 3–5. Section 6 describes our
benchmarks and the ambiguous errors they report and Section7
contains the evaluation of the Clarify prototype. Section 8reviews
related work and Section 9 concludes.

2. Improving error reports with Clarify: an
example

This section provides an example to elucidate the motivation for
Clarify and the benefit to its users. The example also provides mo-
tivation for the sections that discuss Clarify’s design (Sections 3–5).

2.1 Clarify scenario

mpg321 is a popular command-line mp3 player written by Joe
Drew that is included in many Linux distributions. Softwaresup-
port options formpg321 are limited. There is a support forum on
SourceForge, and a mailing list for notification of new releases. Ad-
ditionally, users are invited to email Joe Drew directly. The support
forum has many requests for help with zero replies. Recent requests
include some with titles, “Problem playing mp3’s” and “no sound.”
mpg321 tends to fail without printing diagnostic messages.

Imagine two users, SmartyP and Grandpa, who will use Clarify
to improve the error reports ofmpg321. We will assume that
SmartyP posted the message about problems playing mp3s and
that Grandpa posted the no sound problem (Note, user names have
been changed, but posting subject lines have not). SmartyP has
figured out his problem, and wants to donate his solution to the
mpg321 support community using Clarify. SmartyP found that his
mp3 audio data was corrupt, which does indeed causempg321 to
run without producing audible output. Such a problem could occur
if SmartyP were storing his files on a flash drive that was failing.
Clarify enables Grandpa, a non-technical user, to benefit from the
diagnosis of a technical user—SmartyP.

Step 1: The Clarify runtime. We assume that SmartyP and
Grandpa have Clarify-enabled versions ofmpg321, i.e., the bi-
naries are already linked with the Clarify runtime. Modifying an
application to make it produce a behavior profile does not require
source code, so it is reasonable to assume that Clarify-enabled bi-
naries can be distributed along standard software distribution chan-
nels.

Step 2: Collect behavior profiles.With the Clarify runtime,
SmartyP runsmpg321 on a few corrupt mp3 files. The interface is
simple: when the software fails it queries the user about what went
wrong. SmartyP can enter, “mpg321 produces no sound output due
to corrupted audio frame data in the source mp3 files. Check your
mp3 files because their contents are probably corrupt.” The Clarify-
enabled binary then uploads the problem description and behavior
profiles generated by the executions that fail to the SourceForge
support site.

Step 3: Train a classifier.A moderator for the SourceForge
support site would read SmartyP’s error description and group
SmartyP’s behavior profiles with the profiles of other users who
experienced the same problem. Having a human in the loop ensures
that the language in the error report is clear and understandable and

guards against malicious or inept users. If less central authority is
desired, a peer reputation system can replace a human moderator.

The support site software (or moderator) will build a new classi-
fier from the behavior profiles submitted by users. Users onlyneed
upload their profiles, they do not build classifiers. There are many
policies for managing the classifier build such as doing it for every
new error report, or building it once a day.

Step 4: Use the classifier.Instead of posting “no sound” to
the SourceForge support forum, Grandpa runs his Clarify-enabled
binary. When Grandpa fails to hear any sound frommpg321,
he hits a special help key which uploads his behavior profile to
the SourceForge support website. The site classifies Grandpa’s
behavior profile and provides him with SmartyP’s detailed error
description, telling him that his mp3 file has corrupt data.

2.2 Discussion

By classifying program behavior, Clarify enables a user commu-
nity to improve software support. It also enables software vendors
to improve software support. Microsoft has built distributed label-
ing of problem reports into Windows Vista. In the documentation
for the new “Problem reports and solutions” control panel item,
Microsoft says it can ask end-users to provide additional details
about their problem to create a solution that can be providedto
other users [18].

The Clarify scenario presented has most computation occurring
on the server, but classification can happen on a client, if the client
has the latest classifier definition from the server. Clientsmight
periodically connect to the server to download classifier updates,
like modern virus checkers update virus definition files. Once the
information is cached locally, a client can diagnose errorswithout
connecting to the network.

SmartyP treatsmpg321 like a black box. He does not change
the error reports generated by the source code. Maybe such changes
would be accepted by Joe Drew in a timely fashion, but maybe not.
Programs developed by more people or commercial organizations
are difficult or impossible for an end-user to change.

The example motivates the following questions, which we ad-
dress in succeeding sections.

Feature collection(Section 3). What information does the Clar-
ify runtime collect? This section describes alternatives for the con-
tents of behavior profiles.

Deployment and security(Section 4). Can Grandpa run a min-
imally instrumented executable that is fast enough for daily use, but
produces behavior profiles of sufficient detail to disambiguate cur-
rently known errors? Does SmartyP’s contribution to the support
site mean that Grandpa can figure out what kind of mp3s SmartyP
listens to?

Minimizing human effort (Section 5). Clarify can give Smar-
tyP’s email address to Grandpa, even before SmartyP contributed
his labeled examples (or even figured out what his problem is), be-
cause it can detect similarity between user executions evenwithout
a trained machine learning classifier. SmartyP only uploadsa few
behavior profiles, because he assumes that other will also upload
profiles. A classifier trained on diverse examples usually general-
izes better than one trained on homogeneous examples. Section 7.4
measures how many labeled profiles are necessary to train an ac-
curate classifier (in our experiments,mpg321 requires 38 profiles
per error type).

3. Behavior profiles
The Clarify runtime should collect the most expressive runtime fea-
tures at the lowest cost. Expressive features are those thata machine
learning algorithm can use to discriminate different errorbehaviors
robustly. Intuitively, expressive features capture details of control
flow or important data values that are caused by a particular er-

Behavior
Profile Key Value

FP <function addr> # of times called
CSP <call-site addr> # of times invoked
PP <path in a func> # of times occurred

CTP <bitvector of caller,
bitvector of callee>

of times executed

CSRV <call-site addr,
predicated return value>

of times executed

SS <predicate> # of counts

Table 1. Summary of the type of feature that is collected by the
Clarify runtime.

ror behavior. For instance, an incorrectly formatted URL passed to
a web browser can be correlated with the execution of functions
that attempt every possible interpretation of the input URLbefore
declaring the error.

Programs often have error-reporting routines, so one might
think that the execution of such routines is a surefire indication
of an error behavior. However, highly mature and factored pro-
grams, likegcc , reuse error-reporting code for other purposes,
such as producing warnings during correct compilation. In every
non-trivial program we have examined, simple correlationsbe-
tween an error condition and the execution of a given function or
the presence of a given return code do not hold.

Clarify collects feature counts from black-box componentsus-
ing code instrumentation that does not require source code.Re-
cent binary-to-binary translators like Traceback [3] (static) and
Dynamo(RIO) [4, 11] (dynamic), and fine-grained instrumentation
systems like the OS-level instrumentation tool KernInst [37], Sun’s
DTrace [13], or Linux’s kprobes [24] (all dynamic) provide the op-
portunity to insert a small amount of instrumentation code to user-
level applications or the operating system with very low execution-
time cost.

Clarify must limit the number of features it collects. Errorbe-
havior is usually correlated with a small number of features, so
collecting large numbers of features requires the machine learning
algorithm winnow the large set of features down to the relevant
few. Having more than about 70,000 features pushes the limits of
many machine learning algorithms often causing address space ex-
haustion and unreasonable runtimes. This section discusses Clar-
ify’s strategy for collecting information about control flow and data
values.

3.1 Control flow

Clarify counts features that are related to control flow because
control flow is a good indicator of program behavior. In general,
the more information Clarify collects about control flow, the more
accurate its model of program behavior, but this accuracy comes at
the price of greater CPU and memory overhead.

One form of behavior profiling counts the execution of function
call sites. Another counts intra-procedural paths using path profil-
ing [5]. Paths encode more information about control flow, but they
are more expensive to collect than function counts. Clarifyalso in-
troduces a new profiling method calledcall-tree profilingthat sum-
marizes the calling behavior of a function and its caller. The call-
ing behavior contains some of the intraprocedural control flow that
program paths represent, but it is less computationally intensive to
gather.

Clarify uses counts because counts preserve rare events. Often
a program will make a unique sequence of function calls before
outputting a cryptic error report or crashing. Clarify usesthose
unique calls as the signature of the behavior. Some systems use

Figure 2. An example of call-tree profiling. The left side of the
diagram is the rightmost subtree of the dynamic call tree with
arrows pointing in the direction of function calls. The right side
is the CTP feature that is collected when function C returns.The
CTP feature is combination of call sequences of function C and its
caller A.

event probabilities [8], which penalize the importance of rare code
paths, especially for programs that run for long periods of time.

We evaluate a number of approaches to behavior profiles that
have different tradeoffs for performance overhead and level of
execution detail.

3.1.1 Function and call-site profiling

The first method usesfunction profiling (FP) (sometimes called
function call profiling [31]). Each function has a counter that is
incremented when the function is executed. The order in which the
functions are called is not retained. Function profiling is efficient
and tends to be accurate when each behavior has a set of unique
functions associated with it.

The second method iscall-site profiling(CSP). This is similar
to FP but the counter is associated with each call site, rather than
with the call target. For direct calls, CSP differentiates among call
sites, while FP does not.

3.1.2 Path profiling

The third control-flow based behavior profiling method ispath
profiling (PP) as described by Ball and Larus [5]. Each program
path within a procedure (unique sequence of basic blocks) has
a counter that is incremented when the path is executed. Path
profiling distinguishes amongst program behaviors that result in
different control flow within a function (intra-proceduralcontrol
flow), something that function profiling cannot do.

3.1.3 Call-tree profiling

The fourth control-flow based profiling technique iscall-tree pro-
filing (CTP). Since each function in a program is one processing
step, the dynamic call tree is a good representation of the program
behavior. However, the size of the whole dynamic call tree isenor-
mous, it is impractical to use it for the classification directly. CTP
counts the number of times a particular calling sequence occurs in
the current function and its caller. It counts the sequence at every
function return or loop backedge. CTP is an approximation tothe
subtree of depth 2 in the call tree.

Figure 2 shows an example of a dynamic call tree and the CTP
pattern that is counted. Each arrow indicates the call direction and
the left sibling is called before the right sibling. The treeshown is
where A calls B (B may call other functions but that behavior is
ignored by CTP) and then calls C, and C calls D and then E. When
function C returns the call pattern for C is (C (D E)), and the call
pattern for C’s caller A is (A (B C)). Therefore, CTP increments
by one a counter for the entire pattern of C and its caller, “(C(D
E)),(A (B C)).”

To implement CTP efficiently, each function gets a CTP bitvec-
tor, where each corresponds to a call site in the function. Toreduce
the number of bits used, a bit is assigned only once per basic block
because calls in a basic block happens in the same order. Somebits

are shared for basic blocks that cannot be called together ina sin-
gle path. When a function returns, CTP increments a counter for
the concatenation of the function’s and its caller’s bitvector. CTP
also increments the counter on loop backedges, clearing thecurrent
function’s bitvector. In this way, CTP bitvectors remain compact.

Path profiling is able to preserve more fine-grained information
about paths within the function than CTP’s bitvector, but CTP
preserves more information about calling context by concatenating
the caller’s bitvector. Because the order of the function calls can be
decoded offline with the control-flow graph and the bitvector, CTP
is distinct from calling context trees [2, 42] which are lossy with
respect to calling sequence. Experimental results in section 7 show
that CTP supports high classification accuracy.

3.2 Data

Data values can provide robust characterization of error behavior,
though a naı̈ve implementation can greatly increase the number of
features thereby canceling any benefit. For instance, to associate
return values with their call sites, Clarify can count call site, return
value pairs. A function that has 100 distinct return values will
increase the number of features by 100. Such encodings increase
the complexity of the classification task considerably as machine
learning algorithms have performance and accuracy problems when
confronted with large numbers of features.

Predication is a standard technique to reduce the feature space
of data values [27]. We define nine predicates which are applied
to Clarify data and return values; the predicates map raw values
to feature values. The predicates indicate whether the raw value is
equal to zero, equal to 1 or -1, is a small or large positive or negative
integer, or is a pointer to the stack or heap. The thresholds for small
and large positive and negative integers are arbitrary: anyvalue with
absolute value less than 100 is small, any value with absolute value
greater than 100 that is neither a stack or heap pointer is “large”.

3.2.1 Call-site profiling with predicated return values

Call-site profiling with predicated return values (CSRV) counts
pairs of call sites and predicated return values. If call-site A returns
255 one hundred times and returns -1 once, then the feature<A,
large int> has a count of 100 and the feature<A, equals -1> has
a count of 1.

3.2.2 Stack scraping

Stack scraping (SS) is a behavior profile that relies only on the
dynamic data values from an execution instance, rather thanon
control flow. The insight behind stack scraping is that the stack
contains control flow history in the form of return addresses(some
of them residual in memory below the current stack pointer) and
status information like function return codes.

At the moment the program returns an error code, its execution
is paused, the range of memory allocated to the program stackis
traversed, and a feature vector representing that instanceof execu-
tion is created by applying predication to each word in the stack
range. The representation trades some fidelity for convenience and
compactness, compared to instrumentation-based control flow his-
tories. The scraper obtains the stack and heap bounds dynamically
(from /proc/pid/maps on Linux) so it can differentiate point-
ers to the stack and pointers to the heap.

Stack scraping is unique in Clarify feature sources in that it
does not require instrumentation of the source program. It imposes
very little runtime overhead, but it is also the least accurate feature
source.

4. Deployment issues
This section discusses the different deployment scenariosfor Clar-
ify, and addresses security issues of a Clarify deployment.

4.1 Forensic vs. live deployments

Clarify can be deployed in two ways: to improve any error report
a program can give (live deployment), or to improve a fixed set of
error reports (forensic deployment). A live deployment will instru-
ment an entire executable, sacrificing some performance to collect
data about the entire application’s behavior. A forensic deployment
only collects data that is known to help disambiguate a fixed set of
error reports.

4.2 Security

Clarify improves software support, but raises security issues for
users and software vendors. Users would like to keep their data and
the way they use software private. Vendors do not want to divulge
information about the structure, control flow, and support history of
their product to users or competitors.

Current software support systems suffer from this problem.In
Windows Vista, there is a new control panel item called, “Prob-
lem reports and solutions,” [17] which is a refinement of the cur-
rent Windows support dialog. When a program malfunctions, it can
send a partial memory dump to Microsoft and Microsoft can send
the user a better error report. However the dump sent to Microsoft
can contain arbitrarily sensitive data (e.g., passwords, credit card
information, etc.). Microsoft’s privacy statement currently discour-
ages users who are concerned about privacy from using their ser-
vice [16].

Clarify decision trees can be evaluated on Clarify behaviorpro-
files in such a way that the end-user learns only the information re-
lated to his error (and nothing about the software support history or
control flow of the application). The software vendor who provides
the decision tree learns nothing about the user’s execution. The se-
curity details are in a separate paper [9], but the system allows trees
with 255 nodes and 1,000 attributes to be securely evaluatedfor 28
seconds of online computation and 4.5 MB of bandwidth for the
vendor, and 48 seconds of online computation time and 1.5 MB of
bandwidth for the user.

5. Minimizing human effort
Clarify requires humans to label or generate examples of faulty
error reports in order to train a machine learning classifier. Even
without a classifier, Clarify should help users. We describenearest-
neighbor software support, an execution mode Clarify uses when it
has no classifier. The section next describes distributing the work
of labeling profiles among a software support community.

5.1 Nearest neighbor software support

Clarify needs a certain number of labeled examples to build an
accurate machine learning classifier (exact numbers are problem-
dependent and quantified in Section 7.4). Before it has trained a
classifier, Clarify uses nearest-neighbor search to match similar
behavior profiles. For instance, users ofmpg321 can give their
email addresses to a a support website. If a user has a problem
that she does not understand, she sends her behavior profile to the
site which runs Clarify. The site returns the emails of 5 other users
who opted in to the system and who likely experienced the same
application behavior. (The system might give out a particular email
address only 3 times and take other steps to make sure participants
are not overwhelmed with email or put on spam lists.) As the results
in Section 7.6 show, nearest-neighbor search is sometimes highly
effective, but it is not as accurate in general as building a classifier.

5.2 Labeling behavior profiles

The Clarify classifier must be built from labeled behavior profiles.
There are three ways this labeling can be done.

• Members of a support organization can do all labeling. This
approach is human resource intensive, but provides high-quality
labeling.

• End-users can label their profiles, distributing the work across
many more people, but enabling malicious or inept users to add
noise in the form of incorrect labels. End-user contributions can
be graded by support staff or by peer reputation (like what is
done on current support websites).

• Support engineers can write scripts to generate many variant
inputs for each problem. All inputs exercise the same problem,
so they all share the same label. We use this method to evaluate
Clarify. It requires the most expertise, and the inputs are not
guaranteed to accurately model real-life inputs.

6. Benchmarks
Clarify is intended to improve the error reporting of complex,
black-box software components. To evaluate Clarify, we choose
benchmarks that are common, heavily-used programs for which
non-exotic error conditions lead to misleading or non-existent error
messages. That common utilities provide shoddy error reporting
makes clear the motivation for Clarify.

We also use Clarify on programs that span the kernel/user
boundary, containing user-level code that interacts with kernel
modules. Interaction across a protection boundary createschal-
lenges for error reporting due to fixed interfaces and the difficulty
of passing memory objects across the boundary.

This section summarizes the benchmarks and the kinds of prob-
lematic errors they report. We explain the behavior underlying the
error reports—it is this underlying behavior that Clarify is intended
to discover.

6.1 User-level programs

gcc.The GNU C compiler is a popular compiler, containing both
hand-written and automatically generated source code. Ourex-
periments use version 3.1, executing only the compiler (thecc1
phase), using the “.i” file output of the pre-processor, drawn from a
pool of 4,070 files pre-processed from the Linux kernel 2.6.13 dis-
tribution. A corruptor script randomly modifies correct source code
to exhibit mistakes from four error classes: adding a semicolon af-
ter anif() that has anelse clause, causing the compiler to fail
on theelse ; omitting the closing curly bracket of a switch block
causing an “end of file” error; deletion of a semicolon, yielding a
generic syntax error, often on a very different line from theremoved
semicolon; misspelling a keyword which also generates a generic
syntax error. All error classes result in confusing and imprecise er-
ror messages.

mpg321.mpg321 is an mp3 player for Linux. This benchmark
has three failure modes: file format error (e.g. trying to play a wav
file as if it were an mp3), corrupted tag (mp3 metadata is stored in
ID3 format tags, e.g., artist name), corrupted frames (mp3 frame
data is corrupt). The Clarify classifier distinguishes between these
three failure modes and normal execution. The application itself
does not give any consistent error message for any of these error
cases.

LaTeX. Latex is a typesetting program widely used by the re-
search community. Its error reporting is known to be obscure. Rub-
ber [34] is a tool that filters LaTeX’s output to make it more com-
prehensible to the user. However, many of LaTeX’s error messages
are generic and many have varied root causes, making it difficult
for users to understand what went wrong and fix it.

Our LaTeX benchmark has 26 ambiguous error cases, too many
to summarize here, so we describe one illustrative example.A
website [15] contains an explanation of all the classes.

If a table , array or eqnarray has more separator char-
acters (ampersands) than columns, LaTeX prints the obscureerror
message, “!Extra alignment tab has been changed to\cr”. Most
LaTeX books and most LaTeX support websites recommend check-
ing the number of ampersands if a user receives this error. Some
websites and books are helpful enough to suggest a missing end of
row symbol\\ on the previous line. While forgetting the double
backslash will cause the error report, the error report is not unique:
misuse of the\cline command (a directive that draws a horizon-
tal line in the table) will result in the same message if one ofthe
arguments to\cline refers to a non-existent column in the table.
Users who make the\cline mistake get an error message that al-
most all support options say are due to one of two possible causes,
even though there is a third possible cause. Error reports are biased
to their most likely cause, leaving a user who executes a lesslikely
scenario scratching her head, potentially for a long time.

6.2 Kernel benchmarks

To evaluate the applicability of Clarify across the user/kernel
boundary, we chose three benchmarks that depend on both user-
space applications and kernel modules:iptables , iproute ,
andmount .

iptables. iptables is a popular open source Linux appli-
cation that does packet filtering, network address translation, and
other packet mangling. The policies for these operations are in
kernel-space data structures, while the user application is an in-
terface for the end-user.

The error reporting interface between the kernel and the user is
netlink . netlink simplifies the interaction between the kernel
and userspace, allowing anyone to create a kernel module anduse
the error reporting infrastructure. Butnetlink makes the error
reporting interface rigid, forcing the kernel to reuse error codes
like EEXIST. The EEXIST code means both that a file the user
tried to create already exists, and that a new packet handling rule
creates a conflict with the current rules. This ambiguity is especially
confusing when an attempt to add a new packet handling rule
returns the string, “File exists” because that is the default string
for theEEXIST error code in the C runtime library.

The first behavior class for this benchmark includes the misuse
of tableSNAT, DNAT, andSAME, all of which produce the generic
“ Invalid arguments” error. The second class is the misuse ofMARK
as a jump target, the third class is absence of the kernel module that
is necessary to handle the user’s request, and the fourth error class
is using a forwarding chain name that does not exist. The kernel
returns the same error code for the last three classes, whichcauses
the application to print, “No chain/target/match by that name”.

iproute. iproute controls the contents of the kernel routing
tables. It has similar problems reporting errors as doesiptables
because it also uses thenetlink error reporting standard. The
first error class is adding routing rules that conflict with existing
rules; the second is adding an IP address that conflicts with existing
IP address; the third is entry of a conflicting routing table entry that
should produce an error, but does not due to a bug in the kernel
module. The error message for both the first and the second error
classes are “RTNETLINK answers: File exists” due to the use of the
overloaded return codeEEXIST.

nfs mount.Mounting a remote NFS server is a complicated op-
eration involving different kernel subsystems and cross-machine
communication. It is no wonder that the error reports generated
from mount can be cryptic. The first error class is specifying the
wrong port number, which produces the unrelated error messages
“NFSv3 not supported!” or “ Can’t read superblock”. The second
error class is a TCP/UDP mismatch between the server and the
client, and the third error class is when the server is down. In both
cases, the mount program prints “RPC: Program not registered”.

App. inst. Er FP CSP CSRV PP CTP

latex81 34,677 81 395 6,802 61,202 1,504 23,296
latex27 11,528 27 395 2,191 21,425 1,504 20,761
mpg321 263 4 128 1,162 11,495 21,954 1,318
gcc 1,582 5 2,920 57,221 514,973 40,513 93,246
iptables 131 5 56 70 N/A N/A N/A
iproute2 146 4 146 475 N/A N/A N/A
mount 1,920 5 292 292 N/A N/A N/A

Table 2. Sizes of the Clarify behavior profiles for each benchmark.
The second and third columns show the number of instances (pro-
gram executions) and the number of error classes for each bench-
mark. The remaining columns show the number of features for each
behavior representation. SS is not shown in the table since it always
has 9 features. Kernel utilities only generate the first two behavior
profiles due to limitations in how the kernel can be instrumented.

This error message makes some sense because the remote proce-
dure call daemon cannot find the proper program to handle the
user’s request, but this might not be obvious to normal end-users.
The fourth error class is NFS version configuration mismatchbe-
tween the server and the client. We tested with NFSv2 and NFSv3.
The error message is “RPC: Program/version mismatch; low ver-
sion = 1, high version = 2”. While the problem detected the NFS
version mismatch, the error message reports the wrong version
numbers which is likely to confuse a user diagnosing the problem.

6.3 Complexity of Clarify benchmark dataset

Table 2 summarizes the complexity of the Clarify benchmark
dataset. Each program has at least three ambiguous or mislead-
ing error classes and one normal class. Latex27 has 26 ambiguous
error classes and 1 normal class. In general, more accurate profiles
have more features. For instance, there are 533 functions inlatex,
but 6,802 call sites, and call-site profiling is more accurate than
function profiling.

Our benchmarks all have approximately equal number of in-
stances per error type. This distribution is not intended tomodel
the frequency of bugs occurring in the field, but rather trains the
classifier to distinguish among the given cases.

7. Evaluation
We evaluate Clarify according to four criteria: accuracy, perfor-
mance, training cost, and scalability. First, Clarify mustcorrectly
classify program behaviors that share ambiguous error messages.
Accuracy is summarized by the ratio of behavior profiles correctly
classified to the total number of profiles (Section 7.1). A perfect
classifier would correctly identify each error scenario from the be-
havior profile for each benchmark. As further validation of our clas-
sification models, we examine the decision trees generated by Clar-
ify in Section 7.3. We show that the tree tests program features that
intuitively correlate with the observed behavior.

The accuracy of Clarify must come at an acceptable perfor-
mance cost, which is measured in Section 7.2. A successful deploy-
ment of the Clarify system should incur minimal overhead costs.

Labeled examples can be expensive to collect, as determining
the error type of a given instance can require considerable human
effort. Section 7.4 shows how many labeled behavior profilesare
required to generate a Clarify classifier. In the absence of any
labeled data, Clarify employs a nearest-neighbor algorithm, where
users are paired with other users who have experienced the same
problem (Section 7.6). Section 7.7 shows data about the use of
Clarify as deployed in our lab.

App. CSP CTP
Forensic Live Forensic Live

latex 0.6% 5.3% 1.1% 97%
mpg321 0.3% 1.2% 1.3% 67%
gcc 1.0% 7.0% 9.9% 110%
iptables 1.1% 3.2% N/A N/A
iproute2 4.7% 7.6% N/A N/A
mount 1.1% 3.1% N/A N/A

Table 3. Slowdown of programs running under the Clarify run-
time using CSP and CTP for a forensic deployment (which can
only classify errors known during training), and a live deployment
(which can classify new errors found after deployment).

Finally, section 7.5 examines how the accuracy of Clarify’s
classifiers scale with the number of error classes. The robustness
of the Clarify classifiers is demonstrated by the relativelyhigh
accuracy obtained for the latex benchmark with 81 classes.

7.1 Classification accuracy

Clarify uses decision trees to classify. Decision trees arenested if-
then-else statements where each leaf corresponds to a single class
prediction. An advantage of decision trees (over more continuous
methods like support vector machines) is their ease of interpreta-
tion. It is possible for a software engineer to validate the classifier
based on knowledge of program structure. Further, in the context
of our experiments with Clarify, decision trees are as accurate as
other machine-learning methods. Although Clarify’s instrumenta-
tion computes thousands of features that describe each program ex-
ecution, the task of classifying error messages can be accomplished
by analyzing only a few features. This can be seen through therel-
atively small size and high accuracy of Clarify’s decision trees. In
contrast, methods that optimize over the entire feature set—e.g. lo-
gistic regression or support vector machines—tend to yieldover-
fitted models with lower accuracy. Other algorithms that optimize
over only a subset of features, such as rule learning and boosted
decision stumps, yield classifiers we found to be competitive with
decision trees.

Figure 3 shows the accuracy of user and kernel benchmarks,
for several different behavior representations. These tables report
accuracy using 5-fold cross validation, a standard technique for
evaluating classifiers. The dataset is partitioned into fivesections,
the classifier is trained and tested five times; it is trained on four
sections of the data and its accuracy tested on the remainingfifth.
The average of these five tests is the reported accuracy of the
classifier.

The decision trees are built using an implementation of the C4.5
algorithm [32] found in the WEKA machine learning package [39].
Call-tree profiling (CTP) demonstrates the best overall accuracy.
Call-site profiling (CSP), path profiling (PP) and CTP have an
accuracy of over 85% on every user-level benchmark, and call-
site profiling has over 85% accuracy for kernel benchmarks. 85%
accuracy is a significant help for improving error reports.

To evaluate sampling, we present results for sampling FP and
CSP, with a sampling rate of 10% (which is generous for sys-
tems that use sampling [27]). For example, the sampled function
counts record one of every ten function calls, uniformly at random.
The sampled results are the stippled part of each bar, achieving
lower classification accuracy than non-sampled data for almost ev-
ery benchmarks. The poor accuracy of sampling confirms our intu-
ition that sampling is the wrong approach for classifying program
behavior, because Clarify must be sensitive to rare events.

7.2 Performance

Table 3 shows the performance of live and forensic deployments
of call-site profiling. All timing runs are on a dual-processor Intel
Xeon 3.0GHz with 2GB of RAM. Because there is no freely avail-
able static binary translator for the x86 architecture, theexperiment
modifies the assembly code of the programs to count call sitesin
exactly the way a binary modification tool would do it. On the x86
a count with a known address can be incremented with a single
instruction. The counters reside in a memory mapped file, so the
results can be collected after program termination.

Each benchmark runs several inputs to obtain a running time
that is long enough to measure accurately:gcc compiles the 23
largest .i files from the Linux 2.6.16 distribution,mpg321 decodes
256 frames of 200 mp3 files, and LaTeX processes 5 files with a
total of 27,587 lines. We average the user time of three executions.
The remaining rows in Table 3 show benchmarks run on the 2.6.17
version of the Linux kernel. The kernel behavior profile is built us-
ing the kprobes [24], a dynamic instrumentation package that is
standard in Linux. Kprobes uses breakpoints so it is a more ex-
pensive form of instrumentation. We use it to collect only function
profiling and call-site profiling.

Performance overhead is low for call-site profiling, both for
forensic and live deployments. The live deployment overhead for
call-site profiling is modest, less than 7.6%. The live deployment
overhead for CTP is much higher. Live deployment requires in-
strumenting the entire binary, while forensic deployment chooses
features that training runs indicate are necessary to disambiguate
a known set of problems and that are cheap to collect, e.g., they
reside in functions that are called infrequently. We use a published
machine learning algorithm [19] that uses training data to find the
minimum cost tree whose accuracy is within 1% with our cost-
oblivious tree. The increase in performance from live to forensic
for CTP is dramatic. The overhead of CSP is smaller to begin with,
so the reduction is smaller, but the forensic overhead of CSPfor
user-level programs is less than 1%. The high cost of breakpoints
in the kernel accounts for the higher overhead relative to user-level
programs. Forensic deployment is an effective means of deploy-
ing richer behavior profiles like CTP at reasonable levels ofperfor-
mance cost.

7.3 Verifying the machine learning model

Machine learning algorithms train classifiers without any domain
knowledge regarding the underlying semantics of the program’s be-
havior. It is possible for a classifier to fail miserably on unseen data
because the classifier examines features that are semantically un-
related to the behavior it classifies. To make sure that Clarify clas-
sifiers use program features that intuitively relate to the behaviors
they classify, we examined several classifiers by hand. Classifiers
trained using function profiling and call-tree profiling forthe mp3
playermpg321 are shown in Figure 4. The trees show how each
behavior profile provides different clues to the classifier about the
same underlying behavior.

The function profiling tree is composed of a simpler set of rules
that depict differences in control flow across the four errorclasses.
At the root of the tree, the functionmad layer III provides
near perfect discriminative information for the ’wav’ error class:
themad layer III routine is part of thelibmad library and is
called when the audio frame decoder runs. Since the wav format is
among the formats not supported by mpg321, it will not success-
fully decode any audio frames, and thelibmad library will never
call mad layer III . Theid3 tag delete routine differenti-
ates between the corrupted tag and and other classes. The ID3tag
parser in thelibid3tag library dynamically allocates memory to
represent tags and frees them withid3 tag delete . If tag pars-
ing fails, the memory for a tag is not allocated. Since no tag parsing

latex81 latex26 gcc mpg321

A
cc

ur
ac

y
(%

)

45
50
55
60
65
70
75
80
85
90
95

100

FP

CSP

PP

CTP

CSRV

SS

iptables iproute2 mount

A
cc

ur
ac

y
(%

)

35
40
45
50
55
60
65
70
75
80
85
90
95

100

FP

CSP

Figure 3. The figure shows the accuracy of the classifier used to distinguish the error cases, based on behavior profiles, for each benchmark.
For each benchmark a classifier is built using different behavior profiles: function profiling (FP), call-site profiling (CSP), path profiling (PP),
call-tree profiling (CTP), call-site profiling with predicated return values (CSRV), and stack scraping (SS). The figurealso presents sampled
versions of function profiling and call site profiling with a sampling rate of 10% (in the stippled, lower bar in the stackedFP or CSP entry).

succeeds in the corrupted frames case,id3 tag delete is never
called to free the tag memory, making its absence discriminative
for that class. Thelibmad audio library’s default error handler
error default is used if the application does not specify one.
mpg321 does not specify its own error handler, so the presence
of the function indicates corrupted audio frames, and its absence
indicates the corrupted id3 tags case. Finally,III freqinver ,
which performs subband frequency inversion for odd sample lines,
is called very frequently as part of the normal process of decoding
audio frame data. When there are corrupted frames, this function is
called less frequently, and the decision tree algorithm finds an ap-
propriate threshold value to separate the normal from the corrupted
case.

The decision tree built on call-tree profiling data has a richer
combination of data sources than function profiling. Call-tree pro-
filing uses the presence of thelibmad library functionIII side-
info (which decodes frame side information from a bitstream)
calling the utility functionmad bit read as an indicator of suc-
cessful audio frame decoding. The lack of that calling pattern
reliably indicates a file format error. The corrupted framesclass
is once again differentiated from the normal class by a thresh-
old value on a subtree oflibmad functions that will only be
called during successful decoding of audio frame data, suchas
III scalefactors , the discrete cosine transform function
fastsdct , III huffdecode , and so on. Thelibmad func-
tion scan encapsulates the process of reading mp3 files. A CTP
rule (decoded bitvector) whereinscan calls a function that calls
a number of low-level stream manipulation routines such asmad-
bit read , andmad timer set , and so on, provides discrimi-

native power in combination with a similarly complex control flow
pattern inmain for the corrupted tags error class. The decision
tree node whose CTP rule involvesmain, id3 get tag , and
so on differentiates between normal and error conditions for the
handling of ID3 tags, while the decision tree node whose CTP rule
involvesscan discriminates between successful and unsuccessful
audio decoding. The high level pattern exposed by these rules is
the combination of failed ID3 tag parsing with successful audio
decoding, which precisely describes the corrupted tag error class.

7.4 How many labeled behavior profiles are needed?

The classifiers used by Clarify are trained with labeled behavior
profiles. Labeling profiles generally requires human effort, so it
should be minimized. In general, classifiers trained with fewer
labeled training instances will result in less accurate models. In this

Classes Accuracy Creation Time
10 97.8 % 25min
20 97.5 % 1hr 37min
35 94.9 % 6hr 2min
50 94.3 % 10hr 26min
65 93.9 % 11hr 50min
81 93.6 % 18hr 28min

Table 4. The accuracy and time to create the classifier as the
number of behaviors is increased in the LaTeX benchmark.

section, we investigate the tradeoff between classification accuracy
and the amount of training data used in building the classifier.
Figure 5 plots the classification accuracy of the latex benchmark
as a function of the number of instances used in training (the
benchmark includes 75 of the 81 distinct error classes) . TheC4.5
algorithm used to build the decision tree is surprisingly robust:
with as few as 15 examples per class, the algorithm achieves an
accuracy of86%. Looking at the legend in Figure 5, we can see
that to achieve accuracy within1% of the maximum, only a small
subset of the training data is required. For example, gcc needs only
105 instances to attain the accuracy level of88.9% which is within
1% of the accuracy reached when we use all of the300 available
examples per class.

A human does not need to label each behavior profile individ-
ually. For our training sets we use a script to induce errors in the
program input, producing large numbers of training examples with
little human involvement. However, inducing errors by a script is
not necessarily an accurate model for the errors that Clarify would
see in deployment.

7.5 Scalability

In this section we analyze how Clarify scales as the number oferror
classes increases. LaTeX has 247 unique error messages, andwe
evaluate the scalability on 81 behavior classes—about one third of
all possible LaTeX errors.

Table 4 shows how model creation time and classification ac-
curacy scale as the number of error classes increases. We consider
subsets of error classes with varying sizes. For each size, we picked
10 random subsets of error classes and ran our experiments. The
curves shown in the graph are the average of the results for each
size.

We can see that as the number of error classes increases the
accuracy drops from97.8% to 93.6%. This decrease is acceptable

Function profiling

Call-tree profiling

Figure 4. Decision trees produced for thempg321 benchmark.
Dotted lines are taken when the normalized count of the feature
value is less than or equal to a threshold, while the solid line
is taken when it is greater than the threshold. The thresholdis
determined automatically for each benchmark by the decision tree
algorithm, and can be different for each node in the tree. Clear
boxes are features. FP features are normalized function counts, and
call-tree profiling features are normalized counts of CTP subtrees
(represented by the symbolic tree names in brackets, with function
names for nodes in each call tree). Shaded boxes are error classes.

considering that the number of behaviors has increased by a factor
of 8. The training time of the model increases from under 30
minutes to more than 18 hours as the number of error classes
increases from 10 to 81. This increase does not hinder scalability
since the model is trained offline. Of greater practical concern is
the execution time needed to evaluate the decision tree, as this
largely determines the amount of processing done at the client
end. Our experiments show that the time to execute the models
averaged 10ns, with a maximum of 21ns, which is imperceptible for
almost any application. Clarify scales to nearly one hundred error
behaviors without much loss in accuracy or substantial increase in
processing time.

7.6 Nearest neighbor software support

In contrast to the decision trees used by Clarify’s classifiers which
rely on only a small subset of all features, nearest-neighbor al-
gorithms rely on averages over all features. For example, the Eu-
clidean distance between two instances, a popular metric used
for nearest-neighbor searches, is a function of the averageof the
squares of the difference between each pair of feature values. Such

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

A
cc

ur
ac

y

Number of Instances Per Latex Error Class

iptables : 10
iproute : 30
nfs : 35
mpg321 : 38
gcc : 105
latex81 : 110

Figure 5. The curve shows how the accuracy increases as the num-
ber of training instances per error class is increased. The dataset is
the latex benchmark with 75 classes. The text on the graph gives
the minimum number of training instances needed for a benchmark
to achieve accuracy within 1% of accuracy obtained using allthe
training data.

App. FP CSP CTP CSRV

latex26 0.75 1.01 0.52 0.93
mpg321 2.22 4.21 1.52 1.40
gcc 2.73 2.67 2.19 0.97
iptables 1.12 1.03 N/A N/A
iproute2 3.10 2.77 N/A N/A
mount 2.71 2.40 N/A N/A

Table 5. In the absence of labeled training data, Clarify uses
a nearest-neighbor algorithm with linear-regression based feature
scaling. This table shows the expected number of correctly classi-
fied neighbors for a five-nearest-neighbor search.

distance functions are particularly susceptible to differences of
scale among the various features.

In Clarify, features take on vastly different scales: some features
may have a count under ten, while others may have upwards of one
million occurrences. Furthermore, for some features, the count is a
function of the length of the program execution, and for others it is
independent of program execution. For example, a parsing-related
feature for gcc will be called many more times for a longer filethat
contains many repetitions of particular construct, than a shorter file.
Some sections of code—e.g. initialization functions—willbe called
a (roughly) constant number of times and thus will take on values
independent of the program execution length.

To overcome such scaling challenges, Clarify employs a linear
regression-based feature scaling method. For each featurey, a
least-squares line is fitted to correlate each feature valuewith its
corresponding program execution lengthx (defined as the sum of
all feature values of a given execution instance). The feature value
is normalized to be the scaled difference between the feature value
y and the fitted feature valuef(x). The scaling factor is determined
such that the variance of each resulting feature is one. We note that
for features that have no correlation with program length, the linear
regression step will have no effect on the final normalized feature
values.

Table 5 gives the expected number of correctly classified neigh-
bors for a nearest neighbor search returning five neighbors.Eu-

clidean distance is used. For some benchmarks with many classes
(the LaTeX benchmark in table 5 has 27 classes), accuracy of the
nearest-neighbor search is somewhat lower. In such cases, alarger
number of neighbors should be returned.

7.7 Deployment

To begin understanding the performance of Clarify in a deployed
environment, we created a version of LaTeX that includes static
instrumentation and a small runtime to generate call-site informa-
tion. We deployed the version of LaTeX to a user base of 6 users
over a period of 3 weeks. Our deployed version of LaTeX encoun-
tered 57 distinct error inputs ranging over 17 error classesand was
able to classify 46% (26/57) of them correctly. LaTeX has 247er-
ror messages—the experiment was not limited to unclear or am-
biguous messages. Classifying nearly 50% of a program’s behavior
correctly is much more difficult than disambiguating a smallnum-
ber of error behaviors.

8. Related work
We first contrast Clarify to several systems that appear similar.
Clarify improves error reporting by classifying program behavior,
it does not find program bugs [20, 27, 1, 14]. An ambiguous
error message or return code might meet the specification fora
program (e.g., thenetlink standard for error reporting). Clarify
does not attempt to find the root cause of program faults [12, 31],
misconfigurations [38, 25], or program crashes [10, 29, 30, 7]. Its
aim is to classify the application behavior to help the developer or
end-user get better error reports when these events happen.

The remainder of this section compares Clarify with problemdi-
agnosis systems, and systems that classify program behavior. Clar-
ify does help software problem diagnosis and it classifies program
behavior.

8.1 Problem diagnosis systems

A group at Microsoft Research correlates low-level system events
with error reports to automate problem diagnosis [40, 41], just as
Clarify does. They currently focus only on forensic deployments
(in our terminology), and on building models from sequencesof
system calls. Clarify uses control-flow and data from the program,
which allows it to deal with errors that involve only user code.
Ph [36] also uses sequences of system calls to build a model,
though their model detects host intrusions. While system calls are
a good representation of certain types of program behavior,many
programs make few systems calls (e.g., SPEC). Because every
named system call has wrapper functions from user-space libraries,
Clarify can detect system calls by detecting function callsto the
wrapper functions, giving it a richer input source to determine
program behavior.

Statistical bug isolation [27, 26] correlates low-level applica-
tion behavior with application behavior (bugs) and builds amodel,
as Clarify does. Statistical bug isolation requires a special compiler
to insert invariant checks into the program, while Clarify records
a small amount of control-flow and data continuously. Statistical
bug isolation samples the invariants it inserts to get good perfor-
mance. Section 7.1 demonstrates a sharp loss of accuracy if Clar-
ify uses sampling. Statistical bug isolation must eliminate sub-bug
and super-bug predictors; Clarify has an analogous struggle to gain
enough training instances to isolate the program behavior created
by the error condition. The systems could be used together togather
statistical data on crashes and provide better error messages for
crashes and other misbehaviors.

DIDUCE [20] uses dynamic program invariants to detect pro-
gram behavioral anomalies. The anomalies can indicate program
bugs, but at a performance slowdown of 6–20×. Clarify is much
faster and can classify program behavior that is not anomalous.

Stack backtraces are used by many remote diagnostic systems
like Dr. Watson [29], Microsoft’s online crash analysis [30] and
GNOME’s bug-buddy [7]. IBM has a system to classify stack
backtraces harvested on a crash [10], and the technology hasbeen
deployed in their TrapFinder tool. Their motivation is similar to
Clarify’s—reduce the human effort needed to match problemsfrom
different program executions. Clarify diagnoses a wider range of
problems than crashes, and it operates on behavior profiles,which
are a richer source of data than stack backtraces.

8.2 Classifying program behavior

Classifying program behavior has received attention in thesoftware
engineering literature. Podgurskiet al. [31] identify a similar mo-
tivation to Clarify and they also investigategcc behavior. Clar-
ify is more accurate (over 85–100% accurate, as compared to 24–
96%), and is more of a complete system, designed to address the
problem of improving error reporting. Bowringet al. [8] models
software behavior as Markov models using control flow between
basic blocks and then uses active learning to cluster the models.
Markov models use probabilities which make them insensitive to
rare events. Clarify needs sensitivity to rare events because rare
events often characterize an error behavior—see the sampling re-
sults in Section 7.1. Bowring et. al. evaluate their method on 33
versions of SPACE, which is a very small 6,200 line program.

Liu et al. [28] use program behavior graphs as features for a
machine-learning model just as Clarify uses data related topro-
gram control flow. The number of program behavior graphs grows
quickly with program size, and can become computationally in-
tractable even for the small Siemens programs [23] used to evaluate
their method.

SimPoint [35] characterizes the phase behavior of applications
using basic block execution counts to maintain the accuracyof
architectural simulation while executing fewer instructions. The
types of program behavior it detects are coarse-grained andoccurs
over much longer time windows than the errors that Clarify de-
tects. SimPoint can reduce its dataset to 15 dimensions and main-
tain phase-detection accuracy. Clarify’s classifiers mustbe sensitive
to small, localized changes in behavior that form the signature of
an error behavior. As seen in Table 2, Clarify’s representations have
tens of thousands of features. We verified that using random projec-
tion to reduce the feature count, like SimPoint does, dramatically
reduces Clarify’s accuracy.

Program paths [5] have been used to analyze runtime program
behavior. Path Spectra [33] approximate an execution’s behavior
with the occurrence (or frequency) of the individual paths.Spectral
differences have been used to identify the portions of a program’s
execution that differ with different inputs, notably, during Y2K test-
ing [21]. Path Spectra focused on identifying path differences be-
tween several program runs, whereas Clarify’s novel use of path
profiling uses machine learning to identify which paths arecom-
mon to each error class. Clarify’s call-site profiling is much more
efficient and nearly as accurate as path profiling.

9. Conclusion
We present Clarify, a system that improves the error reporting of
black-box systems, e.g., third-party libraries, the operating system,
and external programs. Our Clarify prototype accurately and ef-
ficiently classifies the behavior of all of these systems, enabling
improved error reporting.

Acknowledgments
Thanks to William Cook for help with writing. Thanks to Peter
Stone, Raymond Mooney and Kathryn McKinley for feedback
on earlier drafts of the paper. This research has been supported

by a gift from Microsoft’s Phoenix compiler group, a DARPA
grant from the architectures for cognitive information processing
program, and by NSF grant CNS-0615104.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance debugging for distributedsystems
of black boxes. InSOSP, Bolton Landing, NY, Oct. 2003.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performacne counters with flow and context sensitive profiling. In
PLDI ’97, pages 4–16, June 1997.

[3] Andrew Ayers, Christopher Metcalf, Junghwan Rhee, Richard
Schooler, Anant Agarwal, and Emmett Witchel. Traceback: First
fault diagnosis by reconstruction of distributed control flow. In PLDI,
June 2005.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. InPLDI, pages 1–12, 2000.

[5] T. Ball and J. R. Larus. Efficient path profiling. InMICRO, 1996.

[6] R. Barrett, E. Haber, E. Kandogan, P. P. Maglio, M. Prabaker, and
L. A. Takayama. Field studies of computer system administrators:
Analysis of system management tools and practices. InACM CSCW
(Computer-supported Cooperative Work), 2004.

[7] J. Berkman. Bug-buddy — GNOME bug-reporting utility, 2004.
http://directory.fsf.org/
All_Packages_in_Directory/bugbuddy.html .

[8] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning for
automatic classification of software behavior. InISSTA, Jul 2004.

[9] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett
Witchel. Secure remote software diagnostics, Under review.

[10] M. Brodie, Sheng Ma, G. Lohman, L. Mignet, N. Modani, M. Wild-
ing, J. Champlin, and P. Sohn. Quickly finding known software
problems via automated symptom matching. InICAC’05, pages
101–110, 2005.

[11] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An
infrastructure for adaptive dynamic optimization. InCGO-03, 2003.

[12] Y. Brun and M. D. Ernst. Finding latent code errors via machine
learning over program executions. InICSE, 2004.

[13] Bryan Cantrill and Mike Shapiro and Adam Leventhal.Dtrace,
2006. http://www.genunix.org/wiki/index.php/
DTrace_FAQ .

[14] Trishul M. Chilimbi and Vinod Ganapathy. Heapmd: Identifying
heap-based bugs using anomaly detection. InASPLOS ’06, 2006.

[15] Latex Error Classes.http://www.cs.utexas.edu/users/
habals/clarify/latex_errors.html , 2006.

[16] Microsoft corporation. Privacy statement for the microsoft error
reporting service, 2006.

[17] Microsoft corporation. Reporting and solving computer problems,
2006.

[18] Microsoft Corporation.What information is sent to Microsoft when I
report a problem?, 2006.

[19] Jason V. Davis, Jungwoo Ha, Christopher J. Rossbach, Hany E.
Ramadan, and Emmett Witchel. Cost-sensitive decision treelearning
for forensic classification. InECML, 2006.

[20] S. Hangal and M. S. Lam. Tracking down software bugs using
automatic anomaly detection. InICSE, 2002.

[21] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. Anempirical
investigation of the relationship between fault-revealing test behavior
and differences in program spectra. InJournal of Software Testing,
Verification and Reliability, vol 10, no 3, 2000.

[22] J. Humphreys and V. Turner. On-demand enterprises and utility
computing: A current market assessment and outlook. Technical
report, IDC, Jul 2004.

[23] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on
the effectiveness of dataflow- and controlflow-based test adequacy
criteria. InICSE, 1994.

[24] Jim Keniston and Prasanna S Panchamukhi.Kernel Probes (Kprobes),
2006.Documentation/kprobes.txt .

[25] N. Lao, J. Wen, W. Ma, and Y. Wang. Combining high level symptom
descriptions and low level state information for configuration fault
diagnosis. InLISA, 2004.

[26] B. Liblit, A. Aiken, A.X. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. InPLDI, 2003.

[27] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. InPLDI, 2005.

[28] C. Liu, X. Yang, H.Yu, J. Han, and P. S. Yu. Mining behavior graphs
for ”backtrace” of noncrashing bugs. InProc. of 2005 SIAM Int.
Conf. on Data Mining (SDM05), 2005.

[29] Microsoft Corporation.Dr. Watson Overview, 2002.http://www.
microsoft.com/TechNet/prodtechnol/winxppro/
proddocs/drwatson_overview.asp .

[30] Microsoft Corporation. Online Crash Analysis, 2004. http://
oca.microsoft.com/ .

[31] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J.Sun, and
B. Wang. Automated support for classifying software failure reports.
In ICSE, 2003.

[32] R. Quinlan.C4.5: programs for machine learning. Morgan Kaufmann
Publishers, 1992.

[33] T. Reps, T. Ball, M. Das, and J. Larus. The use of program profiling
for software maintenance with applications to the year 2000problem.
In M. Jazayeri and H. Schauer, editors,ESEC/FSE 97, pages 432–449.
Springer–Verlag, 1997.

[34] Rubber.http://www.pps.jussieu.fr/˜beffara/soft/
rubber , 2007.

[35] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In
ASPLOS, Oct 2002.

[36] A. Somayaji and S. Forrest. Automated response using system-call
delays. InProceedings of 9th Usenix Security Symposium, August
2000.

[37] Ariel Tamches and Barton P. Miller. Fine-grained dynamic
instrumentation of commodity operating system kernels. InOSDI,
pages 117–130, 1999.

[38] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y. Wang. Automatic
misconfiguration troubleshooting with PeerPressure. InOSDI, 2004.

[39] I. Witten and E. Frank.Data Mining: Practical machine learning
tools with Java implementations. Morgan Kaufmann, San Francisco,
2000.

[40] C. Yuan, N. Lao, J. Wen, J. Li, Z. Zhang, Y. Wang, and W. Ma.
Automated known problem diagnosis with event traces.MSR-TR-
2005-81, 2005.

[41] C. Yuan, N. Lao, J. Wen, J. Li, Z. Zhang, Y. Wang, and W. Ma.
Automated known problem diagnosis with event traces. InEuroSys,
2006.

[42] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Cain, and Jong-
Deok Choi. Accurate, efficient, and adaptive calling context profiling.
In PLDI, 2006.

