Cost-Sensitive Decision Tree Learning for Forensic
Classification

Jason V. Davis, Jungwoo Ha, Christopher J. Rossbach,
Hany E. Ramadan, and Emmett Witchel

Dept. of Computer Sciences, The University of Texas at Austin

Abstract. In some learning settings, the cost of acquiring features for classi-
fication must be paid up front, before the classifier is evaluated. In therpa
we introduce the forensic classification problem and present a newthigdor
building decision trees that maximizes classification accuracy while minimizing
total feature costs. By expressing the ID3 decision tree algorithm in armafo
tion theoretic context, we derive our algorithm from a well-formulated |emob
objective. We evaluate our algorithm across several datasets andttsdipor

a given level of accuracy, our algorithm builds cheaper trees thatirexiseth-

ods. Finally, we apply our algorithm to a real-world systemARIFY. CLARIFY
classifies unknown or unexpected program errors by collecting statiftiasy
program runtime which are then used for decision tree classificatioreaiferor

has occurred. We demonstrate that if the classifier used byithel€y system

is trained with our algorithm, the computational overhead (equivalently, feata

ture costs) can decrease by many orders of magnitude with only a stighftj
reduction in classification accuracy.

1 Introduction

In the prototypical cost-sensitive classification probleihmedical diagnosis, tests are
performed sequentially until a diagnosis is made. Clagsiiach as decision trees are
natural for this problem, as predictions can be made byngstnly a small subset of
total features (i.e. those features present in the path fih@moot to the predicted leaf).
In this problem, it is acceptable to have very expensive t@stsent in the decision tree
as long as these tests are relatively unlikely to be needadyipical evaluation of the
tree.

However, in many settings, sequential testing is not féasib particular, if ob-
jects to be classified are transient, then they are not élaifar further testing when
diagnosis (i.e. classifier evaluation) is performed. Caasthe problem of classifying
software errors: the system can be monitored during ruestbuat acquiring additional
“after the fact” information requires reproducing the erferror reproduction can be
time consuming and costly because oftentimes system arerson-deterministic or
environment-dependent. To efficiently classify softwarerms, a system must minimize
runtime monitoring costs. Equivalently, the cost of thesslfier—i.e. the aggregate
cost of monitoring needed to construct any feature that cmsiply be tested by the
classifie—must be minimized.

In this paper, we present a cost-sensitive decision tremittign for forensic clas-
sification: the problem of classifying irreproducible eteerHere, we assume that all
tests (i.e. features) must be acquired before classifitationsequently, the classifi-
cation cost equals the sum of the costs of all features tlatlssifier may use for
testing. We derive our algorithm by expressing the ID3 deni¢ree algorithm in an
information theoretic context; from this, we present a €stsitive generalization for
the information gain and gain ratio criterion. When used imjgoction with these mod-
ified cost-sensitive criteria, the resulting decision &kg®rithm minimizes testing costs
under the forensic classification problem while simultarsép maximizing accuracy.

For evaluation, we incorporate our cost-sensitive cotento the C4.5 decision tree
algorithm. We compare our algorithm to existing methodes&wrarious datasets from
the UCI machine learning repository, and show that, for @mikevel of accuracy, our
algorithm builds cheaper trees than existing methods.lliginvee apply our algorithm
to a real-world system that classifies program errot\fGrY . We give an overview of
CLARIFY and the various features available for classification. Vép@se a cost model
to determine feature costs, and show that, for many progremnsputational overhead
can be reduced by several orders of magnitude with only atslig 1%) decrease in
classification accuracy.

2 Cost-sensitive ID3 decision tree algorithm

The ID3 algorithm builds decision trees using a top-dowmredy search procedure
and represents the core of Quinlan’s highly successful @ddision tree algorithm.
Here, we present a cost-sensitive modification to the ID3rélym for the forensic
classification problem. For simplicity, we will outline tradgorithm as a process of
building a tree over a nominal feature space with arbityariiiny classes. However, all
methods presented can be easily generalized to contintinibsiges.

Given a decision tree with internal nodedq, ..., k, each of which split on features
F1, ..., F*, we will denote the tupl€X?,y*) to be the set of (instance, label) pairs that
will ‘pass through’ (for internal nodes), or ‘end at’ (fordenodes) nodeé when the
tree is evaluated. We will defing(f) to be the set of values that featufeakes on,
and Iet(X[]f:v], y[Jf:U]) denote the set of instances(iK 7, ¢/) such that featur¢ takes
on valuev. Given some leaf nodg, the ID3 algorithm splits on the featugewhich
maximizes the information gain,

it

- ; [r=] :

Gain(X7, f) = H(y’) — Z WH (y[jf:v])) 1)
veV(f)

whereH (y) = — 3 e crasses ‘y[C’l‘?;lSZ“‘ log 'y[“f;szf” , the entropy of the class labels.

The information gain can be thought of as the expected dseri@sentropy caused by
splitting on featuref. Furthermore, if we think of the featurgand class labelg’ as
random variables over the set of instances, then the infismaain is equivalent to
the mutual information betweefiandy’, which we denotd (y/; f). Mutual informa-
tion is a standard information-theoretic measure of thestation between two random
variables [4].

Since the ID3 algorithm builds the tree in a top-down mantier,split at the root
node of the tree is selected usig = X, the set of all instances used to train the tree.
Recursively applying (1) in terms df (y), and re-arranging terms yields:

X X
Gain(X', F*) = H(y) — —H(y")
2 x] ée%f X]
= 1(y;p),)

wherep is a random variable that gives the class values as predigtéie tree. Thus,
maximizing the mutual information between the true and jgted class labels is equiv-
alent to maximizing the weighted sum of the information gsiores at each internal
node of the tree. Furthermore, the ID3 algorithm can be vieaga greedy method to
maximize this mutual information.

In an effort to reduce the cost of the features used to budd@3 decision tree, we
propose the following multi-way objective criteria that xiraizes the mutual informa-
tion while minimizing cost:

i€internal

I(y;p) — v Y cost(f), ®3)

feF

whereF = UF_, F*, the set of features used in the treest is an arbitrary cost func-
tion, andy > 0 is an adjustable parameter that tunes the tradeoff betweammzing
mutual information and minimizing costs.

We optimize this quantity in the same top-down, greedy matire ID3 operates
by maximizing the right hand side of (2) with respect to nédg/e get a new cost-
sensitive information gain feature selection criteriahef form:

i X7
CSG(X', f) x|
The indicator functiorl ;¢ | allows for the re-use of features already added to the tree
without incurring additional costs. The normalization fbe first term can be factored
out if the cost term is not present and reduces to the basisplising criteria (1). This
normalization results in criteria that are willing to pay faore expensive features at
higher levels of the tree, since a larger percentage of gtdlalition will ‘pass through’
these nodes. Nodes near the leaves of the tree will be egdloata relatively smaller
portion of instances, and, consequently, the criteria #l)sgek cheaper features for
such nodes.

Quinlan’s C4.5 decision tree algorithm [13] uses a modiff@ddtig criteria, called
gain ratio, that normalizes the information gain score dittspg on featuref by the

entropy of the featurg: H (X,) = — > ey (5 X7 [Xtr=]

Gain(X', f) —~ - cost(f)1[s¢r)- 4)

b I log =% Using a similar
procedure above, this criteria also results in a globalativie function, and the resulting
cost-sensitive update for our model is:

Xi 1 i
CSGR(X,f)=||X|| 11 T FT) Gain(X*, f) — v - cost(f)1s¢r)-
jE€Path(i)
(5)

Whereas th&’' SGain criteria (4) normalizes thé&'ain term for nodej by the proba-
bility of an instance arriving at nodg the above criteria normalizes by weights that are
a function of both the training set distribution and the tsptitropies.

3 Experiments

To evaluate our method, we incorporate our cost-sensititeria (4) and (5) into a
C4.5 decision tree. The C4.5 algorithm builds the decisiea in the same manner as
ID3, but incorporates several post-processing heurjsitictuding a pruning method
that removes statistically insignificant leaf nodes after tree is built. We found that
C4.5 yielded trees with significantly higher accuracy thag.|

We compare our criteria to three existing methods. Nune} pt@poses a cost-

sensitive criteria called the information cost functi Gbsté;()ﬁfﬁ , which is motivated

using an economic argument. Mitchell [10] proposes a daterain(X?, f) — v -
cost(f)1is¢r), Which is similar to ourC'SGain criteria. However, this method does
not normalize th& ain function. Note that this criteria is a generalization of dhiell's
method that incorporates a cost/accuracy tradeoff pasamétd the second term. Nor-

ton [11] uses a cost-sensitive criterr@%, in his proposed IDX algorithm. We

also generalize this algorithm to account for varying @astiracy tradeoffs. We note
that since the Mitchell method incorporates the cost fagsimg an additive term, we

have incorporated the cost/accuracy tradeoff paramedsra multiplicative factor. The

Norton method incorporates costs using a multiplicativédia so we use an exponen-
tial to adjust this tradeoff.

We present our results in terms of cost ratio, which we defrtb@sum of the costs
of the features in the cost-sensitive decision tree, di/tiethe total cost of the features
in the cost-insensitive tree. We compare our method agexisting methods described
above using eight datasets from the UCI repository [5], Whie outlined in table 1.

For each dataset, we perform 50 trials of the following téstt, we randomly gen-
erate costs for each feature in the dataset from a unifortritiison on [0,1]. Second,
for each of our algorithms and for each of the 3 existing atgors, we identify the
value of~ that produces the cheapest tree and that also has a 10-6alstealidated
accuracy withinl% of the baseline, cross-validated cost-insensitive C£&&. tWe use
several values of ranging from10~% to 10%. For each algorithm, we then compute the
average cost ratio across all 50 trials. Table 1 shows thesage ratios for all 5 algo-
rithms. Our cost-sensitive criteria result in significgritiwer costs than that of existing
algorithms.

4 CLARIFY: forensic classification of confusing software error
behavior

In this section, we apply our cost-sensitive decision tigerahm to a system called
CLARIFY. CLARIFY’s features are abstractions mpresentation®f program control
flow, and its classes are error behaviors that are ambiguoussteading to a pro-
gram’s users. CARIFY classifies program error behavior via monitored control flow

Table 1. Average cost ratio for our methods (CSGain and CS Gain Ratio) conhpauexisting
methods. The cost ratio is the cost of the cost-sensitive decision trewlimed by the cost of
the baseline, cost-insensitive tree. For a given level of accuraeg t@nstructed with the cost-
sensitive information gain and cost-sensitive gain ratio criterion tend to buitth cheaper trees
than existing methods.

Dataset properties Cost Ratios
Dataset # instance classep feature§CSGairlCS Gain RatigNuneZMitchell[Nortor
audiology 226 24 70/ 0.964 0.98Q 0.991 5.650 5.65(
breast-w 699 2 10|| 0.647 0.671 0.917 1.106 0.97Q0
credit-a 701 2 16|| 0.394 0.374 0.557 1.015 0.111
diabetes 768 2 9|| 0.498 0.541 0.961 0.973 1.123
hepatitis 155 2 20| 0.474 0.417 0.558 1.522 0.536
liver-disorders 345 7 2|l 0.976 0.972 0.997 1.008 1.013
vehicle 849 4 19| 0.653 0.79Q0 0.862 0.934 1.05]
Z00 107 18 7|l 0.524 0.507 0.606 1.045 0.542
[average I -] | -[[0.641 0.657 0.80§ 1.657 1.37§

forensics to produce more informative error messages. Wimongram produces an
error, QLARIFY uses a classifier to predict the cause of the error from thetored
system forensics. C4.5 decision trees empirically perfeeny well in this domain [7].
As a testbed for the GA\RIFY system, we use six different benchmarks based on
the following large, mature programbkat ex (a typesetting programygcc (GNU
C compiler),mpg321 (mp3 player)M cr osoft Vi sual FoxPr o (a commercial
database management prograinynx (a text-based web browser), aagache (a
web server). For each benchmark, we identified programswiah nondescript, am-
biguous, or misleading error handling. For example, sudbreincludenpg321 emit-
ting garbled audio resulting from corrupted audio file inptio message is given to the
user that any problem has occurred. Benchmarks havg®x) to 9 (| at ex) distinct
error cases with 30FoxPr 0) to 1,024 @pache) instances per error. Dimensional-
ity is also quite high ranging from 3,600 featurep321) to approximately 100,000
featuresgcc). For more details, see [7].

4.1 Feature construction

CLARIFY uses behavior profiles, which are abstractions of programtraloflow, to
monitor program behavior. This paper uses two behavior Ipsoffunction counting
(FC) and a novel method called call-tree profiling (CTP). &iom counting (sometimes
called function call profiling) is a simple count of the numbétimes each function is
called during a program’s execution.

Call-tree profiling is a method that captures relations lketwfunction calls. Mod-
ular software design encourages programmers to create, singble functions with
clear semantics, making function boundaries importantrddeer, the order of func-
tion calls and their relationship is a rich source of progtshavior data. The dynamic
function calling behavior of a program can be representegldiynamic call tree, where

each node is a dynamic instance of a function call, and edgesadls between func-
tions. Call-tree profiling associates a counter with a déyathnded subtree rooted at
a particular function, and increments the counter when tiidree is executed. Each
subtree is a feature and the feature value is the countee eakociated to the subtree.
In this paper, CTP will refer to the union of the feature spaatsdepth bound of at most
two (i.e., CTP-DO, CTP-D1, and CTP-D2). Note that CTP-DOgaiealent to FC.

4.2 Minimizing overhead costs

The instrumentation inserted into applications to prodadechavior profile for the
CLARIFY decision tree classifier can have significant computatioosts. If G ARIFY
monitored all features it could monitor, the computatiomadrhead of the system would
be high. One way to reduceL@RIFY’s computational overhead is to instrument only
those features tested in the decision tree. Cost-sentivaing reduces the amount
of required instrumentation even further. Since prograstrinmentation points must
be chosen before the program is executed (i.e. not duringighi@n), the QCARIFY
classification problem is a forensic problem and is thus-seited for our algorithm.
Feature costs vary greatly in this problem domain: featcoesesponding to frequently
executed functions incur overheads many times larger teatufes corresponding to
rarely called functions.

For function counting, instrumentation points are needw#d at functions that cor-
respond to nodes in the decision tree. To record functiomtsp@an array of counters
is used to track execution for each instrumented functie.Gt be the set of moni-
tored functions, and leE[g] be the expected number of times a functipis called in
a program’s execution. Note that these expectations canrhputed from the training
set. ThenZgEG E[g] gives the expected number of instrumented events per progra
execution, and will be proportional to overhead cost.

In call-tree profiling (CTP), instrumentation code at thaatsdf each function records
function call subtrees. Hence, the cost model accountfiéoexecution of all functions
that appear within any CTP feature. Given a set of CTP subtreer a set of functions
F, we approximate the overhead cost of instrumenting thelstess aszfeF E[f].
Once a function is part of a CTP feature, including it in aehént CTP feature does
not add significant overhead. Therefore, the cost of eadhrieaust be computed in
the context of the features that have already been added toethat an earlier stage of
the algorithm.

4.3 Results

Figure 1 (left) shows the cost/accuracy tradeoff forglee benchmark. As a baseline,
the cost of the trees built using the two best existing megifad quantified in section 3)
are also plotted. This curve is generated using five-foldk@lidation to estimate the
classification accuracy of the cost-sensitive decisiomftvevarious values of. Among
this set of (cost, accuracy) pairs, pareto optimal poingsidentified to generate the
cost/accuracy curve. Since the absolute overhead slowdowariunction of program
running time (which varies greatly from benchmark to benah the costs here are
normalized by the total instrumentation slowdown incuifed available features were

A o [Benchmark|BaselingCSGain w/FC, CTP
nmpg321 19.4% 158.3x
l] gcc 24.2% 1.8x
B gzprintf | 20.1% 1.7x
| at ex 44.0% 468.1x
foxpro 3.7% 1,485,943.7x
| ynx 1.9% 552.3%
apache 8.9% 4,684.2x

%0 3
Accuracy

Fig. 1. Left: cost/accuracy tradeoff for thicc benchmark. Right: costs for six benchmarks with
accuracy reductions of at most 1%. The Baseline column gives th&i@etree cost when built
with the baseline C4.5 algorithm, using CTP, expressed as a percehthgeaial cost of instru-
menting all features. The remaining columns provide the speedup rafio€d as baseline cost
/ cost) for C4.5 using the cost-sensitive gain criteria (CSGain) with FQCArRifeatures.

instrumented. For example, a cost btorresponds to instrumenting an averagest
of all function calls in an execution of a program.

Table 1 (right) gives decision tree costs for several beraskewhen trained using
the baseline, cost-insensitive C4.5 algorithm (using F@ @iP behavior profiles),
and also when trained using C4.5 with the CSGain criteriaT8)s improvement is
measured as the cost of the tree divided by the cost of thditmseost-insensitive
tree (note that this is the inverse of the cost ratio term useaection 3). For the cost-
sensitive algorithms, results are given for trees with emoylevels that are no less than
1% lower than the cross validated accuracy of the baselistiosensitive classifier
trained with FC and CTP representation. Our cost-sensiliyerithm yields reduction
in execution of instrumentation points of up to six ordersnafgnitude.

5 Related work

Building classifiers that minimize testing costs has resgtimuch attention in the field
of medical diagnosis. However, the problem of medical disimis fundamentally dif-
ferent from the forensic classification problem. Severat-@ensitive algorithms have
been proposed that build decision trees using non-incregherethods, such as a ge-
netic algorithm [14] and a “look ahead” heuristic [11]. Thesethods are not consid-
ered here, as the training time required is several ordareaghitude larger than a C4.5
based incremental algorithm.

In this paper, we have focused on the problem of minimiziisg ¢est while maxi-
mizing accuracy. In some settings, it is more appropriataitimize misclassification
costs instead of maximizing accuracy. For the two classlpropElkan [6] gives a
method to minimize misclassification costs given clasdificaprobability estimates.
Bradford et al. compare pruning algorithms to minimize faissification costs [1]. As
both of these methods act independently of the decisiorgtieeing process, they can
be incorporated with our algorithms (although we leave #siguture work). Ling et.

al. propose a cost-sensitive decision tree algorithm tpimizes both accuracy and
cost. However, the cost insensitive version of their alhaoni (i.e. the algorithm run if
all feature costs are zero), reduces to a splitting critteahmaximizes accuracy, which
is well known to be inferior to the information gain and gaatio criterion [13, 10].

Integrating machine learning with program understandingn active area of cur-
rent research. Systems that analyze root cause errorstiibgisd systems [3] and
systems that find bugs using dynamic predicates [2, 8, 9] rodly lpenefit from cost-
sensitive learning to decrease overhead monitoring costs.

6 Conclusion

We have introduced two algorithms for the problem of minimigfeature costs for
forensic classification. Our algorithms are modificatiomshte C4.5 decision tree al-
gorithm that use a well motivated cost-sensitive splittniteria. We provide extensive
experiments on real data and objectively demonstrate thiatrderion yield algorithms
that build cheaper trees than existing methods. Finallyjmgement our method in
a novel cost-sensitive forensic classification problera,@hARIFY system. We show
our algorithm can reduce overhead costs by many orders ofiitode at only a slight
(< 1%) reduction in classification accuracy.

References

1. J. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C. Brodley. ritng decision trees with
misclassification costs. IBuropean Conference on Machine Learnid§98.
2. Y. Brun and M. D. Ernst. Finding latent code errors via machine iegraver program
executions. INCSE 2004.
3. I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A.. Foapturing, indexing,
clustering, and retrieving system history. SOSP 2005.
4. T. M. Cover and J. A. Thoma£lements of information thearywiley Series in Telecom-
munications, 1991.
5. C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repositémnachine learning
databases, 1998.
6. C. Elkan. The foundations of cost-sensitive learninglnkernational joint conference on
artifical intelligence 2001.
7. J. Ha, H. Ramadan, J. Davis, C. Rossbach, |. Roy, and E. WitdNalel: Automating
software support by classifying program behavior. Technical RE€fR-06-11, University
of Texas at Austin, 2006.
8. S.Hangal and M. S. Lam. Tracking down software bugs using attomnomaly detection.
In ICSE 2002.
9. B.Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. |. Jordan. Scalabtatistical bug isolation.
In PLDI, 2005.
10. T. Mitchell. Machine Learning WCB McGraw-Hill, 1997.
11. S.W. Norton. Generating better decision treednternational joint conference on artifical
intelligence 1989.
12. M. Nunez. The use of background knowledge in decision tree fimiudn Machine Learn-
ing, 1991.
13. R. Quinlan.C4.5: programs for machine learninglorgan Kaufmann Publishers, 1992.
14. P. Turney. Cost-sensitive classification: Empirical evaluation oftaith genetic decision
tree induction algorithm. Idournal of artificial intelligence researgi995.

