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ABSTRACT
This paper quantifies the effect of architectural design decisions on
the performance of TxLinux. TxLinux is a Linux kernel modified
to use transactions in place of locking primitives in several key sub-
systems. We run TxLinux on MetaTM, which is a new hardware
transaction memory (HTM) model.

MetaTM contains features that enable efficient and correct inter-
rupt handling for an x86-like architecture.Live stack overwrites
can corrupt non-transactional stack memory and requires a small
change to the transaction register checkpoint hardware to ensure
correct operation of the operating system. We also proposestack-
based early releaseto reduce spurious conflicts on stack memory
between kernel code and interrupt handlers.

We use MetaTM to examine the performance sensitivity of indi-
vidual architectural features. For TxLinux we find thatPolka and
SizeMattersare effective contention management policies, some
form of backoff on transaction contention is vital for performance,
and stalling on a transaction conflict reduces transaction restart
rates, but does not improve performance. Transaction write sets
are small, and performance is insensitive to transaction abort costs
but sensitive to commit costs.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: [Parallel Architecture]; D.4.0
[Operating Systems]: [General]

General Terms
Design, Performance

Keywords
Transactional Memory, OS Support, MetaTM, TxLinux

1. INTRODUCTION
Scaling the number of cores on a processor chip has become a

de factoindustry priority, with a lesser focus on improving single-
threaded performance. Developing software that takes advantage of
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multiple processors or cores remains challenging because of well-
known problems with lock-based code, such as deadlock, convoy-
ing, priority inversion, lack of composability, and the general com-
plexity and difficulty of reasoning about parallel computation.

Transactional memory has emerged as an alternative paradigm to
lock-based programming with the potential to reduce programming
complexity to levels comparable to coarse-grained locking without
sacrificing performance. Hardware transactional memory (HTM)
implementations aim to retain the performance of fine-grained lock-
ing, with the lower programing complexity of transactions.

This paper examines the architectural features necessary to sup-
port hardware transactional memory in the Linux kernel for the x86
architecture, and the sensitivity of system performance to individ-
ual architectural features. Many transactional memory designs in
the literature have gone to great lengths to minimize one cost at
the expense of another (e.g., fast commits for slow aborts). The
absence of large transactional workloads, such as an OS, has made
these tradeoffs very difficult to evaluate.

There are several important reasons to allow an OS kernel to
use hardware transactional memory. Many applications (such as
web servers) spend much of their execution time in the kernel, and
scaling the performance of such applications requires scaling the
performance of the OS. Moreover, using transactions in the ker-
nel allows existing user-level programs to immediately benefit from
transactional memory, as common file system and network activi-
ties exercise synchronization in kernel control paths. Finally, the
Linux kernel is a large, well-tuned concurrent application that uses
diverse synchronization primitives. An OS is more representative
of large, commercial applications than the micro-benchmarks cur-
rently used to evaluate hardware transactional memory designs.

The contributions of this paper are as follows.
1. Examination of the architectural support necessary for an

operating system to use hardware transactional memory, in-
cluding new proposals for interrupt-handling and thread-stack
management mechanisms.

2. Creation of a transactional operating system, TxLinux, based
on the Linux kernel. TxLinux is among the largest real-life
programs that use HTM, and the first to use HTM inside
a kernel. Unlike previous studies that have taken memory
traces from a Linux kernel [2], TxLinux successfully boots
and runs in a full machine simulator. To create TxLinux, we
converted many spinlocks and some sequence locks in Linux
to use hardware memory transactions.

3. Examination of the characteristics of transactions in TxLinux,
using workloads that generate millions of transactions, pro-
viding data that should be useful to designers of transactional
memory systems. We also compare against the conventional
wisdom gleaned from micro-benchmarks.



Primitive Definition
xbegin Instruction to begin a transaction.
xend Instruction to commit a transaction.
xpush Instruction to save transaction state and

suspend the current transaction.
xpop Instruction to restore transactional state

and continue thexpushed transaction.
Contention policy Choose a transaction to survive on con-

flict.
Backoff policy Delay before a transaction restarts.

Table 1: Transactional features in the MetaTM model.

4. Examination of the sensitivity of system performance to the
design of individual architectural features in a context that
allows a more realistic evaluation of their benefits and trade-
offs. Features include contention policies (including the novel
SizeMatterspolicy), backoff policies, and variable commit
and abort costs.

The rest of the paper is organized as follows. Section 2 describes
MetaTM our model for hardware transactional memory. Section 3
describes the mechanisms that we use to properly handle interrupts
in a transactional kernel, and Section 4 describes the related issue
of dealing with stack memory. Section 5 describes TxLinux, our
transactional variant of the Linux kernel. Section 6 evaluates the
performance of TxLinux across a group of common benchmarks.
Section 7 discusses related work, and Section 8 concludes.

2. ARCHITECTURAL MODEL
In order to evaluate the how system performance is affected by

different hardware design points, we built a parametrized system
called MetaTM. While we did not follow any particular hardware
design too closely, MetaTM bears the strongest resemblance to
LogTM [26] with flat nesting. MetaTM also includes novel modi-
fications necessary to support TxLinux. This section describes ar-
chitectural features present in MetaTM.

2.1 Transactional semantics
Table 1 shows the transactional features in MetaTM. Starting

and committing transactions with instructions has become a stan-
dard feature of HTM proposals [25], and MetaTM usesxbeginand
xend. HTM models can be organized in a taxonomy according
to their data version management and conflict detection strategies,
whether they are eager or lazy along either axis [26]. MetaTM uses
eager version management (new values are stored in place) and ea-
ger conflict detection: the first detection of a conflicting read/write
to the same address will cause transactions to restart, rather than
waiting until commit time to detect and handle conflicts.

MetaTM supports multiple methods for resolving conflicts be-
tween transactional accesses. One way of resolving transactional
conflicts is to restart one of he transactions. MetaTM supports
different contention management policies that choose which trans-
action restarts. Alternately, if a transaction requests a cache line
owned by a different transaction, it can be stalled until the other
transaction finishes. This stall-on-conflict policy requires deadlock
detection to avoid circular waits. Whether a transaction waits be-
fore restarting and by how much is governed by the the backoff
policy. MetaTM does not support an explicit abort or restart primi-
tive, as TxLinux does not currently require either of these. MetaTM
supports strong atomicity [4], the standard in HTM systems where a
conflict between a non-transactional memory reference and a trans-
action always restarts the transaction.

MetaTM does not assume a particular virtualization design. When
a transaction overflows the processor cache, MetaTM charges an
overflow penalty (of 500 cycles) to model initialization of overflow
data structures. Any reference to a cache line that has been over-
flowed must go to memory. MetaTM manages and accounts for the
cache area used by multiple versions of the same data.

The cost of transaction commits or aborts are also configurable.
Some HTM models assume software commit or abort handlers (e.g.
LogTM specifies a software abort handler); a configurable cost al-
lows us to explore performance estimates for the impact of running
such handlers.

2.2 Managing multiple transactions
MetaTM supports multiple active transactions on a single thread

of control [32]. Recent HTM models have included support for
multiple concurrent transactions for a single hardware thread in or-
der to support nesting [25,27,28]. Current proposals feature close-
nested transactions [25, 27, 28]. open-nested transactions [25, 27],
and non-transactional escape hatches [27, 37]. In all of these pro-
posals, the nested code has access to the updates done by the en-
closing (uncommitted) transaction. MetaTM provides completely
independent transactions for the same hardware thread managed as
a stack. Independent transactions are easier to reason about than
nested transactions. The hardware support needed is also simpler
than that needed for nesting (a small number of bits per cache line,
to hold an identifier). There are several potential uses for indepen-
dent transactions. TxLinux uses them to handle interrupts, as will
be discussed in Section 3.

xpush suspends the current transaction, saving its state so that
it may continue later without the need to restart. Instructions ex-
ecuted after anxpush are independent from the suspended trans-
action, as are any new transactions that may be started—there is
no nesting relationship. Multiple calls toxpush are supported. An
xpush performed when no transaction is active, is still accounted
for by the hardware (in order to properly managexpop as described
below). Suspended transactions can lose conflicts just like running
transactions, and any suspended transaction that loses a conflict
restarts when it is resumed. This is analogous to the handling of
overflowed transactions [9,31], which also can lose conflicts.

xpop restores a previouslyxpushed transaction, allowing the
suspended transaction to resume (or restart, if it needs to be). The
xpush andxpop primitives combine suspending transactions and
multiple concurrent transactions with a LIFO ordering restriction.
Such an ordering restriction is not strictly necessary, but it may sim-
plify the processor implementation, and it is functionally sufficient
to support interrupts in TxLinux. Whilexpushandxpop are imple-
mented as instructions in MetaTM, they could also be implemented
by a particular HTM design as groups of instructions. Suspending
and resuming a transaction is very fast, and can be implemented by
pushing the current transaction identifier on an in-memory stack.

2.3 Contention management
When a conflict occurs between two transactions, one transaction

must pause or restart, potentially after having already invested con-
siderable work since starting. Because transaction restarts cause
threads to repeat work, there is potential for transactions to per-
form poorly when contention is high. Contention management is
intended to reduce contention in order to improve performance.
MetaTM model supports the contention management strategies pro-
posed by Scherer and Scott [33], adapted to an HTM framework.
Because hardware transactions do not block in our model (they can
execute, restart, or stall, but cannot wait on a queue), certain fea-
tures required adaptation. The policies are summarized in Table 2.



Policy Definition
Polite Use backoff up to an empirical threshold, 10

in our case. Section 2.4 describes the types of
backoff used in this study.

Karma Abort transaction that has done the least work.
Work is estimated with the number of op-
erations to unique addresses within a trans-
actional context. Karma updates a priority
counter for each transactional reference, and
does not reset the counter on restarts.

Eruption Karma variant, with priority boosting. Con-
flict winner’s priority is added to the loser, who
has a higher priority for future conflicts.

Kindergarten Transactions are willing to defer to each other
once, but no more. If no transactions in a con-
flict are willing to defer, resorts to the times-
tamp policy.

Timestamp Oldest transaction wins. Timestamp is not re-
freshed on restart [30].

Polka Polite backoff strategy combined with Karma
priority accumulation. The number of refer-
ences to the transaction working set approxi-
mates priority, which is the same as the Karma
policy. The backoff strategy does not have to
be exponential, and the backoff seed (normally
random) is the delta between the approximated
priorities. With eager conflict detection, at
least one of the operations involved in a con-
flict arbitration must be a write; consequently
the policy defaults to a “writes-always-win”
policy, unless both conflicting operations are
writes.

SizeMatters Largest transaction size (unique bytes read or
written) wins. Size is reset on restart. After an
empirical threshold number of restarts, it re-
verts to timestamp, to avoid livelock.

Table 2: Contention management policies explored for
TxLinux.

We introduce a new policy calledSizeMatters. SizeMatters fa-
vors the transaction that has the larger number of unique bytes read
or written in its transaction working set. An implementation could
count cache lines instead of bytes. A transaction using SizeMatters
must revert to timestamp after a threshold number of restarts be-
cause SizeMatters can livelock. Each time a transaction is restarted,
it can execute a different code path which causes it to have a dif-
ferent size working set by the time it returns to a recurring conflict
point. Recurrent mutual aborts are very rare, but reverting to times-
tamp eliminates livelock, because timestamp is livelock-free [30].

The interaction of suspended transactions (viaxpush) and con-
tention management is discussed in Section 3.5.

2.4 Backoff
When a conflict occurs between transactions, and one has been

selected to restart, the decision forwhenthe restart occurs can im-
pact performance. In particular, if there is a high probability that an
immediate restart will simply repeat the original conflict and cause
another restart, it would be prudent to wait for the other transaction
to complete. In the absence of an explicit notification mechanism,
the decision for how long to wait is heuristic. The MetaTM model
supports using different backoff strategies and we explore their im-
pact on workloads.

Previous work has focused on exponential backoff strategies.
The following list summarizes the backoff policies explored by
MetaTM [33].

• Exponential –Exponential Backoff is implemented by choos-
ing a random seed between 1 and 10. The number of times
the conflicting transaction has backed off is raised to the
power of 2, and multiplied by the seed to determine the num-
ber of cycles the conflicting transaction should wait before
restarting.

• Linear – Linear Backoff is implemented by choosing a ran-
dom seed between 1 and 10. The seed is multiplied by the
number of times the conflicting transaction has backed off to
determine the number of cycles that the conflicting transac-
tion should wait before a restart.

• Random – Random backoff is implemented by choosing a
number of cycles at random to wait before restarting. The
maximum value is 1000.

• None –Retry as soon as possible.

2.5 Device initiated memory operations
Memory operations initiated by devices (rather than by instruc-

tions) are not part of any transactional context in MetaTM. For in-
stance, when the TLB reads from the page table, the read is not
entered into the current transaction’s working set. TxLinux does
not change the kernel’s protocol for maintaining TLB coherence.
When a processor takes an interrupt in kernel mode, it stores state
on the kernel stack. Such stores cannot be transactional because
the trap architecture is not transactional, and no facility exists to
re-raise an interrupt on a transaction restart.

3. INTERRUPTS AND TRANSACTIONS
The x86 trap architecture and stack discipline create challenges

for the interaction between interrupt handling and transactions. The
problems posed by the x86 trap architecture are similar to those
posed by other modern processors, and we believe that these prob-
lems are not adequately addressed in existing HTM proposals. We
present a microarchitectural design for the interaction of interrupts
and transactions that adds minimal hardware complexity while main-
taining ease of use and efficiency for transactions. In previous
work [32], we presented the key elements of the approach. Other
recent work [9] showed that solutions that do not abort active trans-
actions to handle interrupts provide better system performance, which
validates some of our initial assumptions.

This section provides background on interrupt handling, as well
as how existing HTM systems deal with interrupts. It then cov-
ers the motivation for how MetaTM and TxLinux deal with inter-
rupts. The mechanism for interrupt handling in TxLinux is covered
in Section 3.4, and the implications for contention management in
Section 3.5. In the next section (Section 4), we explore the interac-
tion of stack memory and transactions, which arise in part because
of our interrupt-handling strategy.

3.1 Interrupt handling background
One primary function of the operating system is to respond to in-

terrupts, which are asynchronous requests from devices or from the
kernel itself. Interrupt handlers in Linux are split into two halves.
The top-half interrupt handler runs in response to a device inter-
rupt that signals the completion of some work, e.g., the read of a
disk block. While top-half interrupt handlers are executing, they
disable all interrupts at equal and lower priorities to ensure forward
progress. To keep system response latency low, top-half interrupt
handlers have relatively short execution paths, pushing as much
work as possible into a deferred function, or bottom half. Deferred
functions can be long. Linux checks for and runs deferred func-
tions in several places. The exact taxonomy of deferred functions in
Linux is complex, but deferred functions run asynchronously with



respect to system calls, just like device interrupt handlers. The op-
erating system does a significant amount of work at the interrupt
level, including memory allocation and synchronized access to ker-
nel data structures.

Linux interrupt handlers are a prime candidate for the program-
ming simplicity of transactions, provided the transactional hard-
ware can provide equivalent performance to the fine-grain locking
on which they currently rely.

3.2 Interrupts in existing HTM systems
Much existing work on HTM systems [2, 21, 26, 29–31] makes

several assumptions about the interaction of interrupts and trans-
actions. These works assume that transactions are short and that
interrupts are infrequent enough to rarely occur during a transac-
tion. As a result, efficiently dealing with interrupted transactions
is unnecessary. They assume that interrupted transactions can be
aborted and restarted, or their state can be virtualized using mech-
anisms similar to those for surviving context switches.

Nested LogTM [27] and Zilles [37] allow transactional escape
actions that allow the current transactional context to be paused to
deal with interrupts. However, both of these systems do not allow a
thread with a paused transaction to create a new transaction. A de-
sign goal of MetaTM is to enable transactions in interrupt handlers
and data in Table 6 show anywhere from 11–60% of transactions in
TxLinux come from interrupt handlers.

XTM [9] makes significant assumptions about the flexibility of
interrupt handling. When an interrupt happens in XTM, the inter-
rupt controller calls into the OS scheduler on a selected core. The
scheduler runs inside of an open nested transaction so it does not
affect any ongoing transaction. If the interrupt is not critical, it
is handled after the current transaction completes. Otherwise, the
current transaction is aborted. If this method leads to a long trans-
action being repeatedly aborted, the transaction is virtualized, so
that further interrupts do not affect it.

3.3 Motivating factors
This section presents some of the factors that affect and influence

the design of interrupt handling in an HTM system. These include
transaction length, interrupt frequencies, and interrupt routing lim-
itations.

3.3.1 Transaction length
One of the main advantages of transactional memory program-

ming is reduced programmer complexity due to an overall reduc-
tion in possible system states. Coarse-grained locks provide the
same benefit, but at a performance cost. The majority of the bench-
marks used for research have focused on converting existing crit-
ical sections to transactions. Those critical sections were defined
in the context of pessimistic concurrency control primitives, and
thus were kept short for performance reasons. Because these short
critical sections can be quite complex, future code that attempts to
capitalize on the programming advantages of TM will likely pro-
duce transactions that are larger than those seen today.

3.3.2 Interrupt frequency
Our data shows much higher interrupts rates than e.g., Chung et

al. [9] who assume that I/O interrupts arrive every 100,000 cycles.
For the MAB benchmark, which is meant to simulate a software
development workload (see Section 6.1 for the full description), an
interrupt occurs every 24,511 non-idle cycles. The average transac-
tion length for TxLinux running MAB is 896 cycles. If the average
transaction size grows to 7,000 cycles (a modest 35 cache misses),
then 31.2% of transactions will be interrupted.

3.3.3 Interrupt routing limitations
Most interrupts should be handled on a particular processor. The

most common source of interrupts are page faults and the local ad-
vanced programmable interrupt controller (APIC) timer interrupt.
Page faults should be handled locally because they cause a syn-
chronous processor fault. The local APIC timer interrupt must be
handled locally for the OS to provide preemptive multitasking. The
third largest source of interrupts on TxLinux are interprocessor in-
terrupts, which also must be handled by the local CPU for which
they are intended. For the MAB workload, 96% of interrupts are
page faults, 2.5% are local timer interrupts (TxLinux is configured
with high resolution timers), 0.5% are inter-processor interrupts
and 0.4% are device interrupts that can be handled by any proces-
sor.

Chung et al. [9] propose routing interrupts to the CPU best able
to deal with them, though TxLinux must process 99% of its inter-
rupts on the CPU on which they arrive. Even if interrupt routing
were possible, it is unclear how the best CPU is determined. While
CPUs in XTM are always executing transactions, CPUs might or
might not be executing a transaction in other HTM models like
LogTM and MetaTM. A hardware mechanism that indicates which
CPU is currently not executing a transaction would require global
communication and could add significant latency to the interrupt
handling process. The best interrupt routing strategy is also un-
clear: it may be better for system throughput to route an interrupt
to a processor that is executing a kernel-mode transaction rather
than to a processor that is executing user-mode code that is not in a
transaction.

3.4 Interrupt handling in TxLinux
Consistent with our assumptions that interrupts are frequent, that

transactions will grow in length, and that interrupt routing is less
flexible than considered in other systems, we have designed Meta-
TM to handle interrupts without necessarily aborting the current
transaction. In TxLinux, interrupt handlers use thexpushandxpop
primitives in order to suspend any current transaction when an in-
terrupt arrives.

Interrupt handlers in TxLinux start withxpush to suspend the
currently running transaction. This allows the interrupt handler to
start new, independent transactions, if necessary. The interrupt re-
turn path ends with anxpop instruction. There is no nesting rela-
tionship between the suspended transaction and the interrupt han-
dler. Multiple (nested) interrupts can result in multiple suspended
transactions.

3.5 Interrupts and contention management
Timestamp-based contention management has been a common

default for HTM systems [29, 30] because it is simple to imple-
ment in hardware and it guarantees forward progress. However,
in the presence of interrupts and multiple active transactions on
the same processor, timestamp-based contention management will
cause livelock. Consider a transactionA, which runs and is sub-
sequently suspended via anxpush when an interrupt arrives. A
second transactionB, started by an interrupt handler conflicts with
A. Because it is more recent, a timestamp-based policy dictates
thatB will lose the conflict. IfB restarts, it will continue restart-
ing indefinitely becauseA is suspended. This problem applies to
any contention management policy where a suspended transaction
will continue to win over a current transaction. Consequently, sus-
pended transactionsrequire modification of basic hardware con-
tention management policies to favor the newest transaction when
transactions conflict on the same processor.



int atomic_dec_and_xbegin(atomic_t *atomic,
spinlock_t *lock) {

int ret_code = 0;
xbegin; /* was spin_lock(lock) */
if (atomic_dec_and_test(atomic)) {

ret_code = 1;
} else {

xend; /* was spin_unlock(lock) */
}
return ret_code;

}
void dput(struct dentry *dentry) {

if (atomic_dec_and_xbegin(&dentry->d_count,
&dcache_lock)) {

d_free(dentry); /* calls call_rcu */
xend;/* was spin_unlock(&dcache_lock); */

}
}

Figure 1: A simplified and slightly modified version of code
from TxLinux to release a directory cache entry.

4. STACK MEMORY AND TRANSACTIONS
Some previous work has assumed that stack memory is not shared

between threads and has therefore excluded stack memory from the
working sets of transactions [14]. However, stack memory is shared
between threads in the Linux kernel (and in many other OS ker-
nels). For example, theset pio mode function in the ide driver
adds a stack-allocated request structure to the request queue, and
waits for notification that the request is completed. The structure is
filled in by whichever thread is running on the CPU when the I/O
completion interrupt arrives.

On the x86 architecture, Linux threads share their kernel stack
with interrupt handlers. The sharing of kernel stack addresses re-
quires stack addresses to be part of transaction working sets to en-
sure isolation. Interrupt handlers will overwrite stack addresses
and corrupt their values if stack addresses are not included in the
transaction working set. Even when stack addresses are included
in transaction working sets, there is a correctness problems (Sec-
tion 4.2) and a performance problem (Section 4.3).

4.1 Transactions that span activation frames
Many proposals to expose transactions at the language level [6,

7, 36] rely on anatomic declaration. Such a declaration requires
transactions to begin and end in the same activation frame. Sup-
porting independentxbeginandxend instructions complicates this
model because calls toxbeginandxendcan occur in different stack
frames. Linux heavily relies on procedures that do some work, grab
a lock, and later release it in a different function. To minimize the
software work required to add transactions to Linux, MetaTM does
not requirexbegin and xend to be called in the same activation
frame.

A simplified version of TxLinux code is depicted in Figure 1,
where the kernel starts a transaction in one activation frame (atom-
ic dec and xbegin, where the pre-transaction code would grab
a spinlock) and ends it in another (dput). Requiring that stack
memory be part of a transaction and that transactions be able to
span activation frames introduces two issues with interrupt han-
dling: a correctness problem and a performance issue.

4.2 Live stack overwrite problem
Figure 2(A) shows the stack memory where TxLinux starts in the

functiondput (t0). It callsatomic dec and xbegin, sets the
value of local variableret code with a non-transactional store,

and then starts a transaction (t1). The code then returns todput
(t2). While in dput, the CPU on which the kernel thread is ex-
ecuting gets interrupted (u3). The x86 trap architecture specifies
that interrupts that do not cause a protection switch (e.g., an inter-
rupt when the processor is already in kernel mode) use the current
value of ESP. Therefore the processor (non-transactionally) saves
registers at the point labeledESPintr, the stack value when the
interrupt arrives. The interrupt handler executes anxpush which
suspends the current transaction, and then the interrupt handler
can non-transactionally store local variables on the stack, includ-
ing overwriting the value ofret code.

When the interrupt handler finishes, itxpops back into the trans-
action that it interrupted. If the transaction needs to restart, the
stack pointer is reset to the checkpointed value,ESPchkpt, which
is the value of ESP when the transaction began. The transaction be-
gan in a stack frame whereret code is a live variable. However
the value ofret code has been overwritten by non-transactional
stores in the interrupt handler.atomic dec and xbegin also
updatedret code non-transactionally, so the re-execution of the
transaction is incorrect. The value of a live stack-allocated vari-
able has changed. We call this situation the live stack overwrite
problem.

Several factors contribute to the live stack overwrite problem:
1. Calls toxbeginandxendoccur in different stack frames.
2. The x86 trap architecture reuses the current stack on an in-

terrupt that does not change privilege level.
3. A transaction that is suspended (due to an interrupt) can restart.
To eliminate live stack overwrites, we propose a simple change

to the trap architecture of the x86—if a transaction is active during
an interrupt, and the value ofESPintr (the ESP value at the time
of the interrupt) is larger than theESPchkpt (the ESP value at the
start of the transaction), then start the interrupt handler stack frame
at ESPchkpt. The processor writes the value ofESPintr on the
stack, because the x86 specifies that the processor save several reg-
isters to the stack on an interrupt (that does not change privilege
level) including ESP. But the processor writesESPintr at the lo-
cation ofESPchkpt in Figure 2. TheESPchkpt value “protects”
all stack values above it by not allowing interrupt handlers to write
into the region of the stack that is active when the transaction be-
gins. This process is depicted in v3, which follows step t2.

This change is straightforward for the most comprehensive reg-
ister checkpoint design in the literature [2]. In that design, check-
pointed registers are not returned to the free register pool until the
xend instruction graduates. The processor compares the current
ESP with the last checkpointed ESP, and if the latter were a lower
address, it copies the content ofESPchkpt to ESP before saving
registers and starting the interrupt handler. When the interrupt han-
dler returns, ESP is restored toESPintr (the value stored on the
stack), not the last checkpointed ESP.

4.3 Transactional dead stack problem
Conflicts on stack addresses can cause performance problems

in addition to the live overwrite correctness problems already dis-
cussed. Dead portions of the stack e.g., from a completed proce-
dure call, remain in a transaction’s working set, and these addresses
can cause spurious conflicts. If transaction A is active when an in-
terrupt arrives, and an interrupt handler suspends A, and then uses
the same stack memory of the thread that started transaction A. The
handler can conflict with dead stack frame addresses that are still
in A’s transaction set. Because the stack memory was no longer
in use, yet remained in the transaction’s working set, it caused an
unnecessary restart. This problem still occurs even with the above
fix for live stack overwrites.
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ber: the numbers indicate temporal order and the letters indicatedifferent timelines, so t0,t1,t2,v3 is one sequence of events and
t0,t1,t2,w3,w4,w5,w6 is another. Each box is an activation frame, and in the upper left of each frame in bold is the name of the
procedure. Within the frame, and right justified, are the names oflocal variables, such asret code. Section (A) depicts a live stack
overwrite problem. In steps t0–t2, a transaction starts in one function (atomic dec and xbegin) which then returns and then an
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problem. It picks up after t2 with an alternate timeline starting at step w3. Heredput callsd free which callscall rcu which
returns and then an interrupt arrives. The handler conflicts with the flags variable, even though the variable is dead.ESPchkpt is
the value of the stack pointer when the transaction starts and the register values are checkpointed.ESPintr is the value of the stack
pointer when an interrupt arrives. Stacks grow down, toward lower numbered addresses.

Figure 2(B) shows a case where the interrupt handler needlessly
interferes with a suspended transaction. TxLinux starts indput
(t0), and callsatomic dec and xbegin, where it starts a trans-
action (t1). The code returns todput (t2). dput callsd free
(w3) which callscall rcu, which has a local variable called
flags (w4). All of these function calls are within the scope of
the current transaction, so all writes to the stack frame are part of
the transaction’s write set.call rcu returns (w5), and an inter-
rupt arrives (w6).ESPintr is at a lower address thanESPchkpt,
so this is not a potential live stack overwrite. However, the interrupt
handler will overwrite stack locations written during the activation
of call rcu (e.g.,flags). These writes will cause the interrupt
handler to conflict with the suspended transaction, even though the
suspended transaction no longer cares about the stack state from
that activation frame.

We suggest a new mechanism calledstack-based early releaseto
avoid such false conflicts on stack memory. Early release [20, 35]
is the explicit removal of memory addresses from a transaction’s
working set before that transaction completes. During an active
transaction, any time the stack pointer (ESP) is incremented, if the
new value of ESP is on a different cache line from the old ESP,
then the processor releases the old cache line(s) from the transac-
tion set. This works on the x86 (and is specific to it) because the
stack pointer is constantly adjusted, only via ESP, to delimit the
live range of the stack. On the x86, the stack pointer is not related
to the frame pointer (if the compiler allocates a frame pointer), and
the hardware is allowed to write the address contained in ESP at
any time because an interrupt might arrive at any time.

In Figure 2(B), when the processor returns fromcall rcu, it
will release the line that has theflags variable. While proce-
dure returns might release several lines, almost every other ESP
incrementing instruction (e.g., pop) will release at most one cache
line. Becauseflags is early released, the interrupt handler will
not conflict with it, even if it writes that stack address. Stack-based
early release is a performance optimization for MetaTM.

5. MODIFYING LINUX TO USE HTM
This section describes the modifications made to the Linux ker-

nel version 2.6.16.1 to support transactions. A natural approach to
converting an existing code-base to use transactions is to focus on
replacing existing synchronization primitives. Much of the current
literature on hardware transactional memory assumes a simple pro-
graming model for lock-based code that does not capture the diver-
sity of synchronization primitives used in Linux. Linux supports
spinlocks, reader/writer spinlocks, atomic instructions, sequence
locks (seqlocks), semaphores, reader/writer semaphores, comple-
tions, mutexes, read-copy-update (RCU), and futexes. Each prim-
itive has a different bias, such as favoring readers or writers when
contention exists. To create TxLinux, we modified the following
subset of those primitives:

• Spinlocks. These are the the most popular primitive in the
Linux kernel by static count—over 2,000 call sites. They
are intended for short critical sections where the caller spins
(polls) while waiting for the critical section. TxLinux has
substituted transactions for spinlocks, reader/writer spinlocks
and variants which disable interrupts or soft-irqs. Conversion
of spinlocks to transactions is straightforward: lock acquires
and releases map to transaction begins and ends respectively.

• Atomic instructions. Atomic instructions guarantee that a
single read-modify-write operation will be atomically com-
mitted or aborted to memory. They are safely subsumed by
transactions , i.e. if a processor starts a transaction and then
issues an atomic operation, that operation simply becomes
part of the current transaction.

• Seqlocks.Sequence locks (seqlocks) are reader/writer locks
that are an all-software analog to transactions. Seqlocks pri-
oritize writers. Readers store a counter value at the start of
a critical region, and writers increment the counter. A reader
rereads the counter at the end of the critical region and if the
value has changed, the reader re-executes its code. Regions
protected by seqlock loops are protected by a transaction in
TxLinux.

• Read-copy-update.Read-copy-update (RCU) [3] data struc-
tures avoid reader locks for a restricted class of data struc-



tures. RCU protects dynamically allocated data structures
that are accessed by pointers. The implementation of RCU
uses spinlocks, and these are converted to use transactions in
TxLinux. TxLinux maintains the behavior that dynamically
allocated memory used in RCU data structures is only freed
when the kernel guarantees there are no more pointers to it.

There are significant barriers to converting Linux to use trans-
actions [32], so our approach to converting Linux is incremental.
Guided by profiling data, we selected the most contended locks in
the kernel for transactionalization. The following subsystems were
transactionalized: the slab memory allocator [5], the filesystem di-
rectory cache, filesystem translation of path names (which used a
seqlock), the RCU internal spinlock, mapping addresses to pages
data structures, memory mapping sections into address spaces, IP
routing, and socket locking and portions of the zone allocator.

6. EVALUATION
Linux and TxLinux versions 2.6.16.1 run on the Simics machine

simulator version 3.0.17. For our experiments, Simics models an 8-
processor SMP machine using the x86 architecture. For simplicity
we assume an IPC of 1 instruction per cycle. The memory hierar-
chy has two levels of cache per processor, with split L1 instruction
and data caches and a unified L2 cache. The caches contain both
transactional and non-transactional data. Level 1 caches are each
16 KB with 4-way associativity, 64-byte cache lines, 1-cycle cache
hit and a 16-cycle cache miss penalty. The L2 caches are 4 MB,
8-way associative, with 64-byte cache lines and a 200 cycle miss
penalty to main memory. Cache coherence is maintained with a
MESI snooping protocol, and main memory is a single shared 1GB.
For this study we fix the conflict detection granularity in MetaTM
at the byte level, which is somewhat idealized, but Linux has opti-
mized its memory layout to avoid false sharing on SMPs.

The disk device models PCI bandwidth limitations, DMA data
transfer, and has a fixed 5.5ms access latency. All of the runs are
scripted, requiring no user interaction. Finally, Simics models the
timing for a tigon3 gigabit network interface card with DMA sup-
port, with an ethernet link that has a fixed 0.1ms latency.

We use execution-based simulation to evaluate TxLinux. Execu-
tion based simulation is important because small changes to thread
event timing create larger-scale changes in workloads [1]. For ex-
ample, the added latency from a transaction backoff can affect the
order in which threads are scheduled. Execution-based simulation
allows the timing of events to feed back into execution, where trace-
based studies (such as [2,10,15]) simply count the number of events
in the thread schedule that occurred when the trace was taken.

One disadvantage to full execution-based simulation is that it is
resource intensive. The data for this paper was collected by 150
simulations, with each simulation averaging 15 hours (the range
is from 6 hours, to 6 days, depending on the exact configuration).
When initially exploring the design space to find reasonable “de-
fault” parameters, many more simulations were required. These
simulations were performed in parallel over the course of several
weeks on a large cluster of workstations.

6.1 Workloads and microbenchmarks
We evaluated TxLinux on a number of application benchmarks.

The complete suite of benchmarks is listed in Table 3. The counter
microbenchmark is different than the rest, in that the transactions it
creates are defined by the micro-benchmark. The rest of the bench-
marks are non-transactional user programs that run atop the Linux
and TxLinux kernels. Thus, the transactions that they create are
those due to TxLinux. This difference should be kept in mind as
the characteristics of transactions are presented below.

Name Description
counter A high contention shared counter micro-benchmark.

The benchmark consists of 8 kernel threads (one per
CPU) incrementing a single shared counter in a tight
loop with no think time (like [2] and unlike [21, 26,
29]). Each thread performs a fixed number of incre-
ments, with synchronization enforced with spinlocks
in Linux, and transactions in TxLinux.

pmake Runs make -j 8 to compile the smallest 8 source files
in the libFLAC 1.1.2 source tree and link them.

netcat Send a stream of data over TCP. One instance per
CPU.

MAB Evaluates file system performance by simulating a
software development workload. Runs 16 instances
of the first four phases of the Modified Andrew
Benchmark (no compile phase) in parallel.

configure Run 8 parallel instances of the configure script for
teTeX, one for each processor.

find Run 8 instances of the “find” command to print the
contents of a 78MB directory consisting of 29 direc-
tories with 968 files. The file contents are searched
for a text string that is not found.

Table 3: Benchmarks used to evaluate TxLinux on 8 CPUs.

counter pmake netcat MAB config find
Linux 11.68s 0.66s 11.20s 2.48s 5.04s 0.93s
TxLinux 6.42s 0.67s 11.12s 2.47s 5.09s 0.93s
U/S/I Pct. 0/91/9 27/13/60 1/54/45 22/57/21 36/43/21 43/50/7

Table 4: Linux v. TxLinux system time (in seconds). Also
shown is the division of total benchmark time into percentage
of user/system/idle time.

6.2 TxLinux performance
Tables 4 and 5 show execution time and cache miss rates across

all benchmarks for unmodified Linux and TxLinux. The execution
times reported in this study are only the system CPU time because
only the kernel has been converted to use transactions. The user
code is identical in the Linux and TxLinux experiments. To give
an indication of the overall benchmark execution time, Table 4 also
shows the breakdown of total benchmark time into user, system,
and idle time, for the Linux kernel. In both Linux and TxLinux,
the benchmarks touch roughly the same amount of data with the
same locality; data cache miss rates do not change appreciably. The
performance of the two systems is comparable, with the exception
of the counter micro-benchmark, which sees a notable performance
gain because the elimination of the lock variable saves over half of
the bus traffic for each iteration of the loop.

Table 6 shows the basic characteristics of the transactions in
TxLinux. The number of transactions created and the creation
rate are notably higher than most reported in the literature. For
instance, one recent study of the SPLASH-2 benchmarks [8] re-
ported less than 1,000 transactions for every benchmark. The data

counter pmake netcat MAB configure find
Linux L1 5.90 % 4.78 % 18.09 % 12.85 % 9.68 % 21.09 %

L2 40.64 % 0.42 % 2.49 % 1.07 % 1.03 % 4.20 %
TxLinux L1 0.17 % 4.80 % 18.10 % 12.82 % 9.68 % 21.01 %

L2 0.47 % 0.42 % 2.47 % 1.03 % 1.02 % 4.15 %

Table 5: Linux v. TxLinux cache miss rates.



counter pmake netcat MAB configure find
Total Transactions 12,003,505 382,657 339,265 2,166,631 3,021,123 225,832
Transaction Rate (Tx/Sec) 1,371,359 32,486 16,635 449,322 182,072 121,808
Transaction Restarts 3,357,578 10,336 10,970 36,698 65,742 25,774
Transaction Restart Pct. 21.9 % 2.6 % 3.1 % 1.7 % 2.1 % 10.2 %
Unique Tx Restarts 1,594 3,134 3,414 11,856 23,229 5,211
Unique Tx Restart Pct. 0.01 % 0.81 % 1.00 % 0.54 % 0.76 % 2.30 %
Pct. Tx In Interrupts, etc. 99 % 60 % 16 % 46 % 60 % 11 %
Pct. Tx In System Calls 1 % 40 % 84 % 54 % 40 % 89 %
Live stack overwrites 8,755 49 4 273 523 4
Interrupted Transactions 56,793 104 33 1,175 1,057 39

Table 6: TxLinux transaction statistics. Total transactions, transactions created per second, and restart measurements for 8cpus
with TxLinux.

shows that the rate of restarts is low, which is consonant with other
published data [26]. Relatively low restart rates are to be expected
for TxLinux because TxLinux is a conversion of Linux spinlocks,
and significant effort has been directed to reducing the amount of
data protected by any individual lock acquire.

We distinguish between two types of restarts:uniqueandnon-
uniquerestarts. Non-uniquerestarts count each unsuccessful at-
tempt at completing a transaction.Unique restarts measure how
many transactions restarted at least once. For example, if a thread
starts a transaction which restarts 10 times before completing, it
will count as 10 non-unique restarts, but as only 1 unique restart.
With this distinction in mind, we define “Total Transactions” to
be unique transactions, which insulates it from the effects of con-
tention management, and makes it closer to being a property of
the program under test. We define “Transaction restarts” to be
non-unique restarts. This is why “Tx Restarts” can exceed “To-
tal Transactions”. Total non-unique transactions can be computed
from the data we present. To calculate the restart rate we use:

TxRestarts

TxRestarts+TotalTx
.

The find benchmark shows the highest amount of contention,
excepting the counter micro-benchmark. There are several dozen
functions that create transactions, but approximately 80% of the
transactions in find are started in two functions in the filesystem
code (findget page and dolookup). These transactions, however,
have low contention, causing only 178 restarts. 88% of restarts are
caused by two other functions (getpagefrom freelist and free-
pagesbulk), which create only 5% of the transactions.

6.3 Stack memory and transactions
Also shown in Table 6 is the number of live stack overwrites.

While the absolute number is low relative to the number of transac-
tions, each instance represents a case where without our architec-
tural mechanism, an interrupt handler would corrupt the stack of a
kernel thread in a way that could compromise correctness.

The table also shows the number of interrupted transactions. The
number is low because many of the spinlocks that TxLinux converts
to transactions also disable interrupts. However, it is the longer
transactions that are more likely to be interrupted and will lose
more work from being restarted because of an interrupt.

Stack-based early release prevents 390 transaction conflicts in
MAB, 14 in find and 4 in pmake. These numbers are small be-
cause TxLinux only usesxpush and xpop in interrupt handlers,
and most transactions are short, without many intervening func-
tion calls. As transactions get longer and/orxpush andxpop are
used in more general programming contexts, stack-based early re-
lease will become more important. The work required to release

the stack cachelines is not large—MAB releases 48.2 million stack
bytes while pmake releases 2.8, and both run for billions of cycles.

6.4 Transaction working sets
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Figure 3: Transaction distribution by number of unique mem-
ory (byte) locations read or written. Benchmark names on axis
represent values between 0 and 1%.
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Figure 4: Transaction distribution by number of 64-byte cache
blocks read or written. Benchmark names on axis represent
values between 0 and 1%.



Distribution by Write Set (Bytes)
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Figure 5: Transaction distribution by number of unique mem-
ory (byte) locations written. Benchmark names on axis repre-
sent values between 0 and 1%.
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Figure 6: Transaction distribution by number of 64-byte cache
blocks written. Benchmark names on axis represent values be-
tween 0 and 1%.

Figures 3, 4, 5, and 6 present information about the size of trans-
actions in TxLinux. Figures 3 and 5 show the distribution of trans-
actions according to the number of unique byte-addressed locations
they involve, while Figures 4 and 6 are in terms of unique cache line
blocks involved, with block size fixed at 64 bytes.

Figures 3 and 4 show the total memory locations read or writ-
ten by a transaction. If a location is both read and written, it is
only counted once; if multiple reads or writes occur, they are only
counted once as well. This is the traditional definition of working
set, and indicates the net work of a transaction. With the excep-
tion of counter, where the working set size is tiny by design, the
benchmarks show that most, but not all, transactions in TxLinux
are small. Most transactions touch less than 8 cache blocks. For the
netcat benchmark, however, most transactions touch between 8 and
16 cache blocks, and 9% of transactions touch more than 16 cache
blocks. One interesting statistic is the average number of memory
addresses touched per cache block. For netcat, the average transac-
tion touches about 128 bytes; about half are between 64-128, and
half are between 128-256. The average number of blocks touched
is 8. Since cache blocks are 64 byte in size, only one fourth of the
data in cache blocks touched by the transaction is actually used.

Figure 7: Relative system time for all benchmarks, varying the
commit penalty among 0, 100, 1000 and 10,000 cycles.

Figure 8: Relative system time for all benchmarks, varying the
abort penalty among 0, 100, 1000 and 10,000 cycles.

Figures 5 and 6 focus on the memory written by a transaction,
counting multiple writes to the same location only once. These
measurements provide information not found in the traditional def-
inition of working set. For HTM implementations, the amount of
data written by a transaction plays a pivotal role in system perfor-
mance. Specifically, data version management is entirely focused
on the write-set of a transaction. For eager version management
implementations, extra hardware is usually provided to buffer the
old version of the data. In lazy version management, the size of
the write-set is what determines the amount of data that must be
transferred at commit time.

LogTM [26], which uses eager version management, presents re-
sults of transactionalizing SPLASH-2, and showed that a 16-block
write buffer would cover almost all transactions, except 5% of those
in Barnes and 0.4% of Radiosity, whereas a 64-entry buffer would
be sufficient to cover all large transactions. Across our benchmarks,
TxLinux is similar to the largest of the Splash-2 benchmarks with
a 16-block write buffer sufficient for all but 2.5%–3.5% of transac-
tions. The largest transactions were in the 128-256 block range.

6.5 Commit and abort penalties
Figures 7 and 8 show normalized execution times for variable

commit and abort penalties in TxLinux. Different HTM proposals
create different penalties at restart and commit time, e.g., software
handlers [25,27] are functions that run when a transaction commits
or restarts. In LogTM and MetaTM, the restart handler copies data
from the log back to memory.



Figure 9: Relative system time for all benchmarks using dif-
ferent contention management policies. Results are normalized
with respect to the Size Matters policy.

Figure 10: Relative transaction restart rate, for all benchmarks
using different contention management policies. Results are
normalized with respect to the Size Matters policy.

The results for abort penalties reveal some subtle interplay be-
tween contention management and abort penalties: abort penalties
can behave very similarly to explicit backoff, thereby reducing con-
tention. As the abort penalty increases, performance does not nec-
essarily decrease, as seen in netcat and find.

Commit penalties (Figure 7) have an obvious, negative impact
on performance. While a moderate amount of work at commit
time (i.e. 100 cycles) does not perceivably change system per-
formance, counter and MAB slowed down by 20% at a commit
penalty of 1,000 cycles, and all benchmarks significantly slowed
down at 10,000 cycles. These effects will become more pronounced
with more transactions.

6.6 Contention Management
Figures 9 and 10 shows normalized system execution time and

restart rates (non-unique restarts) for our benchmarks under the dif-
ferent contention management policies. No policy minimizes exe-
cution time across all the benchmarks. While the Polka contention
management policy performs best on average, it does so by dint of
dramatically outperforming other policies under the artificially high
contention conditions in shared counter. The SizeMatters policy is
the second best when averaged over all of our benchmarks. When
shared counter is excluded, SizeMatters has best average perfor-
mance, and Polka drops below timestamp. In light of the complex-
ity of the Polka policy, moreover, SizeMatters is a more attractive

counter pmake netcat MAB configure find
exponential x 0.67 s 11.18 s 2.48 s 5.10 s 0.93 s
linear 6.42 s 0.67 s 11.12 s 2.47 s 5.09 s 0.93 s
none 6.24 s 0.80 s 11.34 s 2.47 s 8.56 s 47.28 s
random 6.36 s 0.84 s 11.20 s 2.46 s 11.05 s x

Table 7: Backoff Policy effect on TxLinux system time (sec-
onds). Cells with “x” represent data that was not available due
to technical problems.

counter pmake netcat MAB configure find
TxL Time 6.42 s 0.67 s 11.12 s 2.47 s 5.09 s 0.93 s

Restart 21.9 % 2.6 % 3.1 % 1.7 % 2.1 % 10.2 %
TxL+S Time 6.01 s 0.66 s 11.26 s 2.47 s 5.10 s 0.92 s

Restart 21.2 % 1.3 % 0.79 % 0.8 % 1.1 % 5.4 %

Table 8: TxLinux with eager restarts (TxL) and TxLinux with
stall-on-conflict (TxL+S) and the effect on system time in sec-
onds and percentage of transaction restarts.

alternative for implementation in hardware. While Polka incorpo-
rates conflict history, investment of work, and dynamic transaction
priority, SizeMatters requires only the working set size of the con-
flicting transactions. These results also indicate that the timestamp
policy is a very good tradeoff of hardware complexity for perfor-
mance.

We also experimented with the Polite policy, and found it to be
among the worst performing policies. The relative system time is
1.12 for pmake, 1.26 for MAB, 7.05 for configure and 14.02 for
counter.

6.7 Backoff Policy
Table 7 shows execution time across the benchmarks, with four

different backoff policies. The data shows two of the policies are
undesirable. Therandom policy performs poorly on pmake, MAB,
and configure benchmarks, compared with the other policies, and
the “none” policy (where a processor does not wait at all before
restarting) performs poorly in the pmake and configure benchmarks.
Linear and exponential backoff behave reasonably. The mean back-
off cycles for the linear policy is between 75–1,189 cycles, depend-
ing on the benchmark. The means, however, do not show the whole
picture, as most transactions that back off only stall for a very small
number of cycles, while a much smaller set have much longer de-
lays. This could explain why under low contention, there is no large
difference between linear and exponential, since the difference is
not pronounced when transactions restart only a few times.

6.8 Stalling on conflict
MetaTM eagerly restarts one transaction whenever a conflict is

detected, possibly after a backoff period. Some existing systems,
however, decide to stall a thread upon a transactional conflict, with
the hope that perhaps the other transaction will commit soon and
allow the stalled transaction to commit. Stalling on conflict reduces
the restart rate, and could improve performance.

Table 8 shows the execution times and restart rates for TxLinux
both with and without stall-on-conflict. As expected, stalling on a
conflict reduces the restart rate. The execution time, however, does
not necessarily improve, and is slightly worse for netcat and con-
figure. As TxLinux adds more transactions, the benefits of stalling
on conflict should become larger.



7. RELATED WORK
Transactional memory has its roots in optimistic synchroniza-

tion [18,19,22,24] and optimistic database concurrency control [23].
Herlihy and Moss [21] introduced one of the earliest hardware trans-
actional memory systems. More recently, Speculative Lock Eli-
sion [29] and Transactional Lock Removal [30] sparked a renewal
of interest in hardware TM. Hardware implementation can have a
profound impact on the performance of a TM system, and on what
semantics are feasible. Several designs for transactional memory
systems have been proposed:

Our MetaTM model most closely resembles Moore et. al’s Log-
TM [26], both in terms of its semantics and its impact on cache co-
herence protocols. Both MetaTM and LogTM require less modifi-
cation to cache coherence protocols than TCC [15], which replaces
traditional cache coherence protocols with transactions. Transac-
tional stores in LogTM update memory values in place, with previ-
ous values logged to virtual memory. Eager conflict detection en-
sures that two transactions do not write to the same memory area.
Because LogTM stores new values in place, commits are inexpen-
sive, but transaction aborts require reading from a log, and are han-
dled in software.

Like LogTM, Unbounded Transactional Memory [2] stores up-
dated values in place, retaining overwritten values in a log. In the-
ory, UTM allows transactions of arbitrarily large size that are able
to survive paging, processor migration, and context switches. UTM
has not been implemented, even by its designers. LTM [2], which
is based on UTM, attempts to simplify transactional memory im-
plementation by restricting the size and durability of transactions.
LTM stores updated memory locations in the cache, overflowing to
a hash table in main memory.

TCC [15] buffers transactional writes to a private cache. At com-
mit time, values are written through to the L2 cache and conflicts
are detected. Because conflict detection occurs before values are
updated in main memory, restarting a transaction is inexpensive.
Lazy conflict detection, however, may lead to wasted work. Recent
work [9] has added virtualization support to TCC.

Virtual Transactional Memory [31] augments cache-based trans-
actional memory with in-memory data structures in order to allow
transactions to overflow the cache and survive context switches.
VTM writes updated values to memory on transaction commit, and
performs eager conflict detection.

Concurrent with our proposal of multiple active transactions us-
ingxpush[32], other work introduced thexact pauseprimitive [37]
to pause transactions. This semantics of these two primitives are
quite different. Xact pause, which was designed for use cases
where weaker forms of atomicity are traded for performance, would
not be usable in the interrupt-handling setting of TxLinux. The
xpush instruction truly suspends, or pauses, the active transaction,
and allows code (such as interrupt handlers) to execute either non-
transactional operations, or to start new, completely independent
transactions. Multiple calls toxpush are allowed.Xact pause, on
the other hand, does not allow new transactions to be started dur-
ing the pause. Moreover, the non-transactional code is not actually
independent from the paused transaction—instructions executing
during the pause can access uncommitted transaction state. The
target use cases forxact pauserequire communicating values be-
tween a transaction and the non-transactional code. In this sense
the transaction is not reallypaused; the programmer is switching
from memory-cells to higher level units of resource management,
which is also evidenced by their use of higher-level compensating
actions. Escape actions [27] provide weaker still isolation, and have
been proposed as a way to deal with system calls and interrupts in
operating systems, as well as low-level debugging scenarios. As

with xact pause, code executing within an escape action cannot
start new a transaction. Conflict detection and version management
are bypassed, and escape actions are allowed to register commit
and compensating actions to release isolation when the enclosing
transaction commits.

Nested LogTM [27] has a problem analogous to the transactional
dead stack problem—nested transactions can modify the same stack
address via aliasing (causing an O1 violation). Nested LogTM al-
lows transactions to start and end in different stack frames. The
published material [27] contains little detail and suggests using the
bottom of the page to delimit the bottom of the stack. This heuristic
will not work for the Linux kernel, and many user programs, which
have stacks that are larger than a page.

Software transactional memory systems [34] are an active area of
research in the synchronization and programming language com-
munities [16, 20]. While the programming interfaces for HTM
and STM systems are generally isomorphic, a persistent drawback
of STM systems is the relative performance. Recent implementa-
tions [12, 13, 17], however, have reduced the performance gap. A
promising direction for future research is investigating whether a
hybrid hardware/software approach, such as the one introduced by
Damron et al [11], can preserve the advantages of both approaches.

Workloads used to evaluate hardware transactional memory usu-
ally fall into two categories: microbenchmarks and computation
benchmarks. Microbenchmarks, such as a shared counter, allow for
straightforward illustration of some effects of transactional mem-
ory hardware design decisions. Computation benchmarks, such as
SPEC and SPLASH-2 [26], illustrate the performance characteris-
tics of transactional memory for high-performance computations.
Neither of these workloads represent the majority of synchroniza-
tion in computer systems. Ananian et. al [2] evaluate the possible
behavior of UTM in the Linux kernel. However, their evaluation
is based on replaying memory and synchronization traces collected
from a non-transactional kernel. The additional requirements im-
posed on transactional memory by an operating system kernel are
not considered.

8. CONCLUSION
Previously, the design decisions necessary for implementing hard-

ware transactional memory have only been evaluated in the context
of micro- and application benchmarks. The dependence of oper-
ating systems on extreme concurrency and the complex synchro-
nization necessary to achieve such concurrency, however, makes
them an ideal workload for evaluating such synchronization prim-
itives. Hardware transactional memory has the potential to greatly
simplify operating system synchronization while retaining a high
degree of concurrency.

Operating systems also represent a unique workload for transac-
tional memory due to their position as the arbiters between com-
puter hardware and software. We have shown that asynchronous
events such as interrupts require special consideration when design-
ing transactional memory hardware.

We have examined several aspects of hardware transactional mem-
ory implementation and policy in the context of an operating sys-
tem workload. We confirm the Polka contention management pol-
icy as an effective policy for reducing transaction restarts, but find
that the best policy overall was workload dependent, and, except
under artificially high contention, our novel SizeMatters policy per-
forms best on average. We find that some backoff on contention
is important and both linear and exponential backoff work well.
Transaction restart penalties can have similar performance effects
to explicit backoff policies.
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