
Dependence-Aware Transactional Memory for

Increased Concurrency

Hany E. Ramadan, Christopher J. Rossbach, and Emmett Witchel

Department of Computer Sciences

University of Texas at Austin

Austin, TX, USA

Email: {ramadan, rossbach, witchel}@cs.utexas.edu

Abstract—Transactional memory (TM) is a promising paradigm
for helping programmers take advantage of emerging multi-
core platforms. Though they perform well under low contention,
hardware TM systems have a reputation of not performing well
under high contention, as compared to locks. This paper presents
a model and implementation of dependence-aware transactional
memory (DATM), a novel solution to the problem of scaling under
contention. Unlike many proposals to deal with write-shared data
(which arise in common data structures like counters and linked
lists), DATM operates transparently to the programmer.

The main idea in DATM is to accept any transaction execution
interleaving that is conflict serializable, including interleavings
that contain simple conflicts. Current TM systems reduce useful
concurrency by restarting conflicting transactions, even if the
execution interleaving is conflict serializable. DATM manages de-
pendences between uncommitted transactions, sometimes forward-
ing data between them to safely commit conflicting transactions.
The evaluation of our prototype shows that DATM increases
concurrency, for example by reducing the runtime of STAMP
benchmarks by up to 39% and reducing transaction restarts by
up to 94%.

I. INTRODUCTION

Exploiting parallelism is the major software challenge for the

coming decade. Power and frequency scaling limitations have

caused manufacturers to shift their efforts away from scaling

the performance of individual processor cores toward providing

more cores on a chip. Memory transactions are a promising

abstraction that can simplify concurrent programming thereby

helping programmers harness the power of modern parallel

architectures.

Transactional memory provides the abstraction of atomic,

isolated execution of critical regions. By atomic, we mean that

if a memory transaction fails for any reason its effects are

discarded: either all of its updates become globally visible,

or none of them do. By isolated, we mean that no memory

transaction sees the partial effects of any other transaction:

uncommitted or speculative state is private to a transaction.

Transactions are also linearizable: each transaction appears to

take effect instantaneously at some point between when it starts

and when it finishes [12].

A transactional conflict occurs when one transaction writes

data that is read or written by another transaction. When the

ordering of all conflicting memory accesses is identical to a

serial execution order of all transactions, the execution is called

conflict-serializable [8].

Most transactional memory systems detect conflicts between

two transactions and respond by forcing one of the transactions

to restart or block. By restarting or blocking on conflict,

TM implementations provide a level of concurrency that is

equivalent to that of two-phase locking [8]. Even TM imple-

mentations that do not use locks [9], [18], including both eager

and lazy systems, only provide concurrency equivalent to two-

phase locking. Any data read or written by one transaction

has an implicit lock on it that conflicts with any attempt to

write the same data. The key insight of DATM is that using

conflict serializability as the system’s safety property increases

concurrency relative to using two-phase locking.

We propose dependence-awareness, a transactional memory

implementation technique that ensures conflict serializability.

Dependence-aware transactional memory (DATM) manages

conflicts by making transactions aware of dependences, and

in some cases, by forwarding data values between uncommit-

ted transactions. Dependence-awareness allows two conflicting

transactions that are conflict-serializable to both commit safely,

thereby increasing concurrency and making better use of paral-

lel hardware than current TM systems. Dependence-awareness

is safe—transactions remain atomic and isolated in the same

way as current TM systems.

Most previous proposals to help TM deal with write-shared

data involve mechanisms that complicate the programming

model and require the attention of skilled programmers to

be safe and effective. Dependence-awareness, by contrast, is

completely transparent to the programmer. Transparency is

particularly important because many common data structures,

like shared counters and linked lists, have write-shared data that

cause performance problems in conventional TM systems. Be-

cause dependence-awareness admits concurrency where current

designs cannot, it provides good system performance without

burdening programmers with exotic new programming issues.

This paper makes the following contributions:

1) We introduce dependence-aware transactions, a new TM

model that permits substantially more concurrency than

two-phase locking.

2) We present a design for a dependence-aware HTM sys-

(a) both transactions commit

store reg1, counter

T

1T

W0 −> R1

begin_tx
load reg1, counter
incr reg1
store reg1, counter

end_tx

begin_tx
load reg1, counter
incr reg1

end_tx

0

(b) circular dependence

T

store reg1, counter

1T

load reg1, counter
incr reg1

begin_tx

W0 −> W1

R1 −> W0

begin_tx
load reg1, counter
incr reg1

store reg1, counter

0

Fig. 1. Two transactions increment the same counter, illustrating (a) a
successful commit using dependences with data forwarding, and (b) an abort
due to circular dependences.

tem, including a cache coherence protocol called FRMSI

(Forward/Receive MSI).

3) We evaluate our prototype implementation on a set of

benchmarks that include representatives from STAMP [17]

and TxLinux [23].

We illustrate dependence-awareness by example in Section II,

and describe the full model in Section III. Section IV describes

our dependence-aware HTM implementation, and Section V

evaluates its performance. Section VI discusses related work

and Section VII concludes.

II. INCREASING CONCURRENCY WITH DATM

The dependence-aware model creates and tracks dependences

between transactions that access the same datum, possibly al-

lowing data to be forwarded speculatively from one transaction

to another. Dependences let DATM commit transactions that a

conventional TM would restart or block, making better use of

concurrent work.

A. Shared counter example

We use standard notation for data dependences, for example,

W→R means a memory cell was written by one transaction
and then the same cell was read by a different transaction.

Dependences are subscripted with transaction numbers to in-

dicate which transactions are involved. While the generic term

“memory cell” indicates that the granularity of the datum is not

intrinsic to the model, in this paper a “memory cell” is a cache

line unless otherwise stated.

Consider the shared counter shown in Figure 1(a). Assume

that two different threads on two different processors (P0 and

P1) execute this code in two different transactions (T0 and T1).

The executions overlap in time as shown in the figure, with time

flowing down. If the counter value starts at 0, the figure shows

T0 forwarding its counter value (1) to T1. DATM establishes

a W0 →R1 dependence for the counter, and ensures that T1

commits after T0. The transactions are allowed to proceed

concurrently even though they both write the same memory

location. The counter’s final value is two, which corresponds to

the serialization order T0, T1.

The interleaving in Figure 1(a) is conflict-serializable, but

would not be allowed by the two-phase locking style of conflict

detection done by current TM systems. In most current TM

systems, after T0 reads and writes the counter, any subsequent

access to the counter by T1 is considered a conflict, either

forcing T1 to block or one transaction to abort.

The interleaving in Figure 1(b) is not conflict-serializable,

so both transactions cannot successfully commit. Here, T0

writes the counter after it is read by T1, creating a R1 →W0

dependence, which constrains T0 to commit after T1. However,

when T1 writes the counter, it creates a W0 →W1 dependence,

which constrains T1 to commit after T0. The dependence graph

contains a cycle, and if both transactions were to commit,

the counter would have the wrong value. DATM handles this

potential conflict by detecting the cycle—T0 is dependent on

T1 and T1 is dependent on T0. It aborts one of the transactions

to break the cycle.

B. Accepting more interleavings

Figure 2 shows three different interleavings (called schedules

in the database literature) for the memory references of trans-

actions that increment a shared counter. Interleavings (a) and

(c) are conflict serializable. In (a), T0 can be serialized before

T1, and in (c), T1 can be serialized before T0. Interleaving (b)

is not conflict serializable. DATM accepts interleavings (a) and

(c), while conventional TM implementations do not.

Of course, accepting more interleavings does not by itself

imply that DATM will outperform conventional approaches,

since many other factors impact actual performance. However,

by accepting more interleavings DATM increases the likelihood

that parallel resources are utilized when transactions execute

concurrently—instead of conflicting, concurrent transactions

can coordinate and both commit.

C. Comparison with other conflict resolution strategies

Figure 3 compares how DATM and existing systems execute

a pair of transactions that conflict on a single shared datum.

DATM creates a dependence from T1 to T2. Neither T1 nor

T2 is forced to block or restart. DATM commits T2 earlier

than the other conflict resolution strategies because it can accept

memory access interleavings that require the other systems to

block or restart.

Figure 3 shows eager conflict detection (done at the time

of the memory reference) [18] and lazy conflict detection

(done at commit time) [9]. Eager conflict detection with restart

(Figure 3b) causes T2 to restart on the conflict, and T2 conflicts

again. Eager conflict detection with stall-on-conflict (Figure 3c)

causes T2 to stall until T1 commits. Finally, with lazy conflict

(c)

1T0 T1T0 T1T0
begin_tx begin_tx begin_txbegin_tx begin_tx begin_tx

load reg1, counterstore reg1, counter load reg1, counter
store reg1, counterload reg1, counter store reg1, counter

store reg1, counterstore reg1, counter store reg1, counter

end_tx end_txend_tx end_tx

(a) (b)

T

Fig. 2. Three execution interleavings of two simple transactions. Time flows down. All memory references are to the same shared counter. DATM can accept
interleavings (a) and (c), indicated by the presence of the end tx instruction.

Fig. 3. Two transactions that conflict while incrementing a shared counter. Part (a) shows the dependence-aware implementation, while Parts(b-d) show
conventional HTM techniques. Assume that transaction T1 always commits first. The shared counter accesses are the shaded regions within each transaction.

detection, T2 must restart when it tries to commit. Execution

interleavings that cause stalls or restarts with current conflict

resolution strategies are committed safely by DATM.

III. DEPENDENCE-AWARE MODEL

This section presents the dependence-aware model, describ-

ing how the system maintains dependences and how those

dependences affect transactions. The dependence aware model

admits all conflict serializable schedules.

A. Dependence types

Table I shows a summary of dependence types and their

properties. The notation W→R denotes a read after write
(RAW) dependence—one transaction reads a cache line that was

written by another transaction. Dependences are subscripted

with transaction numbers, so that W0 →R1 means a write from

transaction T0 was read by transaction T1. All dependences

restrict commit order. If there is a XA →XB dependence, then

transaction A must commit before B.
The system tracks all dependences at the level of cache lines

creating new dependences between transactions in response

to memory accesses at runtime. The ordering of transactions

depends on their dynamic behavior. The “Yes” in the Forward

column for W→R dependences means the system forwards the
data in the cache line when the dependence is created. The

system records that the cache line has been forwarded.

For a W0 →R1 dependence, we call T0 the source transaction

and T1 the destination, or the dependent. The destination

transaction must restart if the source restarts, because the

Dependence Forward Restart

W0→W1 No If in cycle

R0→W1 No If in cycle

W0→R1 Yes If in cycle, and T1

must if either: a) T0

does. b) T0 overwrites
forwarded data with
new value.

TABLE I
SUMMARY OF DEPENDENCE TYPES AND THEIR PROPERTIES.

destination has read data forwarded by the source. To maintain

serializability, a dependent transaction can read a value from

a source transaction only if that value will be the final value

of the cache line for the source transaction. So the destination

transaction must restart if the source transaction overwrites the

data it forwarded. Table I lists the cases when restarts are

necessary.

Dependences are created per cache line on first access to

the cell. Subsequent accesses to the same object do not affect

dependence structure For example, if T0 writes a cache line

that T1 then writes, and then T1 reads the cache line the

resultant dependence is formed on the basis of the initial write

and is W0 →W1. When a transaction commits or aborts, all

of its dependences disappear. The next section discusses how

dependences between transactions form when they both access

multiple memory cells.

B. Multiple dependences

Multiple dependences arise when two transactions conflict

on more than one cache line. Each cache line on which two

transactions conflict creates a separate dependence. To manage

multiple dependences between two transactions, the model

has the restrictive dependence rule: The relationship between

transactions is governed by the most restrictive dependence in

each direction. W→R is more restrictive than W→W and R→W
dependences, and the latter two are not ordered relative to each

other.

If a transaction is the source for a R→W dependence, and
later it writes and forwards a different cache line to the same

destination transaction (thereby creating a W→R dependence),
the transactions are constrained by the more restrictive W→R
dependence. Both dependences are still tracked in the model.

If more than two transactions concurrently access the same

cache line, then the first two will create a dependence as

described above. The third transaction will create its depen-

dence with the most recent writer of the cache line. The

latest writer provides the most up to date version of the cache

line. Conceptually, the dependences among transactions form

a transaction dependence graph with a directed link between

two transactions if there is a dependence between them on any

memory cell.

C. Cyclic dependences

All dependences restrict commit order: a transaction must

wait at commit time for any transaction that it depends on to

commit. If cycles arise in the transaction dependence graph, the

cyclic chain of dependences may cause deadlock. Dependences

arise from reads and writes of memory cells, so a cycle indicates

that the transactions have interleaved in a way that is not conflict

serializable.

While there are several ways to handle cycles, our model

avoids them. If a memory access would cause a cycle in the

dependence graph, the system restarts at least one transaction

in the cycle. The system does not allow cycles to form.

Another way to avoid cycles is to allow dependences only

from older transactions to younger transactions. Timestamp-

ordered dependences go in a single direction only, so they can-

not form cycles. However, timestamp-ordered dependences do

restrict concurrency more than a policy that allows dependences

between any two transactions.

Contention management is important for dependence-aware

transactions, just as it is for conventional TM systems [23], [27].

When the system detects a cycle in the dependence graph, it

must restart at least one transaction in the cycle to break it. The

contention management task is to preserve as much concurrent

work as possible, such as by restarting transactions that do not

have dependents.

D. Disabling dependence tracking: no-dep mode

One attractive property of dependence-aware transactions is

that they co-exist with other conflict resolution strategies for en-

suring safety. Restarting a transaction in no-dep mode disables

dependence tracking for a particular transaction. Sections III-E

and III-F explain uses of the no-dep mode.

E. Exceptions and inconsistent data

Because the model forwards data between transactions, it is

possible that a transaction can read invalid data, which in turn

can lead to exceptions or infinite loops. Inconsistent state seen

by destination transactions are eventually made consistent at the

completion of the source transactions. The writes that bring the

source transactions into a consistent state cause a restart of the

destination due to overwrites of forwarded data. The restart of

the destination eliminates infinite loops that are not part of the

application’s serial behavior.

A transaction that has read inconsistent data can throw an

exception before subsequent execution of the source transaction

causes the destination to restart. The hardware informs the OS

through the transaction status register if the currently running

transaction has read forwarded data. The OS exception handlers

suppress these exceptions and, according to its policy, can

restart a transaction in no-dep mode to avoid further spurious

exceptions. Section V quantifies the small number of times

transactions execute in no-dep mode for our prototype.

Program asserts must also be made dependence-aware. Assert

failures in transactions that have read forwarded data can be

restarted or the failure is delayed until the source transaction

commits.

F. Cascading aborts

Cascaded aborts occur when one transaction’s abort causes

other transactions to abort. For example, a cascaded abort

happens when a source transaction forwards a value to a

destination transaction and the source aborts—the destination

must abort as well. In DATM, cascaded aborts arise only from

W→R dependences, where the source aborts or overwrites
forwarded data. This data sharing pattern, with one transaction

updating a variable multiple times while other transactions read

it, is not conflict serializable. Any safe transactional system

will serialize such transactions, either by stalling or aborting.

Section V quantifies the small effect of cascaded aborts on the

performance of our prototype.

IV. HARDWARE DESIGN

This section discusses the hardware design for dependence-

aware transactional memory. Key elements in the design are

shown in Figure 4. The design must implement commit or-

dering, version management, W→R data forwarding, restart
when forwarded data is overwritten (called a forward restart),

and cyclic dependence prevention. To understand how these

pieces interrelate, we first describe solving them with a mini-

mum of new hardware. We then refine the design to improve

performance while still keeping hardware state and hardware

complexity low (Section IV-D).

DATM can be implemented with a novel cache coherence

protocol called FRMSI (Forward Receive MSI: pronounced

like pharmacy), along with either an an ordered vector of

Fig. 4. DATM architecture overview. DATM-specific state and structures are highlighted with dark lines.

transaction IDs maintained at each cache, or a timestamp table.

The cache coherence protocol supports version management,

helps order write backs of committed state, and handles data

forwarding and forward restarts. DATM relies on global order-

ing for transaction commits and write backs of data modified in

committed transactions, as well as for prevention of deadlocks

and cycle dependences. Support for such ordering decisions can

be implemented either using timestamps generated at transac-

tion begin for contention management [21], or using an ordered

vector of transaction IDs. The FRMSI protocol relies on the

augmentation of cache lines with a transaction identifier [16],

[23], shown as TXID in Figure 4.

An important design principle in DATM is that while de-

pendences enable concurrency not currently accessible in TM

designs, dependences are not a requirement for transactions

to proceed. If any hardware resources or structures in the

DATM design reach a limit, dependences for that transaction

are dynamically disabled by restarting in a force-no-dependence

mode (Section III-D) that resembles a current TM design.

DATM is a best effort design, and contains no explicit overflow

(sometimes called virtualization) strategy for when transactional

state overflows hardware buffers—it can use any of the many

current proposals [2], [5], [6], [22], [28].

A. Transaction status word

DATM adds two bits to the transaction status word, a register

that holds the current state of the running transaction. One

bit is a no-dependence bit (shown as ND in Figure 4), which

indicates that the current transaction has not entered into any

dependences. Transactions that have no dependences can be

created and can commit without support from dependence-

aware mechanisms: an explicit bit makes this check efficient.

Decoupling dependence- and non-dependence-aware transac-

Fig. 5. State diagram for the FRMSI cache coherence protocol. Standard
transitions between MSI are omitted for clarity. Transitions out of I are omitted
as they are the same as those out of S.

tions ensures that regardless of the state of the dependence-

aware hardware, transactions in the system can still commit,

and forward progress can always be made.

DATM also adds a force-no-dependence bit (Frc-ND), which

disallows the current transaction from entering transactional

dependences. This state allows DATM to fall back into a

traditional eager conflict-management HTM mode [18].

B. FRMSI coherence protocol

DATM is implemented with support from the FRMSI cache

coherence protocol, which extends the MESI protocol, and

has 11 stable states. The state diagram is shown in Figure 5.

The E state is omitted for simplicity; it can be added as an

optimization, but is not necessary. We could reduce the number

of states if we use signatures [3] to track forwarded and received

bytes. First we review the mechanics of the protocol and then

show how the protocol achieves the goals of DATM.

Version management in DATM is complicated by data for-

warding, which results in the ability of multiple caches to mod-

ify the same cache line. FRMSI contains states for forwarding

and receiving data, allowing this kind of data sharing.

The TM and TS states are entered by lines in M or S that

are read during a transaction. These lines can transition back

to M or S when a transaction commits or aborts, because they

are not modified during the transaction.

All TM* states (shaded) and TR (transaction received) states

transition to invalid if the transaction aborts. All TM* states

(note that TM* does not include TM) indicate a line is written

during a transaction. These writes are buffered in the cache, but

are discarded if the transaction is not successful, by a transition

to I. A TR line must revert to I on abort because it contains

speculative data received from an active transaction.

TMR and TR are states for cache lines that receive forwarded

data, while TMF and TMRF are states for cache lines that

have forwarded their data. These states are explained in detail

in Section IV-B2. Commit of lines that are modified in a

transaction is the subject of the next Section.

1) Committing: All TM* states (shaded) transition to CTM

(committing transactional modified) on a commit. The CTM

state is much like the M state in that it indicates a line that

has been modified with respect to main memory and requires

writeback. However, a line in CTM state must obey the ordering

restrictions associated with the transaction that wrote the line.

To understand the need for a CTM state, consider that FRMSI

allows lines to exist in TM* states in multiple caches, but cannot

allow lines to exist in the M state in multiple caches. This could

be addressed without an additional state if, on completing a

transaction, all lines in TM* state were to atomically write back

to memory, stalling the transaction commit until all write backs

complete and transitioning those lines to state I. Such a solution

is unattractive because waiting for write backs increases the

latency of transactional commit, which must be fast for TM to

provide good performance [23].

Instead, the CTM state allows write backs to take place

after transaction commit while still preserving ordering with

respect to other transactions in the system. Transaction commit

causes all updates made by a transaction to linearize [12] to that

commit point. Consider a line that is written by transaction A,

and then forwarded to B which also updates it. A is constrained

to commit before B. If commit includes all write backs, then

after both transactions commit, B’s line is in memory and in

its cache in state M, which is correct. With delayed write back

for transactionally modified state, the lines enter CTM, where

A’s line is constrained to never overwrite B’s. Any access to

the line gets B’s version, which is the latest one. The CTM

state uses the order vector to order accesses and write backs to

committed data, as explained in Section IV-C.

2) Forwarding and receiving: One of the chief goals of

FRMSI is to enable cache line forwarding among transactions.

When a cache controller sees a transactional bus read (TGETS)

for a line that it has in state TMM or TMR (the line has been

locally modified in a transaction), then it responds with the line

and the identifier of the transaction that wrote the line, and

moves the state into TMF or TMRF. The receiving cache can

be transitioning from I or S into TR, the transactional received

state.

Forwarded lines (states TMF and TMRF) publicize writes, in

effect using an update protocol by sending a TXOVW message

on the bus to indicate that previously forwarded speculative

values are now stale. Any cache that has the line in a received

state must abort its transaction if it sees a write to the line,

because speculative data it received has been overwritten. The

transaction only aborts in TMRF if the overwrite is from an

earlier transaction where ordering is defined in Section IV-C.

We later describe additions to the protocol, which reduce

the granularity of detecting the overwriting of forwarded data

(Section IV-D1).

3) Suspending transactions: DATM allows suspended trans-

actions [23], [32], and it allows transactions with dependences

to suspend and resume. Cache lines store the transaction ID to

enable suspend and resume [23]. However, any attempt to create

a dependence with a suspended transaction will fail and the

operation will be handled as a transactional conflict, requiring

the restart of one of the transactions involved.

Processor identifiers are insufficient for dependence manage-

ment and cycle detection when transactions can suspend. For

example, to support 3 inactive transactions per processor, the

transaction identifiers have 2 bits more than the number of bits

in the processor identifier.

C. DATM ordering requirements

DATM provides conflict serializability by ordering dependent

transactions with respect to each other, and by linearizing their

updates to transaction commits. We first present the ordering

requirements of DATM and then discuss two implementation

strategies: an order vector and a timestamp table.

These are DATM’s ordering requirements.

1) Dependent transactions must commit in order.

2) Transactions that form dependences by receiving for-

warded speculative data must become dependent on the

most recent writer of that data.

3) Cyclic dependences must be detected in advance, and

avoided by restarting one or more transactions.

4) Dependences are transitive: when transactions abort, de-

pendence ordering must be preserved for transactions that

remain active.

5) Caches with the same line in CTM state must write back

the lines in the order dictated by their commit order, and

subsequent requests for the line must be serviced from the

last cache to commit.

The succeeding text has numbers in bold parenthesis to indicate

how the design enforces the given requirement (e.g., (1) marks

the explanation of how dependent transactions commit in order).

1) The order vector: A DATM implementation can support

ordering by maintaining an order vector of transaction IDs

in each cache. Each cache that contains a transaction with

dependences maintains a copy of the order vector, and all copies

have identical data. Each entry in the list has a transaction

identifier, a valid bit and an active bit. The active entries in the

vector topologically sort the dependence graph of the currently

active transactions. The order vector provides the serialization

order for active transactions and for writebacks of committed

transactions whose results are still cache resident.

The vector reflects the superset of all dependences between

transactions. Dependences are created when a cache snoops a

memory access on the bus that is responded to by a cache

rather than memory (using a mechanism analogous the shared

response to GETS request for a line in S or E in MESI).

New dependences are appended to the list, after all valid

transaction identifiers. If transaction A forwards a cache line

to transaction B, then A,B is appended to the list (with the

rightmost position being the newest transaction). Each cache

must see these dependences in the same order if the vector

is to be identical at every cache. In our bus-based design,

the bus ensures all dependences are seen in the same order:

FRMSI would require extra messages to be extended to support

a directory protocol.

2) Timestamp ordering: Timestamp-ordered dependences

are implemented with a timestamp table. Each cache that

contains a transaction with dependences (active, or with pending

write backs) maintains a copy of the timestamp table, and

all copies have identical data. Each entry in the table has a

transaction ID, a timestamp, a valid bit and an active bit.

Using timestamps is similar to using the order vector, any

difference are noted below in the discussion of the order

vector. The main simplification of timestamp ordering is that

dependences only go from older to newer transactions, so cyclic

dependences cannot arise (3).

3) Meeting ordering requirements: A transaction can only

commit if it is the first (leftmost) active transaction in the order

vector (1). Being first ensures that this transaction does not

depend on any others. When using timestamps, it can only

commit if it is has the smallest timestamp in the timestamp

table (1).

If a transaction receives a cache line, its ID gets appended

(on the right) to the order vector. The receiver uses the order

vector to determine the last dependent transaction that provides

the data for that line (2). Suppose A has forwarded a line to

B. If C reads that line, then C should receive the line from

B, not A. If both A and B attempt to forward the line to C,

the order vector is used to determine that B’s data should be

received and A’s should be discarded. Using the received cache

line from the transaction with the highest timestamp also creates

a dependence with the latest writer (2).

When a new dependence is added, the hardware checks if

the transaction ID already appears in the vector of an active

entry to the left of the current transaction. If it does, there is a

cycle in the dependence graph and some transaction in the graph

must be restarted (3). The order vector thus provides a simple

mechanism to detect cyclic dependences. Cyclic dependences

cannot form when using timestamps (3).

When a transaction aborts, it must publish this event to the

coherence protocol by placing the xABT message on the bus

along with its transaction ID. An abort message notifies other

processors to turn off active and valid bits for that transaction

ID in the order vector, while leaving its predecessors and

successors in place (4). Therefore, if a dependence chain of

transactions A → B → C arises, B can abort without affecting
A or C (provided the dependences are not forwarding depen-

dences) C remains serialized behind A. The xABT message

is not needed with timestamps, but an aborted transaction

maintains its timestamp and hence its place in the serialization

order (4).

Commit must also be made visible to the coherence protocol,

placing the xCMT message on the bus along with its transaction

ID. The commit message notifies other processors to turn off

the active flag but leave the valid bit. This way, the commit can

retain its position in the order vector to order write backs for

lines moving to the CTM state. This is explained in the next

Section, and is handled identically when using timestamps.

4) Write backs: Position in the order vector is used both to

order the commit of active transactions and to order writebacks

for lines modified in committed transactions. Entries in the

order vector for committed transactions with pending write-

backs are valid but not active. Transactions remain valid in

the order vector until all lines from the transaction have exited

the CTM state. The ordering remains valid until all of the data

updated during the transaction leaves the CTM state. A cache

can detect when it has written back the last CTM line for a given

transaction ID and at that point it sends a message to make the

ID invalid in the order vector. Detection can be implemented

using simple logic on the state bits, or if the CTM state were

recoded as a single bit, as a wired OR.

Note that non-dependent transactions that include the TM

and TS states can execute and commit while lines are in the

CTM state. If the processor accesses any line in a CTM state,

the line is written back and then the processor processes the

operation as if the line were in M.

All cache lines in CTM are marked with their transaction

identifier (TXID), and the serialization order is determined by

looking up the TXID in the order vector or timestamp table (5).

The order vector or the timestamp table enforce a single, global

order for write backs in addition to active transactions.

Write backs are ordered and can be squashed. Assume A

forwards a line to B, B overwrites the line, and then both

transactions commit. If A sees B write back the line that A

forwarded, A can transition the line from CTM to I without

writing back. B’s version is serialized after A.

The situation is similar for bus reads. If another processor

issues a bus read for the line that both A and B have in CTM,

then both transactions can respond to the request, write back the

value, and transition the line to state S. If B responds first and

A observes B’s response, then A can squash its own response

and transition the line to I.

Timestamps are used to order write backs in the same way

the order vector is used (5).

5) Capacity of the order vector or timestamp table: Any

transaction that needs a dependence can claim the newest index

after the last valid index. Once claimed, the index serializes the

transaction after any that has results that might be written back.

Making the order vector large will minimize the probability that

the vector will fill. The order vector can be large because it is

not communicated and it is mostly consulted during a cache

miss, when its access latency can be overlapped with data fetch.

No matter how long the order vector is, it can fill because

with pathological line replacement, lines can remain in the CTM

state indefinitely. A new transaction cannot get a dependence if

the order vector is full or if it has the same identifier as a valid

entry in the order vector. In these cases, transactions simply

restart with the force-no-dependence flag and the computation

continues.

When the order vector fills, the last entry must write back its

CTM lines. Each cache can monitor if it has a transaction that

occupies the last entry and initiate write backs for the lines that

transaction has in the CTM state.

The timestamp table can also fill, which would also require

a cache to write back lines in the CTM state in order to free

an entry in the table.

D. Performance optimization

This section describes additions to the basic protocol to

optimize performance. These changes allow the hardware to

manage dependences at the word level while keeping write-

back and most cache coherence operations at the cache-line

level. It also prevents short transactions from convoying behind

unrelated long-running transactions.

As a motivating example, consider a line that starts with its

data equal to all zeroes and that is not present in any cache.

Transaction A writes word 0 with value A and transaction B

writes word 1 with value B. The write from transaction A causes

the line to enter A’s cache in the TMM state. B’s write of word

1 results in a bus read for the cache line that is forwarded from

A’s cache. A’s cache moves the line into TMF and B’s has it

in TMR (not TR because it wrote the word after receiving the

line).

In the cache-line-based design, if A writes word 2, it gen-

erates a bus write that causes transaction B to abort, due to a

circular dependence WA →RB and WB →RA. However, there

is no circular dependence at the word granularity because B

does not read the word A writes. Eliminating these false cycles

will improve DATM’s performance.

1) Per-word accessed bits for received states: We augment

the cache with per word access bits (labeled A in Figure 4).

On receiving a line (TR, TMR or TMRF), the processor resets

accessed bits, one per word in the line. Every time the processor

reads or writes a word, it sets the access bit for the word. The

access bits play an important role in interpreting bus writes to

forwarded lines. Such writes either cause restarts, update the

value of the word, or are ignored.

The rules for dealing with overwrites to forwarded lines

enforce the obvious causality: previous transactions cannot

overwrite data the current transaction has read or written, but a

future transaction may. When the processor sees a bus write for

a line that it has received, it compares the order vector entry of

the transaction writing to the bus with the transaction identifier

of the line. If the bus write index is earlier and the access bit

is clear, the word is updated (a previous transaction is updating

a word untouched by the current transaction). If it is later, the

word is not updated (the word belongs to a transaction that is

serialized after this one). If the access bit is set and the index

is earlier, the transaction aborts (forward restart). Otherwise,

the transaction ignores the message (a future transaction will

change the same word this transaction changed).

Publishing writes to the bus for forwarded lines make these

states act like an update protocol. All receivers have the same

value as earlier transactions for words the receivers do not

touch. This value agreement allows cache lines to be written

back without lost updates. In the above example, if A writes

word 2 and that write is not propagated to B, then the line that

B commits will have a zero for word 2, not an A, which is a

lost update.

2) Predecessor transaction set: The main problem with

having a single ordered vector for all transactions in the system

is that short transactions may have to wait for long transactions.

For instance, if transaction A forwards data to B, and then

transaction Y forwards data to Z, the order vector will read

A,B,Y,Z. If Y and Z are very fast and A and B are slow, then

throughput will suffer, as Y and Z must be at the head of the

order vector in order to commit (condition (1) above).

We add a set of predecessor transactions to each processor

(depicted as PredSet in Figure 4), to prevent transactions having

to wait for unrelated transactions. A transaction can commit

when its predecessor set is empty, it does not need to be at the

head of the order vector. The transaction builds the predecessor

set with the identifiers of any transaction from which it receives

data. The set requires a maximum of only P entries, where P
is the number of processors. An active transaction must restart

if it wants to commit but has a suspended predecessor. The

set can be smaller than P and, if it fills, the transaction restarts
in force-no-dependence mode. Timestamp-ordered dependences

benefit in the same way from the predecessor transaction set.

V. EVALUATION

In this section we provide details of our simulation model,

benchmarks and experimental results.

A. Prototype model

We implement a dependence-aware HTM model by mod-

ifying a publicly available HTM simulator (MetaTM [23]).

Configuration

Processor Pentium-4-like x86 instruction set, 1 GHz, 1 IPC

L1 Each core has separate data and instruction caches.
32KB capacities, with 8-way associativity, 64-byte
cache lines, lru-replacement policy, 1-cycle cache
hit.

L2 4MB capacity, 8-way associative, with 64-byte
cache lines, 16-cycle access time.

Memory 1GB capacity, 350 cycle access time.

MetaTM Timestamp contention management, linear backoff
policy, word granularity conflict detection.

Fig. 6. Architectural parameters of simulated machines.

The model is implemented as a module in the Simics 3.0.27

machine simulator [15]. The core architectural parameters are

shown in Figure 6. We evaluate the model with a 16-way SMP

configuration (except for TxLinux benchmarks, where an 8-way

SMP is used). Each processor has a private L2, and the L1 data

caches contain both transactional and non-transactional data.

We modify the MetaTM cache coherence protocol, which is

based on a MESI snooping protocol, to support transactional

dependences using FRMSI. The latency of forwarding data be-

tween processors is conservatively modeled as a write back and

a read from memory. Bus arbitration and bandwidth constraints

are not modeled. The L2 cache also requires transactional state

so that transactional state is visible to the coherence protocol

(how to support transactional variants of MESI in the presence

of multi-level private hierarchies is an open research question,

and previous proposals would also be forced to make similar

tradeoffs [29].)

The workloads are described in Table 7. They include a trans-

actional operating system, several STAMP [17] benchmarks,

and two micro-benchmarks to focus on specific data structures.

B. Experimental results

Figure 9 shows the basic runtime characteristics of the work-

loads on both MetaTM and DATM. Figure 8 shows graphically

how DATM, normalized to MetaTM, reduces the execution time

and number of restarts. The results show that, in almost all

cases, DATM improves or does not harm the performance of

realistic workloads. DATM increases concurrency by reducing

the average number of restarts per transaction and average

backoff cycles per transactions. Reducing restarts does not

necessarily improve performance, but it does when the reduction

is an indicator of increased concurrency.

In particular, the bayes and vacation STAMP workloads show

a dramatic reduction in restarts, and a 39% improvement in

execution time. The remaining STAMP benchmarks have little

contention, so DATM does not change their performance. For

instance, while DATM reduces ssca2 restarts by two orders of

magnitude, it has only 0.1 restart per transaction on average

under MetaTM.

Performance for the TxLinux workloads (pmake, config) is

mostly flat because they spend a small amount of time executing

transactions [23]. DATM reduces restarts substantially, but these

Fig. 11. Relative execution time for various DATM hardware designs.
DATM-clg uses cache-line granularity to manage dependences, DATM-ov
constrains dependences according to the order vector, and DATM-ts constrains
dependences with timestamp-ordered dependences. All relative execution times
are normalized to MetaTM. Lower is better.

restarts are not a performance problem. The counter micro-

benchmark (especially with think-time) is able to dramatically

benefit from dependences, with up to an order of magnitude

improvement in performance. DATM effectively forwards the

counter values between uncommitted transactions.

Dependence-related statistics are shown in Figure 10. Bench-

marks that spend significant time in transactions commonly

form dependences. For vacation, 35% of transactions form

a forwarding dependence (W→R), and for labyrinth 32% of
transactions form R→W dependences. The formation of de-
pendences increases concurrency, reduces restarts and often

improves performance.

DATM greatly reduces restarts relative to MetaTM, and the

remaining restarts are classified in Figure 10. Restarts due to

transactions overwriting forwarded data (forward restarts are

rare (less than 1%) in the STAMP programs. They are a high

percentage of aborts in TxLinux, but that is mostly due to there

being few aborts in TxLinux. Cascaded aborts are generally

responsible for single-digit percentages of restarts, which is

low considering that about 40% of conflicts in both vacation

and labyrinth involve more than two transactions (complex

conflicts). While counter-tt has 100% cascaded aborts, the abort

rate is 0.39% (from Figure 9). All of these aborts involve more

than two transactions.

Finally, the number of inconsistent reads and transitions

into no-dep mode are very low. While these mechanisms are

necessary for correct operation, they are rarely needed. Also, the

number of broadcast writes is less than 1/1000-th of one percent

of transactional writes for all benchmarks. While broadcasting

writes is necessary to preserve the ability to write back entire

cache lines, it does not create excessive interconnect traffic.

C. Hardware constraints

Figure 11 shows the performance impact of various hard-

ware constraints: cache line granularity, the ordering vector,

and timestamp-ordered dependences (shown for bayes and

Name Description

bayes From STAMP [17], learns the structure of a Bayesian network, “-v32 -r384 -n2 -p20 -s1”

config, pmake These benchmarks report transactions created in TxLinux, a Linux-variant operating system with several subsystems
converted to use transactions for synchronization, instead of spin-locks [23], [26]. The workload involves several
user-mode applications (configure, make) which are running on the transactional OS.

counter, counter-tt A micro-benchmark where threads increment a single shared counter. counter-tt adds think-time, to simulate longer
transactions.

genome From STAMP, a gene-sequencing bioinformatics application, “-g 1024 -s16 -n 4000000”

kmeans From STAMP, implements a K-means clustering algorithm, “-m40 -n40 -t0.05 -i random-n65536-d32-c16.txt”

labyrinth From STAMP, models an engineering program which performs path-routing in a maze, “-i random-x48-y48-z3-n48.txt”

list A micro-benchmark which manipulates a linked-list. On a traversal, a thread may search for a random node (60%),
insert a node (20%) or delete a node (20%). The number of nodes is 8192, node traversals per thread is 512, and the
number of threads is set to four times the processor count.

ssca2 From STAMP, a scientific application with different kernels operating on a multi-graph, “ -s13 -i1.0 -u1.0 -l3 -p3”

vacation From STAMP, models a multi-user database, “-t 20000 -n 10”

Fig. 7. Workloads used in DATM evaluation. TxLinux and list are kernel-mode transactions, while the other benchmarks run in user-mode. All benchmarks
use a number of threads equal to the number of processors, unless noted otherwise.

Fig. 8. Relative execution time and restarts per transaction in DATM, normalized to MetaTM. Lower is better.

vacation). By comparison to word-granularity implementations,

managing dependences at cache line granularity reduces perfor-

mance. Word-granularity requires extra state bits in the cache,

but does not significantly increase bus traffic due to broadcast

writes.

False cycles in the order vector reduce the performance

of DATM. The average length of the order vector during

transactions in bayes and vacation is approximately 6 (sampled

at every dependence-causing memory operation) with maxima

very close to the number of CPUs. Using timestamps to order

dependences also reduces performance, but not as much as the

order vector (e.g., bayes speedup goes from 39% to 14%).

D. Contention management

An attempt to create a dependence that would result in a

cycle will cause DATM to invoke a contention management

policy to resolve the conflict. DATM uses a novel dependence-

aware contention management policy, which minimizes cas-

caded aborts by restarting the transaction with the fewest

dependent transactions, resorting to timestamp when the number

of dependents are equal. Figure 12 shows relative execution

times for bayes and vacation using eruption, polka, and the

dependence-aware contention management policies. It outper-

Fig. 12. Impact of contention management policies in the presence of DATM.
Performance is normalized to the MetaTM performance.

forms non-dependence-aware contention managers (including

timestamp, which is not shown).

VI. RELATED WORK

Larus and Rajwar provide a thorough reference on TM

research through the beginning of summer 2006 [14].

Dependence-aware transactions detect conflicts in a way that

is neither eager nor lazy [18], but rather combine strengths

of both approaches. The constraints on commit order imposed

by dependences have a lazy flavor, though most lazy version

management systems have a first-to-commit arbitration policy,

which is absent with dependences. Since multiple transactions

benchmark exec tx avg rst/tx pct rst avg bkcyc/tx

bayes 0.0082 0.0059 762 13.9 0.8 9.38 5.45 27,283.48 759.82

config(8p) 3.5433 3.5369 4698136 0.1 0.1 1.91 1.86 1.31 0.45

counter 0.0948 0.0710 160000 9.4 4.0 59.59 76.83 519.17 119.42

counter-tt 3.0668 0.1892 16000 1056.3 0.1 99.99 0.39 264,060.82 0.12

genome 0.2122 0.2117 352376 0.1 0.1 0.21 0.15 0.99 0.06

kmeans 0.3005 0.2954 436986 1.1 0.1 11.11 6.33 58.39 0.91

labyrinth 0.0657 0.0646 128 88.5 27.8 36.77 29.74 140,085.71 41,521.21

list(8p) 0.3858 0.3552 78586 0.2 0.1 10.89 5.32 1.47 0.19

pmake(8p) 0.2604 0.2526 251844 0.2 0.1 3.93 3.80 4.46 3.07

ssca2 0.0075 0.0079 47304 0.1 0.001 0.15 0.10 28.42 0.05

vacation 0.0304 0.0248 20000 8.0 0.9 36.71 29.93 1,123.27 40.08

Fig. 9. Basic transactional characteristics of benchmarks running on on DATM and MetaTM. In cases where two numbers are present, MetaTM is the leftmost
number, while DATM is the rightmost number. The “exec” metric is execution time in seconds (user time for STAMP and micro-benchmarks, and kernel time
for TxLinux benchmarks), and the “tx” metric is the total number of transactions. The “avg rst/tx” metric is the average number of restarts per transaction, and
the “pct rst” metric is the percentage of transactions that restart at least once. The “avg bkcyc/tx” metric is the average number of cycles spent backing off before
restart per transaction. All data is for 16 CPUs, except TxLinux benchmarks config and pmake, which were run using 8 CPUs.

WR deps RW deps forward cascade complex no-dep incons. broadcast

restarts aborts confl. mode reads writes

bayes 3.8% 8.5% 0.4% 0% 7.0% 1 3 1

config (8p) 0.3% 0.2% 19.7% 2.3% 0.3% 2 1 10,132

counter 90.0% 80.7% 0% 0% 90.8% 0 0 0

counter-tt 99.9% 0.3% 0% 100.0% 99.9% 0 0 0

genome 0.1% 0.1% 0% 14.2% 0.1% 0 1 104

kmeans 8.9% 6.0% 0% 3.1% 7.0% 0 0 40,723

labyrinth 32.0% 32.0% 0% 0.1% 39.0% 6 1 4

list 14.3% 3.8% 3.3% 0.2% 0% 3 0 86

pmake (8p) 0.5% 0.5% 12.9% 6.5% 0.6% 0 10 10,009

ssca2 0.1% 0.1% 0% 0% 0.1% 0 0 0

vacation 35.2% 7.9% 0.4% 3.5% 44.7% 6 34 143

Fig. 10. Basic dependence-related statistics. The first two columns show the percentage of transactions that were involved in a dependence of that type (W→W
dependences formed between less than 0.2% of transactions for all workloads). The next three show the percentage of restarts that were due to forward restarts,
cascading aborts, or complex conflicts. The next two columns provide an actual count of transactions that entered no-dep mode and experienced inconsistent
reads. The last column shows the total broadcast writes for the workload.

that write the same memory cell cannot update the cell in place,

DATM version management is lazy.

Aydonat and Abdelrahman [1] have (simultaneously with us)

identified that current transactional memory implementations

apply a stronger form of serializability than conflict serializ-

ability, thus reducing the amount of useful concurrency in the

system. They have a software system which does not accept

all conflict serializable schedules as DATM does. In particular,

their implementation would not allow concurrent updates to a

shared counter.

Write-shared data. One approach to the problem of write-

shared data is to make it the responsibility of the programmer

not to write-share data in the first place. Such systems usually

provide at least some performance analysis tools [4] to help

programmers identify data hotspots, leaving them with these

alternatives: (1) Use a more sophisticated data structure (or

adapt the existing one), to avoid the problem (e.g., use a vector

of counters instead of a global single counter), (2) Eliminate

a feature or reduce functionality (e.g., remove the counter

feature), (3) Weaken the specifications (e.g., use cached, private

copies of data at the cost of being stale), (4) Do nothing and

live with the performance problem.

All these approaches are undesirable, and ultimately lead to

some combination of greater programming effort, decreased

maintainability, reduced functionality, and more bugs. These

costs are a significant price to pay for higher concurrency.

TM programming model extensions. Several proposed

extensions to the TM programming model can be used to

achieve higher performance, including privatization [31], early

release [30], escape actions [32], open and closed nesting [19],

[20], Galois classes [13], transactional boosting [11] and ab-

stract nested transactions [10].

These techniques all fundamentally affect the programming

model, increase programmer effort, and increase program com-

plexity as the price for better performance. They differ in their

degree of applicability and the difficulty of reasoning involved,

as well as the amount of additional compromises they force on

their users. For example, using escape actions to implement a

counter requires the programmer to also write a compensation

block, which is a significant programmer burden. Moreover,

semantics may be weakened when using this approach (e.g.

a counter implemented this way is no longer monotonically

increasing). In Galois and transactional boosting, the program-

mer needs to provide inverse operations for the concurrent

data structures, which might be difficult (e.g., k-d tree), as

well as define commutativity relationships between the various

operations.

Thread-level speculation Designs for thread-level specula-

tion [7], [25] are similar to DATM in their support for multiple

versions of speculative data. In the TLS taxonomy, DATM

merges its results with main memory lazily (via the CTM cache

state). However, state management in DATM is much simpler

than TLS. For example, of the five challenges to buffering state

in TLS (including multiple speculative tasks per processor and

multiple versions of a variable in a processor), DATM needs

to deal with three of them (buffering and merging speculative

state and multiple versions of the same variable at different

processors). Current TM systems must deal with two of the

challenges, buffering and merging speculative state.

TLS must squash speculation on dependence violation, and

current designs tolerate some memory access conflicts. TLS

tolerates a subset of the conflicts tolerated by DATM [25].

Databases. The dependence-aware model has some relation

to multi-version concurrency control (MVCC). The DATM

implementation keeps track of multiple versions of an object

when it is being modified concurrently by many transactions.

MVCC (also called time-domain addressing [24]) also tracks

multiple versions of each object, so there are some common

issues that both systems must deal with. However, a key

difference between MVCC and DATM is that DATM is de-

signed to specifically deal with hotspots, whereas hotspots are

known to degrade performance of MVCC database systems.

The techniques used by DATM (transactions dependences and

forwarding data between transactions) are unique to DATM and

not found in MVCC systems.

VII. CONCLUSION

Dependence-aware transactions increase throughput by en-

abling concurrent execution of transactions that would other-

wise conflict due to updating shared data structures. This paper

presents the design, and a prototype implementation of the

first dependence-aware hardware transactional memory system.

Experimental results from our prototype confirms the poten-

tial performance benefits of dependence-aware transactional

memory as compared to traditional HTM implementations.

DATM eliminates the need for programmers to resort to esoteric

programming patterns or to extend the TM programming model.

This performance improvement is achieved through mecha-

nisms that are completely transparent to the programmer.

VIII. ACKNOWLEDGEMENTS

This research is supported by NSF CISE Research Infrastruc-

ture Grant EIA-0303609 and NSF Career Award 0644205. We

thank Virtutech AB for their academic site license program.

REFERENCES

[1] U. Aydonat and T. Abdelrahman. Serializability of transactions in soft-
ware transactional memory. In TRANSACT, 2008.

[2] C. Blundell, J. Devietti, E. C. Lewis, and M. Martin. Making the fast
case common and the uncommon case simple in unbounded tm. In ISCA,
2007.

[3] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation of
speculative threads in multiprocessors. In ISCA, 2006.

[4] H. Chafi, C. Minh, A. McDonald, B. Carlstrom, J. Chung, L. Hammond,
C. Kozyrakis, and K. Olukotun. Tape: A transactional application profil-
ing environment. In International Conference on Supercomputing, 2005.

[5] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson,
M. v.Biesbrouck, G. Pokam, B. Calder, and O. Colavin. Unbounded
page-based transactional memory. In ASPLOS, 2006.

[6] J. Chung, C. Minh, A. McDonald, T. Skare, H. Chafi, B. Carlstrom,
C. Kozyrakis, and K. Olukotun. Tradeoffs in transactional memory
virtualization. In ASPLOS, 2006.

[7] M. Garzarán, M. Prvulovic, J. Llaberı́a, nals V. Vi L. Rauchwerger, and
J. Torrellas. Tradeoffs in buffering speculative memory state for thread-
level speculation in multiprocessors. ACM TACO, 2(3), 2005.

[8] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[9] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom, M. Prabhu,
H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory
coherence and consistency. In ISCA, 2004.

[10] T. Harris and S. Stipic. Abstract nested transactions. In TRANSACT,
2007.

[11] M. Herlihy and E. Koskinen. Transactional boosting. In PPoPP, 2008.
[12] M. Herlihy and J. Wing. Linearizability: A correctness condition for

concurrent objects. ACM TOPLAS, 12(3):463–492, Jul 1990.
[13] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P.

Chew. Optimistic parallelism requires abstractions. In PLDI, 2007.
[14] J. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool,

2006.
[15] P.S. Magnusson, M. Christianson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full
system simulation platform. In IEEE Computer vol.35 no.2, Feb 2002.

[16] A. McDonald, J. Chung, B. Carlstrom, C. Minh, H. Chafi, C. Kozyrakis,
and K. Olukotun. Architectural semantics for practical transactional
memory. In ISCA, Jun 2006.

[17] C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,
C. Kozyrakis, and K. Olukotun. An effective hybrid transactional memory
system with strong isolation guarantees. In ISCA, 2007.

[18] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, , and D. A. Wood.
Logtm: Log-based transactional memory. In HPCA, 2006.

[19] J. E.B. Moss. Nested transactions. MIT, 1985.
[20] Y. Ni, V. Menon, A. Tabatabai, A. Hosking, R. Hudson, J. Moss, B. Saha,

and T. Shpeisman. Open nesting in software transactional memory. In
PPoPP, 2007.

[21] R. Rajwar and J. Goodman. Transactional lock-free execution of lock-
based programs. In ASPLOS, October 2002.

[22] R. Rajwar and M. Herlihy K. Lai. Virtualizing transactional memory. In
ISCA, Jun 2005.

[23] H. Ramadan, C. Rossbach, D. Porter, O. Hofmann, A. Bhandari, and
E. Witchel. Metatm/txlinux: Transactional memory for an operating
system. In ISCA, 2007.

[24] D. Reed. Implementing atomic actions on decentralized data. ACM
TOCS, 1(1), 1981.

[25] J. Renau, K. Strauss, L. Ceze, W. Liu, S. Sarangi, J. Tuck, and J. Torrellas.
Thread-level speculation on a CMP can be energy efficient. In ICS, 2005.

[26] C. Rossbach, O. Hofmann, D. Porter, H. Ramadan, A. Bhandari, and
E. Witchel. TxLinux: Using and managing transactional memory in an
operating system. In SOSP, 2007.

[27] W. Scherer III and M. Scott. Advanced contention management for
dynamic software transactional memory. In PODC, 2005.

[28] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible decoupled
transactional memory support. In ISCA, 2008.

[29] A. Shriraman, M. Spear, H. Hossain, V. Marathe, S. Dwarkadas, and
M. Scott. An integrated hardware-software approach to flexible transac-
tional memory. In ISCA, 2007.

[30] T. Skare and C. Kozyrakis. Early release: Friend or foe? In WTW, 2006.
[31] M. Spear, V. Marathe, L. Dalessandro, and M. Scott. Privatization

techniques for software transactional memory. In PODC, 2007.
[32] C. Zilles and L. Baugh. Extending hardware transactional memory. In

TRANSACT, Jun 2006.

