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1. Introduction

The Linux operating system kernel [4] is a large, ma-
ture, freely available, and well-tuned concurrent pro-
gram. As such it is an ideal workload for a transactional
memory hardware design.

Operating systems need transactional memory for
performance scalability, to help maintainability, and to
provide services related to transactions to user pro-
grams. Most general purpose computing platforms run
operating systems, and OS services must be scalable
or applications will see the OS as a scalability bot-
tleneck. The OS should not interfere with applications
making use of the increased number of processing con-
texts available on modern CPUs. There has been enor-
mous effort over the past decade to make the OS scal-
able, and the result has been increased code complex-
ity that is starting to threaten continued innovation. For
instance, mm/filemap.c has 50 lines of comments de-
tailing lock ordering constraints. Finally, if the OS is to
provide transaction-related services (such as support-
ing user-level transactions across a context switch), it
could probably do so most naturally if the OS itself
were implemented with transactions.

This paper raises issues about how an OS can take
advantage of a transactional memory hardware system.
While there have been trace-based studies of OSes on
transactional hardware [1], and designs for virtualiz-
able transactions [22], these have ignored many inter-
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esting issues to make running an OS on transactional
hardware truly practical.

The contributions of this paper include the following
observations.

• The most natural way to handle interrupts requires
that a single thread of control can have multiple con-
currently active transactions. Existing models do not
accomodate this approach; we propose a new model
called transactionstacking to enable this functional-
ity. (Section 2)

• Conflict management, the mechanism that deter-
mines which transaction must restart when two
transactions conflict, is essential for performance.
The OS has several locking mechanisms that pro-
vide different priorities for readers vs. writers, and
these hints should be communicated to the hard-
ware. (Section 3)

• While transactions promise to simplify the program-
ming model for concurrent programs, there is con-
siderable complexity in the Linux kernel related to
concurrency that might or might not be helped by
transactions. Examples include: per-CPU data struc-
tures, disabling interrupts, and blocking operations.
(Section 4)

• We present preliminary results of implementing a
hardware transactional memory model in a machine
simulator, and booting a transactionalized version of
the Linux kernel on the simulator. (Section 6)

2. Interrupts

Interrupts generally refer to asynchronous events, such
as the countdown timer expiring, or the disk device sig-
naling the completion of a data transfer, while excep-
tions refer to synchronous events like system calls and
invalid opcodes. Interrupts start the OS executing from



a hardware-defined location in privileged code. Inter-
rupts can occur during the execution of the OS itself,
or during execution of user code. While an interrupt is
being handled, another one may be raised, even by the
same device. In order to ensure forward progress inter-
rupt handlers mask interrupts that are of equal or lower
priority to the interrupt being handled.

Interrupts occur much more often that context switch-
es—timer interrupts can fire every 1 millisecond, whereas
a typical time slice for a Linux process is 100 millisec-
onds. Moreover, with processor speeds growing more
slowly, I/O devices are poised to narrow their perfor-
mance gap (e.g., through multi-gigabit network inter-
faces), maintaining the pressure for frequent interrupts.

User-mode programs also experience asynchronous
control flow, primarily via signal handlers, which share
similar issues as interrupts. However, interrupts are far
more frequent in the OS than signals are at user level.

2.1 Interrupts and transactions

We believe that the best way to integrate interrupt han-
dling with transactional memory is to allow a single
thread of control to have multiple active, but indepen-
dent, transactions at once. We call thisstacking, which
is distinct from nesting because the transactions are in-
dependent. We discuss stacking in the next section.

This section considers possible OS strategies for
integrating interrupt handling with transactions and
demonstrates that support for stacking is necessary.
Consider the arrival of an interrupt while the kernel is
executing. The same thread (the OS on processor N) ex-
ecutes the interrupt handler in the same address space.
What should the system do? Possibilities include:

• Make a rule against two active transactions in in-
terrupt handlers. If interrupt handlers cannot actually
use transactions, it is possible to simply execute the
handler code. If the handler performs a memory oper-
ation that conflicts with the interrupted transaction, the
hardware would abort the paused transaction after the
handler returns. However, denying transactions to in-
terrupt handlers denies an important tool for synchro-
nization to the part of the OS that needs it the most.

• Abort the first transaction when the second one
starts. This would allow the interrupting event-handler
to use memory transactions. The aborted transaction
must be re-executed once the event handler finishes.
However, this approach aborts all interrupted transac-
tions, whether or not there is a conflict with the inter-

rupt handler’s transaction. This approach aborts many
more transactions than necessary.

• Nest the transactions [19]. The problem with nest-
ing the transactions is that there is typically no mean-
ingful relationship between the interrupted transaction
and the transactions which the interrupt handler cre-
ates. Flattening or closed nesting is not an option. If
the outer transaction fails, flattening would fail the in-
ner transaction and hence cancel the effect of receiv-
ing the interrupt. Open nesting, which would allow a
parent abort to perform compensatory actions, would
mean that every interrupt handler would need code to
undo its effects. Were such code possible, it would be
more complicated than the locking that transactions are
intended to replace.

• Treat the interrupt as a context switch. Recent
proposals for transactional hardware [1, 22] have in-
cluded the ability for a thread’s transaction to survive
across a context switch. These systems maintain over-
flow state on a per-process basis, enabling a transaction
to be in a “swapped out” state. Virtualizable transac-
tions [22] associate a transaction data structure with
each address space. This allows a thread transition-
ing from user to kernel code to flush its user-level
transaction state to memory while it executes kernel-
level transactions. The memory flush might hurt per-
formance, but a thread can have two active transac-
tions, one in each address space. If an interrupt arrives
while the kernel is executing, then not even virtualiz-
able transactions can help because the thread and ad-
dress space are the same for both active transactions.
Adding multiple context identifiers to the kernel ad-
dress space to enable interrupts to be treated as context
switches does not seem worth the hardware investment.

2.2 Stacked transactions

We suggest a mechanism for allowing interrupt han-
dlers to use transactional memory calledstacked trans-
actions. Stacked transactions allows multiple inde-
pendent concurrent transactions in a single thread.
Note that the concepts of nesting and stacking are or-
thogonal; one can have a stacked, nested transaction.
“Stacked” is borrowed from the terminology that inter-
rupt handlers are “stacked” on top of each other.

The mechanisms developed for allowing transac-
tions to survive context switches can be used to imple-
ment the “stacked” transaction model, however these
mechanisms were not developed with stacking in mind
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Figure 1. An example where an interrupt handler uses stack memory that is also used by an existing transaction A.
When transaction A restarts, the stack memory has been changed from when the transaction began. A transactional
memory design that allows multiple concurrent transactions for a single threadmust address this issue.

so it is likely that more efficient designs are possible.
Because interrupt handlers usually execute with inter-
rupts disabled, they tend to be short. It should be possi-
ble to virtualize stacked transactions with mechanisms
that are less expensive than those required for virtual-
ization of transactions across context switches.

2.3 Issues for stacked transactions

The ability of a single thread of control to own multiple
outstanding transactions has the potential to affect var-
ious aspects of transactional memory systems. We in-
vestigated two issues in our implementation effort: con-
flict management, and stack memory. Conflict manage-
ment policies, the mechanisms that determine which
transaction “wins” if two conflict, need to be sensitive
to whether conflicting transactions are stacked. Assume
the OS is executing transaction A and receives an in-
terrupt and begins executing transaction B. If A and B
conflict, the system must abort A, otherwise the system
will livelock.

A second issue arises under the following circum-
stances: while transaction A is active, it makes a func-
tion call that returns, but some stack1 memory val-
ues modified by the call conflict with those modified
by the interrupt handler2. Reuse of the stack memory
creates an artificial conflict between otherwise inde-
pendent transactions. This is illustrated in Figure 1. If
the caller started the transaction and then called the
callee3, the callee’s stack frame becomes part of the
callers transaction state. This can cause a spurious con-
flict with an interrupt handler for an interrupt that ar-
rives after the callee has returned. To avoid this prob-
lem software could drop the memory stack locations

1 Note that this refers to a thread’s memory stack, not to stacked
transactions.
2 This is an issue regardless of whether the interrupt handlers uses
a transaction or not.
3 In the figure the transaction starts in the callee

from a transaction’s set when the function returns, or
the hardware might exclude these ranges from transac-
tional sets in the first place.

A correctness issue arises if transaction A starts in a
function that returns before the interrupt handler runs,
as shown in Figure 1. The non-transactional writes of
the interrupt handler change the state of the stack loca-
tions used by transaction A. When the handler returns,
transaction A aborts, restoring its program counter and
stack pointer to the values they had at the start of the
transaction. Unfortunately the stack frame that was ac-
tive when the transaction started has been overwrit-
ten by the interrupt handler. This problem is tricky to
solve. Perhaps the top of the stack becomes part of the
state checkpointed by the hardware, and is restored on
a transaction retry.

3. Conflict management hints are essential

Transactional hardware will need to accept program-
mer hints for conflict resolution. For instance, an argu-
ment toxbegin , the instruction that begins a trans-
action, might specify whether to favor readers or writ-
ers. OS performance might require several shades of
favoritism, as reader/writer spin locks naturally favor
readers, but read-copy-update (RCU) [2] data struc-
tures favor readers even more heavily. Other forms of
favoritism, for instance a low priority transaction that
defers to most other transactions, should be investi-
gated. Kernel developers have encoded rich informa-
tion about how synchronization conflicts should be re-
solved, and transactional synchronization would disre-
gard that information at peril of performance.

Consider seqlocks and RCU data structures: se-
qlocks are designed to favor writers, while RCU data
structures favor readers. Seqlocks are similar to read-
er/writer spinlocks, but they give higher priority to the
writer. Writers may always proceed (though only one
writer is allowed at a time), while readers may have



to retry their operations. RCU data structures prioritize
readers by avoiding reader locks for a restricted class
of data structures (dynamically allocated data struc-
tures that are accessed by pointers). Writers must copy
the object they wish to modify, and then atomically
replace the old object with the new. Writer code can
have locks and might require data structure redesign.
Readers cannot sleep or be preempted.

The need for sophisticated hardware contention
management is pressing in the OS because real con-
tention can be the common case for some workloads.
For instance, in our experiments we were able to in-
duce many real data conflicts in Linux’s directory entry
cache (dcache) code by doing simultaneous reads and
updates within a directory. Transactions are optimistic
and therefore are most effective when real contention
is rare. It is likely that conflict management for trans-
actions in the OS will require some adaptation so the
system does not become unresponsive when the real
conflict rate spikes. During such activity conservative
locking is the most effective strategy.

4. Will transactional memory simplify
programming?

A major benefit of transactional memory is that it sim-
plifies reasoning about concurrent programs. The prob-
lem with this argument for Linux is that there is consid-
erable complexity in the kernel to deal with synchro-
nization and coordination that is not easily expressed
with transactional semantics. This section discusses
synchronization primitives within Linux that cannot or
perhaps should not be replaced by transactional mem-
ory: per-CPU data structures and blocking primitives
(semaphores, completions, and mutexes),

4.1 Per-CPU data structures

Separating out state that does not need to be shared
across processors is good design practice. Modern
operating systems formalize this with the notion of
per-CPU variables and data structures. Per-CPU data
structures do not need to be protected against access
by any other processor. Is eliminating cross-processor
synchronization a worthwhile complication to the pro-
graming model? Should per-CPU data structures be
turned into transactions? Doing so would keep the
programming model uniform, but might harm perfor-
mance. Can the transactional models leverage the fact

that a variable is guaranteed not to be accessed from
another processor?

Per-CPU variables form a building block for compli-
cated code. For example, the Linux kernel slab mem-
ory allocator [3] uses per-CPU variables to implement
a shared heap. The initial version of the slab memory
allocator (slab.c) in the Linux 2.2 kernel was roughly
2,005 lines of code (2.2.26). It increased to 3,070 lines
of code for the 2.6 kernel (2.6.11)4. Linux maintain-
ers note that “many of the changes in the slab alloca-
tor for 2.6 are . . . related to the reduction of lock con-
tention.” [24].

The OS disables interrupts to protect per-CPU data
structures from concurrent access by threads on the
same processor. Transactions can provide isolation be-
tween threads on the same CPU in simple cases, but
more research is needed to determine whether transac-
tions can eliminate the need for most of this type of
interrupt disabling.

4.2 Blocking operations

There is ongoing research on integration of blocking
operations with a transactional model [23], for instance
the transactional extensions to Concurrent Haskell [8]
have introduced modular blocking primitives that mon-
itor a transaction’s working set. The Linux kernel sup-
ports three different blocking synchronization primi-
tives (semaphores, completions and mutexes), all op-
timized for different environmental assumptions.

Semaphores are objects that allow a certain number
of waiters (usually one) into a critical section. Wait-
ers are descheduled and placed on a queue, where they
are awakened by a thread releasing the semaphore.
For instance, processes queue themselves waiting for
console access if they cannot get immediate access.
Completions are a type of semaphore that avoid a race
condition on a dynamically allocated semaphore. Mu-
texes [18] are a smaller, faster, binary-only semaphore
with more restricted use than semaphores (they were
introduced in Linux 2.6.16).

Blocking primitives raise the following research
questions.

• If the latency of a blocking operation is dominated
by the wait, is it necessary to optimize the operation?
Maybe blocking operations are fine the way they
are implemented because threads spend much more

4 In the most recent version of the kernel (2.6.16.1), the code size
has increased to 3,863 lines, primarily to support NUMA.



time waiting for a resource to become available than
they do queuing themselves for the resource.

• If transactional primitives can reduce the instruction
count to grab or release a blocking object, how much
does that help performance and scalability? Maybe
transactions play a useful role in the implementation
of blocking primitives.

• Blocking primitives can be used in complicated
ways. The semaphore that protects the memory
mapping data structures is tested during the fre-
quently executed page fault handling path. Differ-
ent processing happens during a page fault if the
semaphore is held or not. Would a reimplementa-
tion of the semaphore need to support this kind of
operation?

5. I/O in transactions

Transactions must be restartable, so most proposals dis-
allow I/O during a transaction. Our experiments re-
vealed that Linux often performs I/O with spin locks
held, thwarting an easy conversion of spin locks to use
transactions. About one-third of Linux’s spin locks had
I/O performed at some point while they were locked.
Some locks are held for long periods of time during sig-
nificant I/O (e.g. the real-time clock lock during boot).

We did observe that many I/O operations performed
with spin locks held can be correctly re-executed
with possibly small performance consequences. For
instance, inter-processor interrupts (IPIs) are used to
do system-wide TLB invalidations. Invalidating TLBs
multiple times does not affect correctness, so it would
be possible to include TLB shootdowns within a trans-
action, even though the transaction performs I/O. The
performance consequences need to be investigated.

6. Preliminary Results

We have early results from implementing a generic
hardware transactional memory model in the Sim-
ics [15] machine simulation framework (version 3.0.10).
Our model implements stacked transactions, as de-
scribed in Section 2.2, so that interrupt handlers are
able to use transactions. We replaced the majority of
spin locks in the Linux kernel, version 2.6.16.15, with
transactions. Here we discuss preliminary results using
system boot as the workload.
5 The “.1” release came less than a week after the 2.6.16 release,
and fixes a dead-lock introduced in the kernel scheduler, among
other things.

Lock acquisition is translated to a begin transaction
instruction, and the lock release is translated to an end
transaction instruction. We could not replace every spin
lock with a transaction. The most common problem
was if a spin lock is ever held while I/O is performed.
In that case, we conservatively do not convert it to
use transactions. Of the 1,437 calls tospin lock in
Linux, about two-thirds are for locks that are never held
during I/O in the workloads we executed.

We ran experiments with 2, 4, 6, and 8 simulated
processors. Our simple performance model assumes 1
instruction per cycle, and infinitely fast devices. The
memory hierarchy has a two-level cache per processor,
with split instruction and data caches at the L1 level and
a unified L2. The L1 caches are each 16Kb, 4-way as-
sociative, with 64-byte cache lines, assuming a 1-cycle
cache hit and a 16-cycle cache miss penalty. The L2
caches are 4Mb, 8-way associative, with 64-byte cache
lines and a 200 cycle miss penalty to main memory.
The L2’s communicate using a MESI snooping proto-
col, and the main memory is a single shared 256 MB
memory.
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Figure 2. Normalized boot time for an unmodified
Linux compared with transactionalized Linux.

Figure 2 compares normalized boot times for the
kernel using traditional spinlocks, and transactions.
The transactionalized kernel shows a modest perfor-
mance gain of about 2%. These results, while prelimi-
nary, are at least encouraging.

7. Related work

Lamport was among the first to propose that con-
current reading and writing of data need not require
locks [14]. Notions of optimistic concurrency control



first appeared in the database domain [13], but did not
gain wide acceptance in the database community [17].

Herlihy introduced the concepts of lock-free, wait-
free and obstruction-free synchronization[9, 10], while
transactional memory as a programming concept has
its roots in [12, 11].

Among more recent research on hardware transac-
tional memory (HTM) is Speculative Lock Elision [20,
21], which implements atomicity with the cache and
speculatively identifies locks, and Transactional Coher-
ence and Consistency [7, 6], wherein all computation
is transactionalized. Unbounded Transactional Mem-
ory [1] and Virtual Transactional Memory [22] have ad-
dressed issues of virtualization and providing the pro-
grammer with freedom from platform-specificity and
resource limitations.

Operating systems that make heavy use of non-
blocking primitives include Synthesis [16] and the
Cache Kernel [5].
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