CS 327E Class 7

November 5, 2018

Check your GCP Credits :)

2 Google Cloud

Hello,

We are emailing you because we noticed some of your students have used over 60%
of their credit. This is great; we love to see students use our platform! We also want to

make sure your students don't run out of credit.

If you are still using GCR, we can provide more credit for just these students or your
whole class if you think others will also be using as much. If you do need more credit,
please reply back to this message with how much more you will need and we will

review your request.
Thanks,
Google Cloud Platform Education Grants Team

. > Learn more about the GCP Grants Programs

G Ciug Higher Ed Learning Center

iClicker Question

Are you running low on GCP credits?

A. Yes
B. No

No Quiz Today

Dataflow Concepts

e A system for processing arbitrary computations on large
amounts of data

e Can process batch data and streaming data using the same
code

® Uses Apache Beam, an open-source programming model
e Designed to be very scalable, millions of QPS

Apache Beam Concepts

e A model for describing data and data processing operations:
0 Pipeline: adata processing task from start to finish
0 PCollection: acollection of data elements
o Transform: a data transformation operation

e SDKs for Java, Python and Go

e Executed in the cloud on Dataflow, Spark, Flink, etc.

e Executed locally with Direct Runner for dev/testing

Beam Pipeline

Pipeline = Adirected acyclic graph where the nodes are the
Transforms and the edges are the PCollections

General Structure of a Pipeline:

o Reads one or more data sources as input PCollections

o Applies one or more Transforms onthe PCollections
O Qutputs resulting PCollection as one or more data sinks
Executed as a single unit

Run in batch or streaming mode

PCollection

PCollection = A collection of data elements
Elements can be of any type (String, Int, Array, etc.)
PCollections are distributed across machines
PCollections are immutable

Created from a data source ora Transform

Written to a data sink or passed to another Transform

Transform Types

e Element-wise:
o maps 1inputto (1, 0, many) outputs
o Examples: ParDo, Map, FlatMap
® Aggregation:
o reduces many inputs to (1, fewer) outputs
0 Examples: GroupByKey, CoGroupByKey
e Composite: combines element-wise and aggregation
O GroupByKey -> ParDo

Transform Properties

e Serializable
e Parallelizable
e |dempotent

ParDo

ParDo = “Parallel Do”

Maps 1 input to (1, 0, many) outputs

Takes asinputa PCollection

Applies the user-defined ParDo to the input PCollection
Outputs results as a new PCollection

Typical usage: filtering, formatting, extracting parts of data,
performing computations on data elements

ParDo
Example

N OO B W N

v
v

8

9
10w
11
12
13
14
15w
16
17
18
19
20
21
22
23
24

import apache_beam as beam
from apache_beam.io import ReadFromText
from apache_beam.io import WriteToText

DoFn to perform on each element in the input PCollection.
class ComputeWordLengthFn(beam.DoFn):
def process(self, element):
words = element.strip().split(' ')
result_list = []
for word in words:
result_list.append((word, len(word)))
return result_list

Create a Pipeline using a local runner for execution.
with beam.Pipeline('DirectRunner') as p:

create a PCollection from the file contents.
in_pcoll = p | 'Read' >> ReadFromText('input.txt"')

apply a ParDo to the PCollection
out_pcoll = in_pcoll | beam.ParDo(ComputeWordLengthFn())

write PCollection to a file
out_pcoll | 'Write' >> WriteToText('output.txt')

Source File: https://qgithub.com/cs327e-fall2018/snippets/blob/master/word length.py

https://github.com/cs327e-fall2018/snippets/blob/master/word_length.py

Aggregation
Example

W 0O N O U & WN =

N NN NNNNRB B B 2B 29 25 9B 3 8B @92
O Ul A WNRFEP SO OWOWMNOO U A WNRS

27

import apache_beam as beam
from apache_beam.io import ReadFromText
from apache_beam.io import WriteToText

DoFn to perform on each element in the input PCollection.
class ComputeWordLengthFn(beam.DoFn):
def process(self, element):
words = element.strip().split(' ')
result_list = []
for word in words:
result_list.append((len(word), word))
return result_list

Create a Pipeline using a local runner for execution.
with beam.Pipeline('DirectRunner') as p:

create a PCollection from the file contents.
in_pcoll = p | 'Read' >> ReadFromText('input.txt')

apply a ParDo to the PCollection
word_pcoll = in_pcoll | 'ParDo' >> beam.ParDo(ComputeWordLengthFn())

apply GroupByKey to the PCollection
out_pcoll = word_pcoll | 'GroupByKey' >> beam.GroupByKey()

write PCollection to a file
out_pcoll | 'Write' >> WriteToText('output.txt')

Source File: https://qgithub.com/cs327e-fall2018/snippets/blob/master/group words by length.py

https://github.com/cs327e-fall2018/snippets/blob/master/group_words_by_length.py

import logging

import apache_beam as beam

from apache_beam.io import ReadFromText
from apache_beam.io import WriteToText

DoFn to perform on each element in the input PCollection.

BigQuery
Data Sink

class ComputeWordLengthFn(beam.DoFn):
def process(self, element):

Exa mple 9 words = element.strip().split(' ')
10

result_list = []

0O N O LA WN

11v for word in words:

12 result = {'word' : word, 'length' : len(word)}
13 result_list.append(result)

14 return result_list

15

16 # Create a Pipeline using a local runner for execution.
17 v| with beam.Pipeline('DirectRunner') as p:

18
19 # create a PCollection from the file contents.

20 in_pcoll = p | 'Read from File' >> ReadFromText('input.txt')

21

22 # apply a ParDo to the PCollection

23 out_pcoll = in_pcoll | beam.ParDo(ComputeWordLengthFn())

24

25 # write PCollection to a file

26 out_pcoll | 'Write to File' >> WriteToText('output.txt')

27

28 # write PCollection to a BQ table

29 qualified_table_name = 'cs327e-fa2018:beam.Words'

30 table_schema = 'word:STRING, length:INTEGER'

31 out_pcoll | 'Write to BigQuery' >> beam.io.Write(beam.io.BigQuerySink(qualified_table_name,

32 schema=table_schema,

33 create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
34 write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE))

Source File: https://qithub.com/cs327e-fall2018/snippets/blob/master/word length ba out.py

https://github.com/cs327e-fall2018/snippets/blob/master/word_length_bq_out.py

How to “Dataflow”

Start with some initial working code.

Test and debug each new line of code.

Write temporary and final PCollections to log files.

Test and debug end-to-end pipeline locally before running on Dataflow.
If you get stuck, make a Piazza post that has enough details for the
instructors to reproduce the error and help you troubleshoot.

Start assignments early. The Beam Python documentation is sparse and
learning Beam requires patience and experimentation.

ok owbdh-=

o

Dataflow Set Up

https://qgithub.com/cs327e-fall2018/snippets/wiki/Dataflow-Setup-Guide

https://github.com/cs327e-fall2018/snippets/wiki/Dataflow-Setup-Guide

Milestone 7

http://www.cs.utexas.edu/~scohen/milestones/Milestone? .pdf

http://www.cs.utexas.edu/~scohen/milestones/Milestone7.pdf

