
CS 327E Class 8
November 12, 2018



1) The individual elements of a PCollection are not accessible 
by Beam Transforms.

A. True
B. False



2) Which Beam Transform can contain a boolean condition that 
    specifies which elements from the input PCollection should
    be in the output PCollection?

A. ParDo
B. GroupByKey 
C. CoGroupByKey
D. Flatten
E. None of the above



3) Which Beam Transform is equivalent to an ORDER BY clause in
    SQL?

A. ParDo
B. GroupByKey 
C. CoGroupByKey
D. Flatten
E. None of the above



4) Which Beam Transform is equivalent to a JOIN in SQL?

A. ParDo
B. GroupByKey 
C. CoGroupByKey
D. Flatten
E. None of the above



5) Which statement is True about the GroupByKey Transform?

A. GroupByKey groups all the elements in the input PCollection except for 
the first and last elements.

B. GroupByKey expects the elements of the input PCollection to contain 
multiple types (e.g. String, Integer, etc.).

C. GroupByKey expects the elements of the input PCollection to be shaped 
as a (key, value) pair.

D. GroupByKey is analogous to a GROUP BY clause in SQL. 



ParDo Transform

● Maps 1 input element to (1, 0, many) output elements

● Invokes a user-specified function on each of the elements of the input 

PCollection
● User code is implemented as a subclass of DoFn containing a 

user-defined function process(self, element)
● Elements are processed independently and in parallel

● Output elements are bundled into a new PCollection
● Typical usage: filtering, formatting, extracting parts of data, 

performing computations on data elements



ParDo
Example 

Source File: https://github.com/cs327e-fall2018/snippets/blob/master/format_student_dob.py   

https://github.com/cs327e-fall2018/snippets/blob/master/format_student_dob.py


ParDo Side Input

● An optional input passed to ParDo’s DoFn
● Side input can be ordinary values or entire PCollection
● DoFn reads side input while processing an element

● Can have multiple side inputs per DoFn
● Passed as extra arguments to process(self, element, 

side_input1, side_input2 ...)



Pardo with Side Input Example

Source File: https://github.com/cs327e-fall2018/snippets/blob/master/normalize_takes_cno.py    

https://github.com/cs327e-fall2018/snippets/blob/master/normalize_takes_cno.py


ParDo and Side Input Example

Source File: https://github.com/cs327e-fall2018/snippets/blob/master/normalize_takes_cno.py    

https://github.com/cs327e-fall2018/snippets/blob/master/normalize_takes_cno.py


Flatten Transform

● Takes a list of PCollections as input
● Produces a single PCollection as output
● Results contain all the elements from the input PCollections
● Note: Input PCollections must have matching schemas



Flatten Example 

Source File: https://github.com/cs327e-fall2018/snippets/blob/master/merge_student_tables.py   

https://github.com/cs327e-fall2018/snippets/blob/master/merge_student_tables.py


GroupByKey Transform

● Takes a PCollection as input where each element is a (key, value) pair
● Groups the values by unique key
● Produces a PCollection as output where each element is a (key, 

list(value)) pair
● Related, but not analogous to GROUP BY in SQL



GroupByKey Example 

Source File: https://github.com/cs327e-fall2018/snippets/blob/master/dedup_student_table.py    

https://github.com/cs327e-fall2018/snippets/blob/master/dedup_student_table.py


CoGroupByKey Transform

● Takes two or more PCollections as input
● Every element in the input is a (key, value) pair
● Groups values from all input PCollections by common key
● Produces a PCollection as output where each element is a (key, value) 

pair
● Output value is a tuple of dictionary lists containing all data associated with 

unique key
● Analogous to a FULL OUTER JOIN in SQL



CoGroupByKey Transform

Source File: https://github.com/cs327e-fall2018/snippets/blob/master/create_student_view.py 

https://github.com/cs327e-fall2018/snippets/blob/master/create_student_view.py


CoGroupByKey Example

Source File: https://github.com/cs327e-fall2018/snippets/blob/master/create_student_view.py 

https://github.com/cs327e-fall2018/snippets/blob/master/create_student_view.py


First Problem

Normalize the instructor values in the 

Teacher table.



iClicker Question

Normalize the instructor values in the 

Teacher table.

Which Beam Transform is involved in this type of 
processing?

A. ParDo
B. GroupByKey 
C. CoGroupByKey
D. Flatten



Second Problem

Normalize the dept values in the Teacher 

table.



iClicker Question

Normalize the dept values in the Teacher 

table.

Which Beam Transform is involved in this type of 
processing?

A. ParDo
B. GroupByKey 
C. CoGroupByKey
D. Flatten



Third Problem

Remove duplicate records from the 

Teacher table such that each instructor 

is stored only once.



iClicker Question

Remove duplicate records from the 

Teacher table such that each instructor 

is stored only once.

Which Beam Transform(s) is involved in this type 
of processing?

A. ParDo 
B. ParDo and GroupByKey 
C. GroupByKey



Milestone 7 Hints
Part 1:

● Your cross-dataset query descriptions should be clear, concise, and 
compelling.

● They will drive the requirements for Milestones 8 - 10.
● Get feedback on your cross-dataset queries next class by signing-up for a 

short review session.

Part 2: 

● Review the Beam code samples in our snippets repo
● Run code samples on your environment by following instructions in README
● Sample data for your Beam Transforms can come from either a text file or 

BigQuery query

https://tinyurl.com/y9fdogqk
https://github.com/cs327e-fall2018/snippets
https://github.com/cs327e-fall2018/snippets/blob/master/README.md

