CS 327E Class 9

November 11, 2019

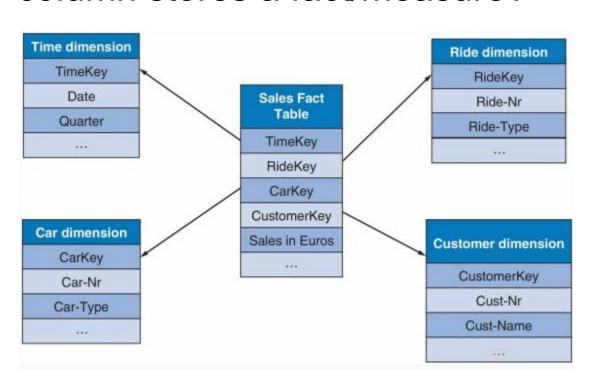
Announcements

Grading update

- What to expect from remaining Milestones:
 - Milestone 9: Find dataset2 + ingest into BQ + model the data
 - Milestone 10: Create Beam pipelines + cross-dataset queries
 - Milestone 11: Orchestrate workflow
 - Milestone 12: Present your project

Review your dataset2 selection: sign-up sheet

1) A data warehouse provides _____


A. a centralized and consolidated data platform by integrating data from different sources and in different formats.

B. an operational data platform with guaranteed consistency during transaction processing.

2) What are the most common schemas of a data warehouse?

- A. Star and Snowflake schemas
- B. Fact and Dimension schemas
- C. Normalized and Denormalized schemas

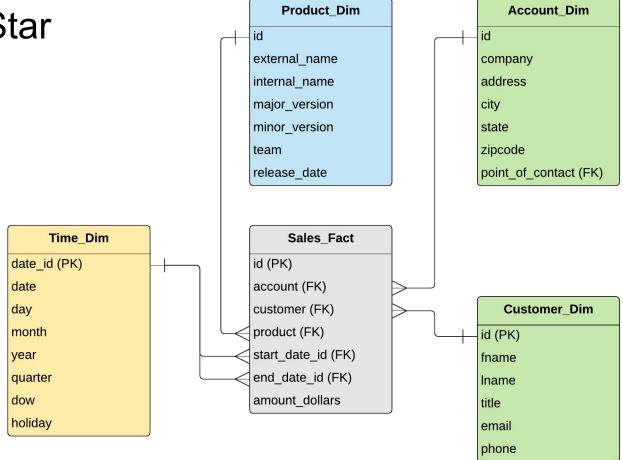
3) In this Saber data warehouse schema, which column stores a fact/measure?

- A. Car-Nr
- B. Cust-Nr
- C. Sales in Euros
- D. None of the above

4) What are some important considerations when designing a data warehouse schema?

- A. The grain of the Fact table(s)
- B. Identifying the Dimension tables
- C. Handling slowly changing dimensions
- D. All of the above

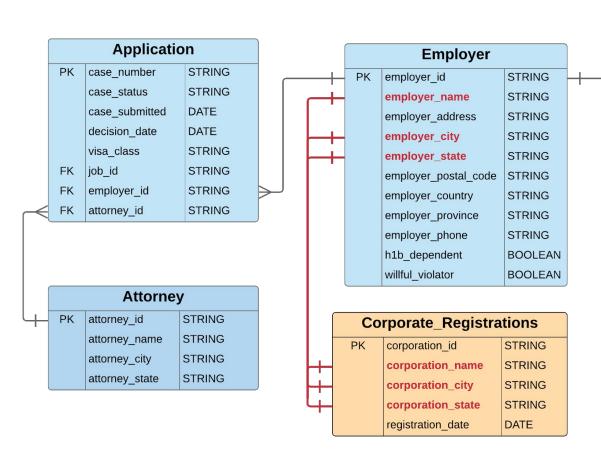
5) What activity can consume 80% of the time when building a data warehouse?


- A) Designing the data warehouse schema
- B) Building the ETL process
- C) Creating the BI reports

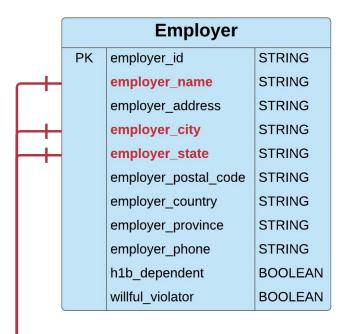
6) Just like a data warehouse, a data lake is a central repository of data. Unlike a data warehouse, a data lake stores data in its raw form and its primary users are data scientists.

A) True

B) False


Classic Star Schema

Data Integration Challenge


```
FROM Source1. Account as A1 JOIN Source2. Account as A2
ON A1.c1 = A2.c1 AND A1.c2 = A2.c2
```


Job			
PK	job_id	STRING	
FK	employer_id	STRING	
	employment_start_year	INTEGER	
	employment_start_date	DATE	
	employment_end_date	DATE	
	job_title	STRING	
	wage_rate_of_pay_from	NUMERIC	
	wage_rate_of_pay_to	NUMERIC	
	wage_unit_of_pay	STRING	
	worksite_city	STRING	
	worksite_county	STRING	
	worksite_state	STRING	
	worksite_postal_code	STRING	
	soc_code	STRING	
	soc_name	STRING	
	total_workers	INTEGER	
	full_time_position	BOOLEAN	
	prevailing_wage	NUMERIC	
	pw_unit_of_pay	STRING	
	pw_wage_level	STRING	
	pw_source	STRING	
	pw_source_year	INTEGER	
	pw_source_other	STRING	

loh

Corporate_Registrations

STRING

STRING

STRING

STRING

DATE

corporation id

corporation_name

corporation_city

corporation_state

registration date

PK

SELECT employer_name, registration_date FROM Employer JOIN Corporate_Registrations on employer_name = corporation_name and employer_city = corporation_city and employer_state = corporation_state

Results:

- 2% matches between Employer and Corporate Registrations
- Punctuation characters in corporation_name and corporation city
- Suffixes in corporation_name (e.g. LLC, INC)

Creating the data pipeline for dataset2

- 1. Upload dataset2 files to Cloud Storage bucket
- 2. Create staging area in BigQuery
- 3. Load data files into BigQuery as staging tables
- 4. Create modeled area in BigQuery
- 5. Identify Entity Types and create modeled tables
- 6. Identify relationships between tables
- 7. Identify Primary and Foreign Keys

Same steps as dataset1, except using a Jupyter Notebook.

Jupyter Notebooks

- Project Jupyter is open-source software
- Widely used for developing data science projects
- A web-based environment for creating notebooks
- Integrates code and its output into a single document, saved in .ipynb file
- Notebook is made up of cells
- Cell: block of code to be executed or container for text to be displayed
- Two types of cells: Code and Markdown
- Kernel: computation engine that executes the code in a notebook

Jupyter Notebook Demo

Milestone 9

http://www.cs.utexas.edu/~scohen/milestones/Milestone9.pdf