
CS 327E Class 5
Oct 2, 2020



Announcements

• Test 1 feedback
• GCP billing errors



Source: Martin Kleppmann, Designing Data-Intensive Applications, O’Reilly 2017. 



Why non-relational systems?

• Need for greater scalability
• Throughput
• Response time

• More expressive data models and schema flexibility

• Object-relational mismatch

• Preference for open-source software



Why Firestore?

• Document database system
• Fully serverless
• Integrated with GCP
• Simple APIs for reading and writing 
• Supports transactions
• Provides strong consistency (uses Spanner for storage)
• Designed for mobile, web and IoT apps
• Comes in two modes: native and datastore
• Clients can listen for document updates (native mode only)
• Massive scale (10+M requests/sec, PBs of storage)
• Write throughput limits in native mode (10K writes/sec) 



Firestore’s Data Model

• Firestore is a document database system
• Firestore document == set of typed key, value pairs 
• Primitive types: String, Int, Float, Bool, Datetime
• Complex types: Array, Map, Geo points

• Documents are grouped into collections
• Documents of the same type can have different schemas
• Documents have unique identifiers (id)
• Documents can store hierarchical data with subcollections



Writing to Firestore 

● Set method converts Python dictionary into 
Firestore document

● Every document has unique identifier
● Writes must also update indexes on documents

Example 1: writes into author collection

Example 2: writes into article collection



Writing to Firestore 

Example 3: writes into tag collection

Example 4: writes into nested_article collection



Reading from Firestore 

● Get(id) method fetches single document 
● Stream method fetches all documents in 

collection
● Stream + where methods filter documents in 

collection
● Order by and limit methods available 
● All reads require indexes!

Example 1: reads single document 

Example 2: reads all documents in collection

Example 3: filters documents in collection



Document Database Design Principles 

1. Know problem domain and understand usage patterns. 
2. Group entities into top-level and lower-level types.
3. Make each top-level entity type its own Firestore collection. 
4. Embed lower-level entities into their related top-level entity when 

they share a 1:m relationship. 
5. Merge lower-level entities with their related top-level entity when 

they share a 1:1 relationship. 
6. Eliminate m:n relationships by embedding both sides of the 

relationship into parent entities. 



Schema conversion example



Schema conversion example



Practice Problem 1
How would you remodel the Shopify database for Firestore?



Set up Firestore

https://github.com/cs327e-fall2020/snippets/wiki/Firestore-Setup-Guide

https://github.com/cs327e-fall2020/snippets/wiki/Firestore-Setup-Guide


Practice Problem 2

Find all classes taught by Prof. Cannata. Return their cid. 



Project 4

http://www.cs.utexas.edu/~scohen/projects/Project4.pdf 

http://www.cs.utexas.edu/~scohen/projects/Project3.pdf

