
CS 327E Class 7
Oct 16, 2020

• Review session for Test 2
• Test 2 details

 Exam rules:
• Open-note and open-book
• Piazza will be disabled during exam
• May not consult with any human in any form

• Designed for storing and querying graphs
• Labeled property graph data model
• Optional schema
• Declarative, SQL-inspired query language (Cypher)
• Rich plugin and extension language (similar to Postgres)
• Open-source, sponsored by Neo4j Inc.
• ACID-compliant transactions
• Clustering option for scaling reads
• Visualization tools (Neo4j Browser, Bloom)
• Optimized for graph traversals

CREATE ();
CREATE (:Person);

CREATE (:Person {name: "Ethan", email: "ethan@utexas.edu"});
CREATE (:Role {name: "DB Viewer"});
CREATE (:Role {name: "DB Editor"});
CREATE (:Group {name: "Data Engineer"});

CREATE (:Permission {name: "jobs.list"});
CREATE (:Permission {name: "jobs.get"});
CREATE (:Permission {name: "jobs.create"});

CREATE (:Person)-[r:HAS_ROLE]->(:Role);

MATCH (p:Person {name: "Ethan"})
MATCH (r:Role {name: "DB Viewer"})
CREATE (p)-[:HAS_ROLE]->(r);

MATCH (p:Person {name: "Ethan"})
MATCH (g:Group {name: "Data Engineer"})
CREATE (p)-[:HAS_GROUP]->(g);

MATCH (g:Group {name: "Data Engineer"})
MATCH (r:Role {name: "DB Editor"})
CREATE (g)-[:HAS_ROLE]->(r);

MATCH (p:Person {name: "Ethan"})
MATCH (m:Permission {name: "jobs.list"})
CREATE (p)-[:HAS_PERMISSION]->(m);

MATCH (r:Role {name: "DB Viewer"})
MATCH (m:Permission {name: "jobs.get"})
CREATE (r)-[:HAS_PERMISSION]->(m);

MATCH (g:Group {name: "Data Engineer"})
MATCH (m:Permission {name: "jobs.create"})
CREATE (g)-[:HAS_PERMISSION]->(m);

MATCH ()-[r]->()
RETURN type(r), COUNT(r);

MATCH ()-[r:HAS_PERMISSION]->()
RETURN COUNT(r);

MATCH (m:Permission)
RETURN COUNT(m);

MATCH (p:Person {name: "Ethan"})-[r]->(m:Permission)
RETURN p, r, m;

MATCH (p:Person)-[r]->(m:Permission)
WHERE p.name = "Ethan"
RETURN p, r, m;

MATCH (p:Person)-[r*]->(m:Permission)
WHERE p.name = "Ethan"
RETURN p, r, m
ORDER BY m;

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.create"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.create"})
MERGE (r)-[rel:HAS_PERMISSION]->(p)
ON MATCH SET rel.name = "10-16-2020"
RETURN type(rel), rel.name;

MATCH (p:Person {name: "Ethan"})-[r*]->(m:Permission)
RETURN m ORDER BY m.name;

MATCH (p:Person {name: "Ethan"})-[r*]->(m:Permission)
RETURN DISTINCT m ORDER BY m.name;

MATCH (p:Person)-[r]->()
DELETE r;

MATCH (p:Person)
DELETE p;

MATCH ()-[r]->(m:Permission)
DELETE r;

MATCH (m:Permission)
DELETE m;

MATCH (n)
DETACH DELETE n;

https://github.com/cs327e-fall2020/snippets/wiki/Neo4j-Setup-Guide

Translate the following scenario into a Cypher query:

Which persons directed a movie in which they also acted?

Return the person’s name, movie title, and role they played in their
own movie.

Order the results by person name.

http://www.cs.utexas.edu/~scohen/projects/Project6.pdf

