
Class 7 Firestore
Elements of Databases

Oct 15, 2021

Instapolls

• Exam 1 feedback
• Firestore setup

The "NoSQL Movement"

• Need for greater scalability
• Throughput
• Response time

• More expressive data models
and schema flexibility

• Object-relational mismatch

• Preference for open-source software

Source: schema.org

https://schema.org/Restaurant

Firestore Overview

+ Distributed system
+ Fully "serverless"
+ Simple APIs for reading and writing
+ Supports ACID transactions (uses Spanner behind the scenes)
+ Designed for mobile, web and IoT apps
+ Implements document model
+ Change data capture for documents
+ Inexpensive
- Only on Google Cloud
- Write throughput limits (10K writes/sec)

Firestore’s Document Model

• Firestore document == collection of typed <key, value> pairs
• Primitive types: String, Int, Float, Bool, Datetime
• Complex types: Array, Map, Geo points

• Documents Concepts:
• grouped into collections
• same type documents can have different schemas
• assigned unique identifiers (id)
• store hierarchical data in subcollections

Writing Single Documents
● Every document has unique identifier of String type
● The set method converts a Python dictionary into Firestore document
● A document write must also update any existing indexes on the collection

Writing Nested Documents
● Subcollections are nested under documents
● Subcollections can be nested under other subcollections (max depth = 100)

Writing Multiple Documents
● Write in batches up to 400 documents
● Batches can contain documents for multiple collections

Reading Single Documents

● The get method fetches a single document
● The stream method fetches all documents in collection
● stream + where methods filter documents in collection
● order_by and limit methods available
● All document reads require indexes!

Reading Multiple Documents

Schema Conversion Example

Normalized college schema for relational systems.

 Access patterns:
1. Get classes by cname
2. Get students and their classes by sid
3. Get instructor and their classes by tid

Schema Conversion Example

 Access patterns:
1. Get classes by cname
2. Get students and their classes by sid
3. Get instructor and their classes by tid

Converted college schema for Firestore based on access patterns.

Design Guidelines for Document Databases

• Identify and analyze access patterns.
• For each access pattern, group entities into a hierarchy: top-level and

low-level types.
• Convert each top-level entity into a Firestore collection.
• Convert each low-level entity into a Firestore subcollection nested in its

parent collection.
• Construct a single unique identifier for each document by using the

Primary Key column as is or concatenating multiple Primary Key
columns.

Practice Problem 1

Convert Shopify schema to Firestore.

 Access patterns:
1. Get apps by category (Category.title)
2. Get apps with highest review_count
3. Get pricing plan details by app (Apps.id)
4. Get key benefits by app (Apps.id)

Firestore code lab

• Clone snippets repo
• Open firestore notebook
• Create College collections and subcollections
• Explore the data in Firestore

https://github.com/cs327e-fall2021/snippets
https://github.com/cs327e-fall2021/snippets/blob/main/firestore.ipynb

Practice Problem 2

Find all classes taught by Prof. Mitra. Return the cno of those classes.

Project 5

http://www.cs.utexas.edu/~scohen/projects/Project5.pdf

http://www.cs.utexas.edu/~scohen/projects/Project5.pdf

