
1

CS 327E Lab 3: Query Interface

Learning Objectives:

1. Team up with your partner on this project
2. Gain practice writing SQL queries against your IMDB database
3. Learn how to access Postgres from Python
4. Learn how to implement a simple command-line interface in Python

Prerequisites:

1. Lab 1 complete
2. Lab 2 complete
3. Lab 3 setup complete [1]

Steps Outlined:

1. Perform any revisions to your Lab 2 submission that were noted in your team’s graded rubric. This

includes updating the DDL, re-creating tables, reloading data, altering and updating tables as well as

correcting the JSON document in the Stache entry. Once all the necessary revisions have been made,

commit and push all code changes to your lab2 folder on Github. You may now start on Lab 3.

2. Make a new folder in your local git repository called lab3. All the work you will do for this lab will go

into this folder.

3. Design 10 search options to search your IMDB database. A search option is implemented by a single

SELECT statement when it is a simple search or a sequence of SELECT statements when it is a complex

search. A search option can optionally accept filter conditions from the user. The filter conditions must

appear in the WHERE and HAVING clauses of the SELECT statement. In the expressions WHERE col1

=<> abc and HAVING col2 =<> xyz, abc and xyz can both be used as input parameters, but col1

and col2 cannot. For example, in the query "select * from Actors where fname = 'Kevin'

and lname = 'Spacey'", the inputs would be 'Kevin' and 'Spacey', but not fname or

lname.

The collection of 10 search options must satisfy the following minimum requirements:

a) contain 3 inner joins

b) contain 1 outer join

c) contain 3 aggregate functions

d) contain 2 group bys

e) contain 2 having conditions

f) contain 5 where conditions

g) contain 3 order bys

Create a file queries.txt with the 10 search options written in English. Create a file queries.sql

with the search options written in SQL. You should hard-code any input values that are needed for the

2

time being. Run queries.sql against your IMBD database using the psql command \i

queries.sql; and make sure that it runs error-free. Add and commit both files to your local and

remote repos.

4. Pull the latest Lab 3 snippets from Github [3] and read through the sample code. We have provided

you a simple command-line interface in Python with a few search options. Notice how each option calls

a function that runs the appropriate SQL query (or queries) and prints out the results.

5. Using the Lab 3 snippets as a starting point, implement your own command-line interface based on

the SQL that you developed in Step 3. When the interface starts up, it should list the 10 search options

you designed. The user selects one of the options and is prompted to enter any required input. The

interface validates the user input and runs the appropriate SQL query. The interface returns the query

results and lets the user select another search option. If the user selects an invalid option or enters bad

input, the interface returns a descriptive error message and reprompts the user for input. The interface

does not need to authenticate the user or remember what actions the user has taken.

Create a file interface.py that contains the menu of search options. Create a file queries.py that

contains the logic to process the SQL queries. The database credentials should be stored in a separate

config.py file and imported as a module. Add and commit the interface.py and queries.py files to

your repos as well as any other Python modules you have implemented except for config.py. Please

do not add config.py to the repo as we do not want your database credentials leaking out into the

Web.

6. For each SQL query that contains a filtered condition, create an index on the filtered column(s) to

speed up the search. For example, in the query "select * from Actors where fname =

'Kevin' and lname = 'Spacey'", add a concatenated index on fname and lname as follows:

CREATE INDEX actor_name_idx ON Actors (fname, lname);

The create index command is documented in the Postgres manual [5] and several examples are

provided there. Note that for concatenated indexes, it is important that the order of the columns in the

create index statement match the order of the columns in the where clause.

Once you have decided which indexes to build, create a indexes.sql file will all the create index

statements and run them against your IMDB database. Add and commit indexes.sql to your local and

remote repos.

7. Review the Stache entry that you submitted for Lab 2 and ensure that it is up-to-date. The secret field

should contain the following JSON document with the appropriate values filled in:

{
 "aws-username": "shouldbeAdmin",
 "aws-password": "mypassword",
 "aws-console-link": "myconsolelink",
 "rds-endpoint-link": "myrdsendpoint_without_port_number",
 "rds-username": "shouldbeMaster",
 "rds-password": "myrdspassword"
}

3

Please use a JSON validator like JSONLint [4] to ensure that your JSON document is properly formatted.

In addition, the Stache entry should a read-only API endpoint and read key (through the option: allow
this item to be accessed by read-only API calls). Make sure to save the Stache entry if you made any
changes to it.

8. Locate the commit id that you will be using for your team’s submission. This is a long 40-character

that shows up on your main Github repo page next to the heading "Latest commit" (e.g. commit

6ca6f695bca36f7fc2c33485d1080ae30f8b9928). Locate the link to your team’s repo. This is the URL to

your private repo on Github (e.g. https://github.com/cs327e-spring2017/xyz.git where xyz is your repo

name). Go back to the Stache entry and locate the read-only API endpoint and read key. Replace the

commit id, repo link, API endpoint, and read key in the JSON string below with your own:

{
 "repository-link": "https://github.com/cs327e-spring2017/xyz.git",
 "commit-id": "6ca6f695bca36f7fc2c33485d1080ae30f8b9928",
 "stache-endpoint": "/api/v1/item/read/62021",
 "stache-read-key": "ec1f815a603234eb8c5e2c02b474839f0b6d3b9e76b103f1ab0463b655e6661b"
}

Create a file called submission.json that contains your modified JSON string.

Click on the Lab 3 Assignment in Canvas and upload submission.json. This submission is due by Friday,

03/03 at 11:59pm. If it's late, there will be a 10% grade reduction per late day. This late policy is also

documented in the syllabus. Note: there should be one submission per team.

Teamwork:

1. We will use 2 class meetings (02/27 and 03/01) to work on this lab.
2. We expect each team-member to contribute equally to the assignment and we will be checking the
commit history to ensure that this is happening as expected.
3. We want you to use the Github Issue Tracker to assign and track the status of tasks.

Resources:

[1] Lab 3 Setup Guide: https://github.com/wolfier/CS327E/wiki/Setting-up-Lab-3
[2] Lab 3 Grading Rubric: http://www.cs.utexas.edu/~scohen/assignments/rubric3.pdf
[3] Lab 3 Snippets: https://github.com/cs327e-spring2017/snippets/tree/master/lab3_template
[4] JSONLint: http://jsonlint.com/
[5] Create index commands: https://www.postgresql.org/docs/9.6/static/sql-createindex.html

https://github.com/cs327e-spring2017/xyz.git
https://github.com/cs327e-spring2017/xyz.git
https://github.com/wolfier/CS327E/wiki/Setting-up-Lab-3
http://www.cs.utexas.edu/~scohen/assignments/rubric3.pdf
https://github.com/cs327e-spring2017/snippets/tree/master/lab3_template
http://jsonlint.com/
https://www.postgresql.org/docs/9.6/static/sql-createindex.html

