Topic 11
Simple Graphics

"What makes the situation worse is that the highest
level CS course |'ve ever taken is cs4, and quotes
from the graphics group startup readme like 'these
paths are abstracted as being the result of a
topological sort on the graph of ordering
dependencies for the entries' make me lose
consciousness in my chair and bleed from the
nose."

-mgrimes, Graphics problem report 134

Based on slides for Building Java Programs by Reges/Stepp, found at
http://faculty.washington.edu/stepp/book/

CS305j Introduction to Simple Graphics
Computing

DrawingPanel

> To make a window appear on the screen, we must create a
DrawingPanel object:
DrawingPanel <name> = new DrawingPanel (<width>, <height>);

— Example:
DrawingPanel panel = new DrawingPanel (300, 200);

> The window has nothing
on it, but we can draw
shapes and lines on it

using another object
of a type named Graphics. |

— Using Graphics requires us to
place an import statement in
our program: 1mport Jjava.awt.*;

i C£5305j Drawing Panel E|E|g|

CS305j Introduction to Simple Graphics 2
Computing

Graphics object

> Shapes are drawn on a DrawingPanel using an object

named Graphics.

— To create a Graphics object for drawing:
Graphics <name> = <name> .getGraphics();

— Example:
Graphilics g = panel.getGraphics();

> Once you have the Graphics & (5305 Drawing Panel
object, you can draw shapes

by calling methods on it.

— Example:
g.fillRect (10, 30, 60, 35);
g.fillOval (80, 40, 50, 70);

CS305j Introduction to Simple Graphics 3
Computing

Graphics methods

> Here are the drawing commands we can execute:

Method name Description

drawlLine(x17, y1, x2, y2) line between points (x7, y1), (x2, y2)

drawOval(x, y, width, height) outline of largest oval that fits in a box of
size width * height with top-left corner at (x,
Y)

drawRect(x, y, width, height) outline of rectangle of size width * height
with top-left corner at (x, y)

drawString(String, X, y) writes text with bottom-left corner at (x, y)

fillOval(x, y, width, height) entire largest oval that fits in a box of size
width * height with top-left corner at (x, y)

fillRect(x, y, width, height) entire rectangle of size width * height with
top-left corner at (x, y)

setColor(Color) Sets Graphics to paint subsequent shapes in
the given Color

CS305j Introduction to Simple Graphics 4
Computing

Calling methods of objects

> Graphics is an "object" that contains methods inside it.
— When we want to draw something, we don't just write the method's

name. We also have to write the name of the Graphics object, which
is usually g, followed by a dot.

> Calling a method of an object, general syntax:
<name> . <method name> (<parameter(s)>)

— Examples:
Graphics g = panel.getGraphics();
g.drawLine (20, 30, 90, 10);// tell g to draw a line

CS305j Introduction to Simple Graphics 5
Computing

Colors

» Shapes can be drawn in many colors.
— Colors are specified through global constants in the
Color class named BLACK, BLUE, CYAN,
DARK _GRAY, GRAY, GREEN, LIGHT _GRAY,
MAGENTA, ORANGE, PINK, RED, WHITE,

YELLOW
— Example: -
.setColor (Color.BLACK) ;

.fillRect (10, 30, 100, 50);
.setColor (Color.RED) ;
.fi110val (60, 40, 40, 70);

£ €5305j Drawing Panel

QO Q Q \Q

> The background color of a DrawingPanel grrrrms
can be set by calling its setBackground

method:

— Example:
panel.setBackground (Color.YELLOW) ;

CS305j Introduction to Simple Graphics 6
Computing

Coordinate system

> Each (x, y) position on the DrawingPanel is represented by
one pixel (one tiny dot) on the screen.

> The coordinate system used by DrawingPanel and Graphics

has its origin (0, 0) at the window's top-left corner.

— The x value increases rightward and the y value increases
downward.

— This is reversed from what you may expect from math classes.

> For example, the rectangle from (0, 0) to (200, 100) looks

like this:
(0, 0) A+--———-- +
| |
| |
- + (200, 100)
CS305j Introduction to Simple Graphics 7

Computing

Drawing example 1

import java.awt.*;

public class DrawingExamplel ({
public static void main (String[] args) {
DrawingPanel panel = new DrawingPanel (300, 200);

Graphics g = panel.getGraphics();
g.fillRect (10, 30, 60, 35);
g.fillOval (80, 40, 50, 70);

} & C5305j Drawing Panel Ellﬁlgl

CS305j Introduction to Simple Graphics 8
Computing

Complicated(??) example

Write a Java
program to produce
the star burst pattern.

Hard? All lines are the |

same number of
pixels apart at the
edges of the panel.

Make in general?

CS305j Introduction to
Computing

Simple Graphics

If it Is general

> |If we make a method to
do the star burst how

hard would it be to go to
this?

CS305j Introduction to Simple Graphics 10
Computing

More Examples

> Using for loops, we can draw many repetitions of the same
item by varying its x and y coordinates.

— The x or y coordinate's expression should contain the loop counter, i,
so that in each pass of the loop, when i changes, so does x ory.

DrawingPanel panel = new DrawingPanel (400,

panel.setBackground (Color.YELLOW) ;

Graphics g = panel.getGraphics();
g.setColor (Color.BLUE) ;

for (int 1 = 1; i <= 10; 1i++) {
g.drawString ("Hello, world!",
150 - 10 * 1,
}

g.setColor (Color.RED) ;
for (int 1 = 1; 1 <= 10; 1i++) {
g.£f1i110val (100 + 20 * 1,
5+ 20 * 1, 50,

CS305j Introduction to
Computing

200 + 10 * 1) ;

50) ;

300) ;

g

£ €5305j Drawing Panel

Simple Graphics 11

Loops that change size

> A for loop can also vary the size of the shape or figure that it

draws.
DrawingPanel panel = new DrawingPanel (300, 220);

Graphilics g = panel.getGraphics();
g.setColor (Color .MAGENTA) ;
for (int 1 = 1; 1 <= 10; 1++) {
g.drawOval (30, b5, e
20 * i, 20 * i); o e M=(E3

CS305j Introduction to Simple Graphics 12
Computing

A loop that varies both

> The loop in this program affects both the size and shape of
the figures being drawn.
— Each pass of the loop, the square drawn becomes 20 pixels smaller
in size, and shifts 10 pixels to the right.
DrawingPanel panel = new DrawingPanel (250, 200);

Graphics g = panel.getGraphics();
for (int 1 = 1; 1 <= 10; 1i++) {
g.drawRect (20 + 10 * 1, 5,
200 - 20 * i, 200 - 20 * 1);

CS305j Introduction to

Simple Graphics 13
Computing

Drawing example 2

» What sort of figure does the following code draw?
import java.awt.*;

public class DrawingExampleZ {
public static final int NUM CIRCLES = 10;

public static voild main (String[] args) {
DrawingPanel panel = new DrawingPanel (250, 200);
Graphics g = panel.getGraphics()

g.setColor (Color.BLUE) ;

for (int i = 1; i <= NUM CIRCLES; i++) {
g.fi110val (15 * 1, 15 * 1, 30, 30);

}

g.setColor (Color .MAGENTA) ;
for (int 1 = 1; 1 <= NUM CIRCLES; i++) {

g.fillOval (15 * (NUM CIRCLES + 1 - i), 15 * i, 30, 30);
} _

g C5305j Drawing Panel |:”§|r5__<|

CS305j Introduction to Simple Graphics
Computing

@ o Fi11Rea

Loops that begin at O

> Often when working with graphics (and with later loops in general), we
begin our loop count at 0 and end one repetition earlier.
— Aloop that repeats from 0 to < 10 still repeats 10 times, just like a loop that
repeats from 1 to <= 10.
— But when the loop counter variable i is used to set the figure's coordinates,

often starting i at 0 gives us the coordinates we want.
DrawingPanel panel = new DrawingPanel (250, 250);
Graphics g = panel.getGraphics();
g.drawRect (10, 10, 200, 200);

< (£5305j Drawing Panel E][@E]

for (int i = 0; 1 < 10; i++) {
// lines on the upper-left half]
g.drawLine (10, 10 + 20 * 1, 3
10 + 20 * i, 10);

// lines on the lower-right half |
g.drawLine (10 + 20 * i, 210, d g
210, 10 + 20 * 1i);

CS305j Introduction to Simple Graphics 15
Computing

Superimposing shapes

> Drawing one shape on top of another causes the last shape
to appear on top of the previous one(s).

import jJava.awt.*;

public class DrawingExample3 {
public static void main(String[] args) {
DrawingPanel panel = new DrawingPanel (200, 100);
panel.setBackground (Color.LIGHT GRAY);

Graphics g = panel.getGraphics();

.setColor (Color.BLACK) ; : ———d
.fillRect (10, 30, 100, 50); [EEEENIIETLIN =)

.setColor (Color.RED);
.fi110val (20, 70, 20, 20);
.£f1i110val (80, 70, 20, 20);

.setColor (Color.CYAN) ;
.fillRect (80, 40, 30, 20);

Q¥ VOUu VQ

CS305j Introduction to Simple Graphics 16
Computing

Drawing with parameters

> Imagine that we want to draw two figures as shown in the

picture below.
> If you wish to repeat the same figure multiple times on the

drawing panel, write a method that draws that figure and
accepts the x/y position as parameters.
— Adjust all of your x/y coordinates of your drawing commands to take

into account the parameters.
— Since you'll need to send commands to the Graphics g in order to

draw the now parameterized figure, you should also pass Graphics g

as a parameter.

public static void drawCar (Graphics g, 1int x, int y) {
g.setColor (Color.BLACK) ;
g.fillRect (x, vy, 100, 50);

/...
| ‘
|

CS305j Introduction to Simple Graphics 17
Computing

< Drawing Panel M= S |

Drawing with parameters

» Here is the complete program that uses a
parameterized method to draw multiple car
figures:

import java.awt.x*;
public class DrawingWithParameters {
public static void main (String[] args) {

DrawingPanel panel = new DrawingPanel (260, 100);
panel.setBackground (Color.LIGHT GRAY) ;
Graphics g = panel.getGraphics ()
drawCar (g, 10, 30);
drawCar (g, 150, 10);

}

public static void drawCar (Graphics g, int x, int vy) {
g.setColor (Color.BLACK) ;
g.fillRect (x, y, 100, 50);

g.setColor (Color.RED) ;
g.fillOval(x + 10, y + 40, 20, 20);
g.fillOval(x + 70, y + 40, 20, 20);

g.setColor (Color.CYAN) ;
g.fillRect(x + 70, y + 10, 30, 20);

}

}
CS305j Introduction to Simple Graphics 18
Computing

Result

£ €5305j Drawing Panel

CS305j Introduction to
Computing

Simple Graphics

19

More parameters

» A new version where the cars can be resized:

public class DrawingWithParameters2 {
public static void main (String[] args) {
DrawingPanel panel = new DrawingPanel (210, 100);
panel.setBackground (Color.LIGHT GRAY) ;

Graphics g = panel.getGraphics ()
drawCar (g, 10, 30, 100);
drawCar (g, 150, 10, 50);

}

public static void drawCar (Graphics g, int x, int y, int size) {
g.setColor (Color.BLACK) ;
g.fillRect(x, y, size, size / 2);

g.setColor (Color.RED) ;

g.fillOval(x + size / 10, y + 2 * size / 5,
size / 5, size / 5);

g.fillOval(x + 7 * size / 10, vy + 2 * size / 5,
size / 5, size / 5);

4 Drawing Panel
g.setColor (Color.CYAN); g !EE

g.fillRect(x + 7 * size / 10, y + size / 10,
3 * size / 10, size / 5);

CS305j Introduction to Simple Graphics 20
Computing

Parameterized figure exercise

> Let's write a program together that will display the
following figures on a drawing panel of size

300x400:
— top-left figure:

« overall size = 100

* top-left corner = (10, 10)

« oval size = 50

* inner top-left corner = (35, 35)
— top-right figure:

 overall size = 60

* top-left corner = (150, 10)

« oval size = 30

* inner top-left corner = (165, 25)
— bottom figure:

« overall size = 140

« top-left corner = (60, 120)

« oval size =70

* inner top-left corner = (95, 155)

£ (5305j Drawing Panel

EEX

g

CS305j Introduction to Simple Graphics

Computing

21

Parameterized figure exercise

» Write a program that will display the following figure

using parameterized methods.

— Start with the "loops that begin at 0" program shown
earlier in the slides.

— Use a parameter for the number of lines (as well as any
other parameters you need).

— The second square is still 200x200 in size, but it is at
(220, 30) and has 40 line loops compared to the original
figure's 10. P I 3

CS305j Introduction to 22
Computing

Animation with sleep

» The DrawingPanel has a method named sleep that

makes your program pause for a given number of
milliseconds (thousandths of a second).

> You can use the sleep method to produce simple
animations.

DrawingPanel panel = new DrawingPanel (250, 200);
Graphics g = panel.getGraphics();

g.setColor (Color.BLUE) ;

for (int 1 = 1; 1 <= NUM CIRCLES; 1i++) {
g.fillOval (15 * i, 15 * i, 30, 30);
panel.sleep (500) ;

}

— Try adding sleep commands to loops in past exercises in this chapter
and watch the panel draw itself piece by piece!

CS305j Introduction to Simple Graphics 23
Computing

