
CS305j Introduction to
Computing

While Loops 1

Topic 15
Indefinite Loops - While Loops

"If you cannot grok [understand] the overall
structure of a program while taking a shower
[e.g., with no external memory aids], you are
not ready to code it."

-Rich Pattis

Based on slides for Building Java Programs by Reges/Stepp, found at
http://faculty.washington.edu/stepp/book/

CS305j Introduction to
Computing

While Loops 2

Types of loops
�definite loop: A loop that executes a known number of

times.
– The for loops we have seen so far are definite loops. We often use

language like "repeat _ times" or "for each of these things".
– Examples:

• Repeat these statements 10 times.
• Repeat these statements k times.
• Repeat these statements for each odd number between 5 and 27.

� indefinite loop: A loop where it is not easily determined in
advance how many times it will execute.
– Indefinite loops often keep looping as long as a condition is true, or

until a condition becomes false.
– Examples:

• Repeat these statements until the user types a valid integer.
• Repeat these statements while the number n is not prime.
• Repeat these statements until a factor of n is found.
• Flip a coin until you get 10 flips in a row of the same result

CS305j Introduction to
Computing

While Loops 3

The while loop statement
�The while loop is a new loop statement that is well

suited to writing indefinite loops.
�The while loop, general syntax:

while (<condition>) {
<statement(s)> ;

}
– Example:
int number = 1;
while (number <= 200) {

System.out.print(number + " ");
number *= 2;

}
– OUTPUT:
1 2 4 8 16 32 64 128

CS305j Introduction to
Computing

While Loops 4

While loop flow chart
� The execution of a while loop can be depicted as the following:

|
V

+---------------+
+----<---no--| is test true? |--yes--->--+
| +---------------+ |
| ^ V
V | +-----------------------------------+
| | | execute the controlled statements |
| | +-----------------------------------+
| ^ |
V | V
| | |
| +---<-----<-------<-----+
V

+-------------------+
| execute statement |
| after while loop |
+-------------------+

CS305j Introduction to
Computing

While Loops 5

Example while loop
�A loop that finds and prints the first factor of a number (other

than 1):
Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int number = console.nextInt();
int factor = 2;
while (number % factor != 0) {

factor++;
}
System.out.println("First factor: " + factor);

�OUTPUT:
Type a number: 49
First factor: 7

CS305j Introduction to
Computing

While Loops 6

Equivalence of for,while loops
�Any for loop of the following form:

for (<initialization>; <condition>; <update>) {
<statement(s)> ;

}

can be replaced by a while loop of the following form:

<initialization>;
while (<condition>) {

<statement(s)> ;
<update> ;

}

CS305j Introduction to
Computing

While Loops 7

for/while loop example
�What while loop is essentially equivalent to the

following for loop?
for (int i = 1; i <= 10; i++) {

System.out.println("Hi there");
}

�ANSWER:
int i = 1;
while (i <= 10) {

System.out.println("Hi there");
i++;

}

CS305j Introduction to
Computing

While Loops 8

While loop problem
� Write a piece of Java code that uses a while loop to repeatedly prompt

the user to type a number until the user types a non-negative number,
then square it.
– Expected output:

Type a non-negative integer: -5
Invalid number, try again: -1
Invalid number, try again: 11
11 squared is 121

� Solution:
System.out.print("Type a non-negative integer: ");
int number = console.nextInt();
while (number < 0) {

System.out.print("Invalid number, try again: ");
number = console.nextInt();

}
int square = number * number;
System.out.println(number + " squared is " + square);

CS305j Introduction to
Computing

While Loops 9

Square Root
�Recall Heron's method for calculating square

roots
�problem: Find sqrt(n)
�Algorithm:

1.Make a guess at the solution. (x1)
2.x2 = (x1 + (n / x1)) / 2
3.Repeat for x3, x4, x5, ...

Write a Java program that implements
Heron's method to find the square root of
133,579 using 20 iterations of the algorithm.

CS305j Introduction to
Computing

While Loops 10

Square Root
�Why 20 iterations?

Is that enough?
Too many?
public static double squareRoot(double num){

double result = num / 2;

for(int i = 1; i <= 20; i++){

result = (result + (num / result)) / 2.0;

}

return result;

}

CS305j Introduction to
Computing

While Loops 11

Square Root
�Rewrite square root using a while loop

�Make initial guess
�refine results while result squared is not

equal to num

CS305j Introduction to
Computing

While Loops 12

Square Root
�First Attempt

�Problem.
– Recall that variables use a finite amount of memory and are subject

to round off and precision errors
�Will get stuck in an infinite loop
�Define a tolerance and accept results that meet that

tolerance

public static double squareRoot2(double num){

double result = num / 2;

while(result * result != num){

result = (result + (num / result)) / 2.0;

}

return result;

}

CS305j Introduction to
Computing

While Loops 13

Sentinel Loops
�Sentinel: a value that signals the end of user

input
�Sentinel loop: a loop that keeps repeating

until the sentinel value is found
�Problem:

– Write a program to read in ints from the user until
they enter -1 to quit.

– Print out the sum and average of the numbers
entered

CS305j Introduction to
Computing

While Loops 14

Example Sentinel Program
Enter an int (-1 to quit): 12
Enter an int (-1 to quit): 37
Enter an int (-1 to quit): 42
Enter an int (-1 to quit): 25
Enter an int (-1 to quit): 12
Enter an int (-1 to quit): 99
Enter an int (-1 to quit): -1
Sum of 6 numbers is 227

Average of 6 numbers is 37.833333333333336

CS305j Introduction to
Computing

While Loops 15

Sentinel Program – First Attempt
�initialize sum, count of numbers, and number
�while number isn't sentinel value

– read in a num
– add it to sum
– increment count of numbers

�print out sum and average

CS305j Introduction to
Computing

While Loops 16

Sentinel Program – First Attempt
public static void main(String[] args){

Scanner key = new Scanner(System.in);
int sum = 0;
int count = 0;
int number = 0; // anything but -1
while(number != -1){

System.out.print("Enter an int (-1 to quit): ");
number = key.nextInt();
sum += number;
count++;

}
System.out.println("Sum of " + count

+ " numbers is " + sum);
System.out.println("Average of " + count

+ " numbers is " + (1.0 * sum / count));
}

CS305j Introduction to
Computing

While Loops 17

Sentinel Program – First Attempt
�Output

Enter an int (-1 to quit): 12
Enter an int (-1 to quit): 37
Enter an int (-1 to quit): 42
Enter an int (-1 to quit): 25
Enter an int (-1 to quit): 12
Enter an int (-1 to quit): 99
Enter an int (-1 to quit): -1
Sum of 7 numbers is 226

Average of 7 numbers is 32.285714285714285

CS305j Introduction to
Computing

While Loops 18

Sentinel Loop
�What is the problem?

– A compiler error?
– A runtime error?
– A logic error?

�We are adding the sentinel to the sum and
counting it as a number
�We need to read N numbers (including the

sentinel value) but only want to use the first
N – 1
�A fencepost problem!

CS305j Introduction to
Computing

While Loops 19

Sentinel Loop – Second Attempt
public static void main(String[] args){

Scanner key = new Scanner(System.in);
int sum = 0;
int count = 0;
System.out.print("Enter an int (-1 to quit): ");
int number = key.nextInt();
while(number != -1){

sum += number;
count++;
System.out.print("Enter an int (-1 to quit): ");
number = key.nextInt();

}
System.out.println("Sum of " + count

+ " numbers is " + sum);
System.out.println("Average of " + count

+ " numbers is " + (1.0 * sum / count));
}

CS305j Introduction to
Computing

While Loops 20

Sentinel Loop
�Adding num to sum and incrementing count

moved to top of the loop
�Should add an if to ensure program does not

divide by 0
�Add a constant for the Sentinel to make

program more readable

CS305j Introduction to
Computing

While Loops 21

Sentinel Loop – Final Version
public static final int SENTINEL = -1;

public static void main(String[] args){
Scanner key = new Scanner(System.in);
int sum = 0;
int count = 0;
System.out.print("Enter an int ("

+ SENTINEL + " to quit): ");
int number = key.nextInt();
while(number != SENTINEL){

sum += number;
count++;
System.out.print("Enter an int (-1 to quit): ");
number = key.nextInt();

}
System.out.println("Sum of " + count

+ " numbers is " + sum);
if(count > 0)

System.out.println("Average of " + count
+ " numbers is " + (1.0 * sum / count));

else
System.out.println("Cannot compute average of 0 terms.");

}

CS305j Introduction to
Computing

While Loops 22

Type boolean
�boolean: Primitive type to represent

logical values.
– A boolean variable can hold one

of two values: true or false.
– All the <condition>s we have used in our if

statements and for loops have been
boolean literal values.

– It is legal to create boolean variables, pass
boolean parameters, return boolean
values from methods, ...

CS305j Introduction to
Computing

While Loops 23

boolean Examples
int x = 7;
boolean test1 = true;
boolean test2 = (x < 10); // true
boolean test3 = (x % 2 == 0); // false
if (test2)

System.out.println("under 10");

int wins = 4;
boolean manyWins = wins >= 8;
boolean beatCAL = true;
if(manyWins && beatCAL)

System.out.println("A great season!!!");
else if(manyWins)

System.out.println("Good year, but no ax.");
else if(beatCAL)

System.out.println("At least we have the ax.");
else

System.out.println("Maybe I should become a UT fan.");
CS305j Introduction to
Computing

While Loops 24

Review - Logical operators && || !
�Boolean expressions can be joined together

with the following logical operators:

� The following 'truth tables' show the effect of each operator on any
boolean values p and q:

!(7 > 0)
(2 == 3) || (-1 < 5)
(9 != 6) && (2 < 3)
Example

not
or
and
Description

false!

true||

true&&

ResultOperator

truefalsetruefalse
false

false
true
p && q

false

false
true
q

falsefalse

truetrue
truetrue
p || qp

truefalse
falsetrue
!pp

CS305j Introduction to
Computing

While Loops 25

Methods that return boolean
�There are several methods in Java that return

boolean values.
– A call to one of these methods can be used as a

<condition> on a for loop, while loop, or if statement.
– Examples:

Scanner console = new Scanner(System.in);
System.out.print("Type your age or name: ");
if (console.hasNextInt()) {

int age = console.nextInt();
System.out.println("You are " + age + " years old.");

} else {
String line = console.nextLine();
if (line.startsWith("Dr.")) {

System.out.println("Will you marry me?");
}

}

CS305j Introduction to
Computing

While Loops 26

Testing for valid user input
�A Scanner object has methods that can be used to test

whether the upcoming input token is of a given type:

� Each of these methods waits for the user to type input tokens and press
Enter, then reports a true or false answer.
– The hasNext and hasNextLine methods are not useful until we learn how to

read input from files in Chapter 6.

Whether or not the next line of input can be read as a String
(always true for console input)

hasNextLine()

Whether or not the next token can be read as a doublehasNextDouble()

Whether or not the next token can be read as an inthasNextInt()

Whether or not the next token can be read as a String
(always true for console input)

hasNext()

DescriptionMethod

CS305j Introduction to
Computing

While Loops 27

Scanner condition example
�The Scanner's hasNext___ methods are

very useful for testing whether the user typed
the right kind of token for our program to use,
before we read it (and potentially crash!).
�We will use them more when read data from

files instead of the keyboard

CS305j Introduction to
Computing

While Loops 28

Scanner condition Example Code
Scanner console = new Scanner(System.in);
System.out.print("How old are you? ");
if (console.hasNextInt()) {

int age = console.nextInt();
System.out.println("Retire in " + (65 - age) + " years.");

} else {
System.out.println("You did not type an integer.");

}

System.out.print("Type 10 numbers: ");
for (int i = 1; i <= 10; i++) {

if (console.hasNextInt()) {
System.out.println("Integer: " + console.nextInt());

} else if (console.hasNextDouble()) {
System.out.println("Real number: " + console.nextDouble());

}
}

CS305j Introduction to
Computing

While Loops 29

"Boolean Zen"
�Methods that return a boolean result

sometimes have an if/else statement:
public static boolean bothOdd(int n1, int n2) {

if (n1 % 2 != 0 && n2 % 2 != 0) {
return true;

} else {
return false;

}
}

CS305j Introduction to
Computing

While Loops 30

"Boolean Zen"
�... but the if/else is sometimes

unnecessary.
– The if/else's condition is itself a boolean

expression its value is exactly what you want to
return!!!

public static boolean bothOdd(int n1, int n2)
return (n1 % 2 != 0 && n2 % 2 != 0);

}

CS305j Introduction to
Computing

While Loops 31

"Boolean Zen" template
�Replace:

public static boolean <name>(<parameters>) {
if (<condition>) {

return true;
} else {

return false;
}

}

�with:
public static boolean <name>(<parameters>) {

return <condition>;
}

CS305j Introduction to
Computing

While Loops 32

Boolean practice problem
�Write a program that compares two words typed by the user

to see whether they "rhyme" (end with the same last two
letters) and/or alliterate (begin with the same letter).
– Use methods with return values to tell whether two words rhyme

and/or alliterate.
– Example:
Type two words: car STAR
They rhyme!

(run #2)

Type two words: bare bear
They alliterate!

(run #3)

Type two words: sell shell
They alliterate!
They rhyme!

CS305j Introduction to
Computing

While Loops 33

Boolean practice problem
�Write a program that reads two numbers from the user and

tells whether they are relatively prime (have no common
factors).
– Examples:
Type two numbers: 9 16
9 and 16 are relatively prime

(run #2)

Type two numbers: 7 21
7 and 21 are not relatively prime
7 is a factor of 7 and 21

