
CS305j
Introduction to Computing

Arrays Part 2 1

Topic 20
Arrays part 2

"42 million of anything is a lot."
-Doug Burger

(commenting on the number of transistors in
the Pentium IV processor)

Based on slides for Building Java Programs by Reges/Stepp, found at
http://faculty.washington.edu/stepp/book/

CS305j
Introduction to Computing

Arrays Part 2 2

Concept of an array rotation
� Imagine we want to 'rotate' the elements of an array; that is,

to shift them left by one index. The element that used to be
at index 0 will move to the last slot in the array.
For example, {3, 8, 9, 7, 5} becomes {8, 9, 7, 5, 3}.

Before:
[0] [1] [2] [3] [4]

+---+ +-----+-----+-----+-----+-----+
list | +-+---> | 3 | 8 | 9 | 7 | 5 |

+---+ +-----+-----+-----+-----+-----+

After:
[0] [1] [2] [3] [4]

+---+ +-----+-----+-----+-----+-----+
list | +-+---> | 8 | 9 | 7 | 5 | 3 |

+---+ +-----+-----+-----+-----+-----+

CS305j
Introduction to Computing

Arrays Part 2 3

Shifting elements left
�A left shift of the elements of an array:

[0] [1] [2] [3] [4]
+---+ +-----+-----+-----+-----+-----+

list | +-+---> | 3 | 8 | 9 | 7 | 5 |
+---+ +-----+-----+-----+-----+-----+

/ / / /
/ / / /
/ / / /
V V V V

+---+ +-----+-----+-----+-----+-----+
list | +-+---> | 8 | 9 | 7 | 5 | 5 |

+---+ +-----+-----+-----+-----+-----+

�Let's write the code to do the left shift.
– Can we generalize it so that it will work on an array of any size?
– Can we write a right-shift as well?

CS305j
Introduction to Computing

Arrays Part 2 4

Shifting practice problem
�Write a method insertInOrder that accepts a sorted

array a of integers and an integer value n as parameters,
and inserts n into a while maintaining sorted order.

In other words, assume that the element values in a occur in
sorted ascending order, and insert the new value n into the
array at the appropriate index, shifting to make room if
necessary. The last element in the array will be lost after
the insertion.

– Example: calling insertInOrder on array
{1, 3, 7, 10, 12, 15, 22, 47, 74} and value = 11 produces
{1, 3, 7, 10, 11, 12, 15, 22, 47}.

CS305j
Introduction to Computing

Arrays Part 2 5

String methods with arrays
�These String methods return arrays:

String s = "long book";

s.split(" ") returns
{"long", "book"}

s.split("o") returns
{"l", "ng b", "", "k"}

separates this String into
substrings by the given
delimiter

split(delimiter)

s.toCharArray()

returns {'l', 'o', 'n', 'g', ' ', 'b',
'o', 'o', 'k'}

separates this String into
an array of its characters

toCharArray()

ExampleDescriptionMethod name

CS305j
Introduction to Computing

Arrays Part 2 6

String practice problems
�Write a method named areAnagrams that

accepts two Strings as its parameters and
returns whether those two Strings contain the
same letters (possibly in different orders).
– areAnagrams("bear", "bare")
returns true

– areAnagrams("sale", "sail")
returns false

�Write a method that accepts an Array of
Strings and counts the number of times a
given letter is present in all the Strings

CS305j
Introduction to Computing

Arrays Part 2 7

Graphics methods with arrays
�These Graphics methods use arrays:

int[] xPoints = {10, 30, 50, 70, 90};
int[] yPoints = {20, 50, 35, 90, 15};
g.setColor(Color.GREEN);
g.drawPolyline(xPoints, yPoints, 5);

xPoints and yPoints are "parallel"
arrays

parallel arrays: two or more separate arrays, usually
of the same length, whose elements with equal
indices are associated with each other in some way

drawPolyline(int[] xPoints, int[] yPoints, int length)
fillPolygon(int[] xPoints, int[] yPoints, int length)

drawPolygon(int[] xPoints, int[] yPoints, int length)
Method name

CS305j
Introduction to Computing

Arrays Part 2 8

Arrays of objects
�Recall: when you construct an array of primitive values like

ints, the elements' values are all initialized to 0.
– What is the equivalent of 0 for objects?

�When you construct an array of objects (such as Strings),
each element initially stores a special reference value called
null.
– null means 'no object'
– Your program will crash if you try to call methods on a null reference.

�String[] words = new String[5];

nullnullnullnullnullvalue
43210index

CS305j
Introduction to Computing

Arrays Part 2 9

The dreaded 'null pointer'
�Null array elements often lead to program crashes:

String[] words = new String[5];
System.out.println(words[0]);
words[0] = words[0].toUpperCase(); // kaboom!

�Output:
null
Exception in thread "main"
java.lang.NullPointerException

at ExampleProgram.main(DrawPolyline.java:8)

�The array elements should be initialized somehow:
for (int i = 0; i < words.length; i++) {

words[i] = "this is string #" + (i + 1);
}
words[0] = words[0].toUpperCase(); // okay now

CS305j
Introduction to Computing

Arrays Part 2 10

Command-line arguments
�command-line arguments: If you run your Java program

from the Command Prompt, you can write parameters after
the program's name.
– The parameters are passed into main as an array of Strings.
public static void main(String[] args) {

for (int i = 0; i < args.length; i++) {
System.out.println("arg " + i + ": " + args[i]);

}
}

�Usage:
C:\hw6> java ExampleProgram how are you?
Or BlueJ call to main
arg 0: how
arg 1: are
arg 2: you?

CS305j
Introduction to Computing

Arrays Part 2 11

Java's Arrays class
�The Arrays class in package java.util has several

useful static methods for manipulating arrays:

arranges the elements in the array into
ascending order

sort(array)

returns a String representing the arraytoString(array)

sets every element in the array to have
the given value

fill(array, value)

whether the two given arrays contain
exactly the same elements in the same
order

equals(array1, array2)

returns the index of the given value in this
array (-1 if not found)

binarySearch(array, value)
DescriptionMethod name

CS305j
Introduction to Computing

Arrays Part 2 12

Arrays class example
�Searching and sorting numbers in an array:

int[] numbers = {23, 13, 480, -18, 75};
int index = Arrays.binarySearch(numbers, -18);
System.out.println("index = " + index);

– Output:
index = 3

�Sorting and searching:
Arrays.sort(numbers);// now {-18, 13, 23, 75, 480}
index = Arrays.binarySearch(numbers, -18);
System.out.println("index = " + index);
System.out.println(Arrays.toString(numbers));

– Output:
index = 0
[-18, 13, 23, 75, 480]

