
CS305j
Introduction to Computing

Inheritance and Polymorphism 1

Topic 26
Introduction to Inheritance and

Polymorphism
"One purpose of CRC cards [a design tool] is
to fail early, to fail often, and to fail
inexpensively. It is a lot cheaper to tear up a
bunch of cards that it would be to reorganize
a large amount of source code. "

- Cay Horstmann

Based on slides for Building Java Programs by Reges/Stepp, found at
http://faculty.washington.edu/stepp/book/

CS305j
Introduction to Computing

Inheritance and Polymorphism 2

Managing Complexity
�software development: The practice of conceptualizing,

designing, constructing, documenting, and testing large-
scale computer programs. (a.k.a. software engineering)

�Challenges:
– managing lots of programmers
– dividing work
– avoiding redundant code (wasted effort)
– finding and fixing bugs
– testing
– maintenance (between 50% and 90% of cost)

�Code reuse: writing code once and reusing it in
different applications and programs.

CS305j
Introduction to Computing

Inheritance and Polymorphism 3

Categories
�Often we categorize objects in the real world

starting with a general category and then becoming
more specific.
– Let's think about people, human beings. What things

does every human being have? What does every human
being know how to do?

– We could draw a diagram of these things. Something
like this:

data

behaviors

Person
name
age
favorite movie

talk
play

CS305j
Introduction to Computing

Inheritance and Polymorphism 4

Subcategories
� Within the broad range of people, let's talk about a

specific group:
members of the University
– What new attributes and behaviors are there?

– Let's assume that all members are people, and draw
them as a subcategory of persons, as shown to the
right

– Members of the University add some new abilities
and attributes.

• UTEID
• work

– Employees perform some of the
original person's abilities differently.

• talk about the University

– Notice we don't repeat things from Person

Person
name
age
favorite movie

talk
play

Member of
the University

UTEID
what I owe
books checked

out

talk (about UT)
work
check out book

CS305j
Introduction to Computing

Inheritance and Polymorphism 5

More categorization
�We can add more

categories.

– Each category has the
ability of the ones above it.

– Categories may add
new abilities, or change
the way in which they
perform existing abilities.

Person

Member
of the

University

Faculty Student Staff

Tenure Track Lecturer Grad Undergrad

CS305j
Introduction to Computing

Inheritance and Polymorphism 6

Categories as code
�Let's implement a class for a person

public class Person {

private String favoriteMovie;

public void talk(){
System.out.println("Hi!");

}

public void play(){
System.out.println("Watching " +

favoriteMovie);
}

}

CS305j
Introduction to Computing

Inheritance and Polymorphism 7

Subcategory, first try
�The class for Member has much in

common with Person:
public class UniversityMember {

private String favoriteMovie;
private String UTEID;

public void talk(){
System.out.println("Hi!");

}

public void play(){

i l (" hi "

CS305j
Introduction to Computing

Inheritance and Polymorphism 8

Inheritance
�inherit: To gain all the data fields and methods from

another class, and become a child of that class.
– superclass: The class from which you inherit.
– subclass: The class that inherits.

�Inheritance, general syntax:
public class <name> extends <class name> {

– Example:
public class UniversityMember

extends Person {

– Each member object now automatically:
• has a talk and play method
• can be treated as a Person by any other code

(e.g. an Employee could be stored as an element of a Person[])

CS305j
Introduction to Computing

Inheritance and Polymorphism 9

Subclass with inheritance
�A better version of the UniversityMember class:
public class UniversityMember extends Person{

private String UTEID;

public void who(){
System.out.println("My UTEID is " + UTEID);

}
}

– We only write the portions that are unique to
each (data) type.

– If we have a UniversityMember object we can
call all methods from Person and
UniversityMember

CS305j
Introduction to Computing

Inheritance and Polymorphism 10

Another example: Shapes
�Imagine that we want to add a class Square.

– A square is just a rectangle with both sides the same
length.

– If we wrote Square from scratch, its behavior would largely
duplicate that from Rectangle.

– We'd like to be able to create a Square class that absorbs
behavior from the Rectangle class, to remove the
redundancy.

square
rectangle

CS305j
Introduction to Computing

Inheritance and Polymorphism 11

Square and Rectangle
�Differences between square code and rectangle code:

– Square only needs one size parameter to its constructor.
Square sq = new Square(3, 7, 4); rather than
Rectangle rect = new Rectangle(2, 9, 13, 6);

– Squares print themselves differently with toString.
"Square[x=3,y=7,size=4]" rather than
"Rectangle[x=2,y=9,width=13,height=6]"

CS305j
Introduction to Computing

Inheritance and Polymorphism 12

Inheritance
�Reminder: inheritance, general syntax:

public class <name> extends <class name> {

�Let's declare that all squares are just special
rectangles:

public class Square extends Rectangle {

�Each Square object now automatically:
– has an x, y, width, and height data field
– has a getArea, getPerimeter, draw, toString, intersection

method
– can be treated as a Rectangle by any other code

(e.g. a Square could be stored as an element of a
Rectangle[])

CS305j
Introduction to Computing

Inheritance and Polymorphism 13

Inheritance and constructors
�We want Squares to be constructed with only an (x, y)

position and a size (because their width and height are
equal).
– But internally, the Square has x/y/width/height data fields, which all

need to be initialized.
– We can make a Square constructor that uses the Rectangle

constructor to initialize all the data fields.

�Syntax for calling superclass's constructor:
super(<parameter(s)>);

– Example:
public class Square extends Rectangle {

public Square(int x, int y, int size) {
super(x, y, size, size);

}
}

• Each Square object is initialized with its width and height equal. The
size parameter to the Square constructor provides the value for the
width and height parameters to the superclass Rectangle constructor.

CS305j
Introduction to Computing

Inheritance and Polymorphism 14

Overriding methods
�We don't want to inherit the toString behavior,

because Squares print themselves differently than
rectangles.
�override: To write a new version of a method in a

subclass, replacing the superclass's version.
– If Square declares its own toString method, it will replace the

Rectangle toString code when Squares are printed.
public String toString() {

return "Square[x=" + this.getX() + ",y=" + this.getY() +
",size=" + this.getWidth() + "]";

}
• We have to say, for example, this.getX() instead of this.x because the

data fields are private (can only actually be modified inside the
Rectangle class).

• We'll use this.getWidth() as our size, but the height would also work
equally well.

CS305j
Introduction to Computing

Inheritance and Polymorphism 15

Relatedness of types
�We've previously written several 2D geometric

types such as Circle and Rectangle.
– We could add other geometric types such as Triangle.

�There are certain attributes or operations that are
common to all shapes.
– perimeter - distance around the outside of the shape
– area - amount of 2D space occupied by the shape

�Every shape has these attributes, but each
computes them differently.

CS305j
Introduction to Computing

Inheritance and Polymorphism 16

Shape area, perimeter
�Rectangle

– area = w h
– perimeter = 2w + 2h

�Circle
– area = � r2

– perimeter = 2 � r

�Triangle
– area = (1/2) b h
– perimeter = side1 + side2 + side3

CS305j
Introduction to Computing

Inheritance and Polymorphism 17

Common behavior
�Let's write methods getPerimeter, getArea, and

draw for all our shape types.

�We'd like to be able to treat different shapes in the
same way, insofar as they share common behavior,
such as:
– Write a method that prints any shape's area and

perimeter.
– Create an array of shapes that could hold a mixture of

the various shape objects.
– Return a method that could return a rectangle, a circle, a

triangle, or any other shape we've written.
– Make a DrawingPanel display many shapes on screen.

CS305j
Introduction to Computing

Inheritance and Polymorphism 18

Interfaces
�interface: A type that consists only of a set of

methods, that classes can pledge to implement.
– Interfaces allow us to specify that types have common

behavior, by declaring that they implement a common
interface.

– The interface type can be used to refer to an object of
any type that implements the interface's methods.

– A method may accept a parameter of an interface type,
or return a value of an interface type. In these cases, a
value of any implementing type may be passed /
returned.

CS305j
Introduction to Computing

Inheritance and Polymorphism 19

Interface syntax
�Let's declare that certain types of objects can be Shapes,

and that every Shape type has a getArea and getPerimeter
method.

public interface Shape {
public double getArea();
public double getPerimeter();
public void draw(Graphics g);

}

� Interface declaration, general syntax:
public interface <name> {

<method header(s)> ;
}

– A method header specifies the name, parameters, and return type of
the method.

– The header is followed by a ; and not by { }
• The implementation is not specified, because we want to allow each

shape to implement its behavior in its own way.
CS305j
Introduction to Computing

Inheritance and Polymorphism 20

Implementing an interface
�implement an interface: To declare that your type

of objects will contain all of the methods in a given
interface, so that it can be treated the same way as
any other type in the interface.

�Implementing an interface, general syntax:
public class <class name> implements <interface name>
{

...
}

– Example: We can specify that a class is a Shape.
public class Circle implements Shape {

...
}

CS305j
Introduction to Computing

Inheritance and Polymorphism 21

Diagrams of interfaces

�We draw arrows upward from the classes to the
interface(s) they implement.
– There is an implied superset-subset relationship here;

e.g., all Circles are Shapes, but not all Shapes are
Circles.

– This kind of picture is also called a UML class diagram.
CS305j
Introduction to Computing

Inheritance and Polymorphism 22

Interface requirements
�Since the Shape interface declares a getArea and

getPerimeter method, this mandates that any class wishing
to call itself a Shape must have these two methods.

� If we write a class that claims to be a Shape but doesn't
have both of these methods, it will not compile.
– Example:
public class Banana implements Shape {

}

C:\foo\Banana.java:1: Banana is not abstract and
does not override abstract method getArea() in
Shape
public class Banana implements Shape {

^

CS305j
Introduction to Computing

Inheritance and Polymorphism 23

How interfaces are used
�We can write a method that accepts an object of an

interface type as a parameter, or returns an
interface type.
– Example:
public static void printInfo(Shape s) {

System.out.println("The shape: " + s);
System.out.print("area: " + s.getArea());
System.out.println(", perimeter: " +

s.getPerimeter());
System.out.println();

}

– Any object that implements the interface may be passed
as the parameter to this method.

�polymorphism: The ability to run the same code
on objects of many different types.

CS305j
Introduction to Computing

Inheritance and Polymorphism 24

Using polymorphism
�The following code uses the printInfo method from the

previous slide, with shapes of 2 different types.

public static void main(String[] args) {
Circle circ = new Circle(new Point(3, 7), 6);
Rectangle rect = new Rectangle(10, 20, 4, 7);
printInfo(circ);
printInfo(rect);

}

Output:
The shape: Circle[center=(3, 7),radius=6]
area: 113.09733552923255, perimeter:
37.69911184307752

The shape: Rectangle[x=10,y=20,width=4, height=7]
area: 28.0, perimeter: 22.0

CS305j
Introduction to Computing

Inheritance and Polymorphism 25

Arrays of interface type
�We can create an array of an interface type, and store any

object implementing that interface as an element.

Circle circ = new Circle(new Point(3, 7), 6);
Rectangle rect = new Rectangle(10, 20, 4, 7);
Triangle tri = new Triangle(new Point(),

new Point(7, 9), new Point(15, 12));
Shape[] shapes = {circ, tri, rect};
for (int i = 0; i < shapes.length; i++) {

printInfo(shapes[i]);
}

– Each shape executes its appropriate behavior when it is
passed to the printInfo method, or when getArea or
getPerimeter is called on it.

