
CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

1

Topic 9
Using Objects, Interactive

Programs and Loop Techniques
"There are only two kinds of programming
languages: those people always [complain]
about and those nobody uses."

— Bjarne Stroustroup, creator of C++

Based on slides for Building Java Programs by Reges/Stepp, found at
http://faculty.washington.edu/stepp/book/

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

2

Objects and Classes

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

3

Objects
�So far, we have seen:

– methods, which represent behavior
– variables, which represent data
– types, which represent categories of data

�In Java and other "object-oriented" programming
languages, it is possible to create new types that
are combinations of the existing primitive types.
– Such types are called object types or reference types.
– An object is an entity that contains data and behavior.

• There are variables inside the object, storing its data.
• There are methods inside the object, representing its behavior.

�Today, we will learn how to communicate with
certain objects that exist in Java.

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

4

Constructing objects
�construct: To create a new object.

– Objects are constructed with the new keyword.
– Most objects other than Strings must be

constructed before they can be used.

�Constructing objects, general syntax:
<type> <name> = new <type> (<parameters>
);

– Examples:
BigInteger rhs = new BigInteger("123456123456");
Color orange = new Color(255, 128, 0);
Point origin = new Point(0, 0);
Polygon poly = new Polygon();

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

5

Reminder: primitive variables
�We now need to examine some important differences

between the behavior of objects and primitive values.

�We saw with primitive variables that modifying the value of
one variable does not modify the value of another.

�When one variable is assigned to another, the value is
copied.
– Example:
int x = 5;
int y = x; // x = 5, y = 5
y = 17; // x = 5, y = 17
x = 8; // x = 8, y = 17

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

6

Reference variables
�However, objects behave differently than primitives.

– When working with objects, we have to understand the distinction
between an object, and the variable that stores it.

– Variables of object types are called reference variables.
– Reference variables do not actually store an object; they store the

address of an object's location in the computer memory.
– If two reference variables are assigned to refer to the same object,

the object is not copied; both variables literally share the same
object. Calling a method on either variable will modify the same
object.

– Example:
Point p1 = new Point(10, 20); // x and y coords.
Point p2 = p1; // does not create a new Point
p2.move(5, 10)' // new x and y coordinates
System.out.println("x: " + p1.getX() +

", y: " + p1.getY());

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

7

Modifying parameters
�When we call a method and pass primitive variables' values

as parameters, it is legal to assign new values to the
parameters inside the method.
– But this does not affect the value of the variable that was passed,

because its value was copied.

– Example:

public static void main(String[] args) {
int x = 1;
foo(x);
System.out.println(x); // output: 1

}

public static void foo(int x) {
x = 2;

}

value 1 is copied into parameter

parameter's value is changed to 2
(variable x in main is unaffected)

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

8

Objects as parameters
�When an object is passed as a parameter, it is not copied.

It is shared between the original variable and the method's
parameter.
– If a method is called on the parameter, it will affect the original object

that was passed to the method.
– Example:
public static void main(String[] args) {

Point p1 = new Point(5, 10);
System.out.println(p1.toString());
foo(p);
System.out.println(p1.toString());

}

public static void foo(Point p) {
System.out.println(p.toString());
p.move(1, 2);
System.out.println(p.toString());

}

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

9

Strings
�One of the most common types of objects in Java is type

String.
– String: A sequence of text characters.
– Object data types' names are usually uppercase (String), unlike

primitives (int).

�String variables can be declared and assigned, just like
primitive values:
– String <name> = "<text>";
– String <name> = <expression that produces a String>;

– Examples:
String name = "Tom Danielson";

int x = 3, y = 5;
String point = "(" + x + ", " + y + ")";

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

10

Indexes
�The characters in a String are each internally numbered with

an index, starting with 0 for the first character:
– Example:
String name = "M. Scott";

name -->

� Individual text characters are represented by a primitive type
called char. Literal char values are surrounded with
apostrophe (single-quote) marks, such as 'a' or '4'.
– An escape sequence can be represented as a char, such as '\n'

(new-line character) or '\'' (apostrophe).

' '

2
't''t''o''c''S''.''M'

7654310

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

11

Calling methods of Strings
�Strings are objects that contain methods.

– A String contains code inside it that can manipulate or process the
String in several useful ways.

– When we call a method of a String, we don't just write the method's
name. We also have to write which String we want to execute the
method. The results will be different from one String to another.

�Calling a method of an object, general syntax:
<name> . <methodName> (<parameters>)

– Examples:
String name = "Mike";
System.out.println(name.toUpperCase()); // MIKE

String name2 = "Mike Scott";
System.out.println(name2.length()); // 10

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

12

String methods
�Here are several of the most useful String

methods:

a new String with all uppercase letterstoUpperCase()

a new String with all lowercase letterstoLowerCase()

the characters from index1 to just before
index2

substring(index1, index2)

number of characters in this Stringlength()

index where the start of the given String
appears in this String (-1 if it is not there)

indexOf(String)

character at a specific indexcharAt(index)
DescriptionMethod name

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

13

String method examples
// index 012345678901
String s1 = "Olivia Scott";
String s2 = "Isabelle Scott";
System.out.println(s1.length()); // 12
System.out.println(s1.indexOf("i")); // 2
System.out.println(s1.substring(1, 4)); // liv

String s3 = s2.toUpperCase();
System.out.println(s3.substring(6, 10)); // LE S

String s4 = s1.substring(0, 6);
System.out.println(s4.toLowerCase()); // olivia

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

14

Methods that return values
�The methods of String objects do not print their results to

the console.
– Instead, a call to one of these methods can be used as an

expression or part of an expression.

�Recall: return value: A value that is produced by a call to a
method, and can be used in an expression.
– Return values are the opposite of parameters. Parameters pass

information inward into a method from the caller. Return values give
information outward from the method to the caller.

– The methods of String objects produce (or return) a result which is
either a new String or a number, depending on the method.

– The result can be used in a larger expression, stored in a variable, or
printed to the console.

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

15

Return values example
String str = "Kelly Scott";
int len = 2 * str.length() + 1;
System.out.println(len);
// 23

String first = str.substring(0, 5);
System.out.println("first name is " + first); // Kelly

�What expression would produce the first letter of
the String? The last letter?

�What expression would trim any String, not just the
one above, to its first word?
– Does our answer assume anything about the letters in

the String?

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

16

Modify and reassign
� The various methods that modify Strings return a new String with the

new contents.
– They don't modify the existing String.

� Just like int or double variables, String variables do not change
when used in an expression unless you reassign them:
– Bad Example:

String s = "I get it";
s.toUpperCase();
System.out.println(s); // I get it

– Better Code:
String s = "I get it";
s = s.toUpperCase();
System.out.println(s); // I GET IT

� Equivalent with an int:
int x = 3;
x + 1;
System.out.println(x); // 3

� Equivalent with an int:
int x = 3;
x = x + 1;
System.out.println(x); // 4

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

17

Strings vs. other objects
�Strings are extremely useful objects, but they behave

differently than most objects in Java.
– Strings are created differently than most objects.

We don't have to use the new keyword when constructing Strings.
(This is because Sun felt that Strings were so important, they should
be integrated into the language with a shorter syntax.)

– Strings can't be modified without reassigning them.
• An object that cannot be changed after construction is sometimes called

an immutable object.

– It is harder to visualize Strings as having data and behavior, but a
String's data is its characters, and its behavior is the methods like
toUpperCase and length that manipulate or examine those
characters.

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

18

Interactive Programs and
Scanner Objects

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

19

Interactive programs
�We have written several programs that print output to the

console.

� It is also possible to read text input from the console.
– The user running the program types the input into the console.
– We can capture the input and use it as data in our program.

�A program that processes input from the user is called an
interactive program.

� Interactive programs can be challenging:
– Computers and users think in very different ways.
– Users tend to do unpredictable and unexpected things!

• The Mom test.

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

20

Input and System.in
�We have now seen code that communicates with

objects.
– Example objects: Point, String, BigInteger

�When we print text output to the console, we
communicate with an object named System.out .
– We call the println (or print) method of the
System.out object to print a message to the console.

�The object that holds the user's console input is
named System.in . But it is not as easy to use...

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

21

Scanner
�Since System.in is not easy to use by itself, we will use a

second object of a type named Scanner to help.
– Once we construct the Scanner object, we can ask it to read various

kinds of input from the console.

�Constructing a Scanner object to read console input:
Scanner <name> = new Scanner(System.in);

– Example:
Scanner console = new Scanner(System.in);

�When you use Scanner, you must include this line:
import java.util.Scanner;

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

22

Scanner as data source
�Think of a Scanner like a faucet or

showerhead that can be attached to a source
of 'water' (data). In our case, the source of
that data is System.in .
– Like a faucet must be connected to a water

source, the Scanner must be connected to a
data source by writing (System.in) when
constructing it.

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

23

Scanner methods
�Methods of Scanner that we will use in the near

future:

�Each of these methods causes your program to pause until
the user has typed input and pressed Enter, then it returns
the typed value to your program.

reads and returns next entire line of input as a
String

nextLine()

reads and returns next token as an intnextInt()

reads and returns next token as a doublenextDouble()

reads and returns next token as a Stringnext()

DescriptionMethod

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

24

Example Scanner usage
import java.util.*;
public class ReadSomeInput {

public static void main(String[] args) {
System.out.print("How old are you? ");
int age;

Scanner console = new Scanner(System.in);
age = console.nextInt();

System.out.println("Wow, you're " + age);
System.out.println("That's old!");

}
}

�Output (user input underlined):
How old are you? 14
Wow, you're 14
That's old!

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

25

Scanning tokens
�token: A unit of user input. Tokens are separated

by whitespace (spaces, tabs, new lines).
– Example: If the user types the following:
23 3.14 John Smith "Hello world"

45.2 19

– The tokens in the input are the following, and can be
interpreted as the given types:
Token Type(s)
23 int, double, String
3.14 double, String
John String
Smith String
"Hello String
world" String
45.2 double, String
19 int, double, String

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

26

Consuming input
�When the Scanner's methods are called, the Scanner reads

and returns the next input value to our program.
– If the type of the token isn't compatible with the type we requested,

the program crashes.

� Imagine the Scanner as having an invisible cursor that
moves through all the user input.
– As the scanner reads each input value, it advances forward through

the user input until it has passed the given token.
– This is called consuming the input token.

double pi = console.nextDouble();
// 3.14

23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19
^

�23 has been consumed (used), 3.14 is the next token, all
the text in bold is unconsumed

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

27

Consume input example
� Example: If the following input from the user has been typed,

23 3.14 John Smith "Hello world"
45.2 19

The Scanner views it as a linear stream of data, like the following:
23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

The Scanner positions its 'cursor' at the start of the user input:
23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n
^

� As we call the various next methods on the Scanner, the scanner
moves forward:
int x = console.nextInt(); // 23
23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n
^

double pi = console.nextDouble(); // 3.14
23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^
String word = console.next(); // "John"
23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

28

Line-based input
�The Scanner's nextLine method consumes and returns an

entire line of input as a String.
– The Scanner moves its cursor from its current position until it sees a
\n new line character, and returns all text that was found.

• The new line character is consumed but not returned.

�Example:
23 3.14 John Smith "Hello world"

45.2 19

String line1 = console.nextLine();
23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^

String line2 = console.nextLine();
23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

29

Mixing line-based with tokens
� It is not generally recommended to use nextLine in combination with
the other next__ methods, because confusing results occur.
23 3.14
Joe "Hello world"

45.2 19

int n = console.nextInt(); // 23
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n
^

double x = console.nextDouble(); // 3.14
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

// User intends to grab the Joe "Hello world" line
// but instead receives an empty line!
String line = console.nextLine(); // ""
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^
// Calling nextLine again will get the line we wanted.
String line2 = console.nextLine();
// "Joe\t\"Hello world\""
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

30

Line-and-token example
� Here's another example of the confusing behavior:

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

System.out.print("Now enter your name: ");
String name = console.nextLine();

System.out.println(name + " is " + age + " years old.");

Log of execution (user input underlined):
Enter your age: 13
Now enter your name: Olivia Scott
is 13 years old.

� Why?
– User's overall input: 12\nOlivia
– After nextInt(): 12\nOlivia Scott

^
– After nextLine(): 12\nOlivia Scott

^

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

31

Loop Techniques

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

32

Some loop patterns
�As you program you will see common

patterns, things you need to do over and
over again in various programs
�2 common programming patterns are

– cumulative sum
– fencepost or loop and a half problems

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

33

Adding many numbers
�Consider the following code to read three values

from the user and add them together:
Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int num1 = console.nextInt();

System.out.print("Type a number: ");
int num2 = console.nextInt();

System.out.print("Type a number: ");
int num3 = console.nextInt();

int sum = num1 + num2 + num3;

System.out.println("The sum is " + sum);

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

34

A cumulative sum
� You may have observed that the variables num1, num2, and num3 are

unnecessary. The code can be improved:

Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int sum = console.nextInt();

System.out.print("Type a number: ");
sum += console.nextInt();

System.out.print("Type a number: ");
sum += console.nextInt();

System.out.println("The sum is " + sum);

� cumulative sum: A sum variable that keeps a total-in-progress and is
updated many times until the task of summing is finished.
– The variable sum in the above code now represents a cumulative sum.

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

35

Failed cumulative sum loop
�How would we modify the preceding code to sum 100

numbers?
– Creating 100 cut-and-paste copies of the same code would be

redundant and unwieldy.
– Here's a failed attempt to write a loop that adds 100 numbers.
– It actually declares 100 variables named sum, each of which is

created and destroyed in a single pass of the for loop.
– None of the sum variables lives on after the for loop, so the last line

of code is a compiler error.
Scanner console = new Scanner(System.in);
for (int i = 1; i <= 100; i++) {

int sum = 0;
System.out.print("Type a number: ");
sum += console.nextInt();

}

// sum is undefined here :-(
System.out.println("The sum is " + sum);

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

36

Fixed cumulative sum loop
�A corrected version of the sum loop code:

Scanner console = new Scanner(System.in);
int sum = 0;
for (int i = 1; i <= 100; i++) {

System.out.print("Type a number: ");
sum += console.nextInt();

}
System.out.println("The sum is " + sum);

– Cumulative sum variables must always be declared
outside the loops that update them, so that they will
continue to live after the loop is finished.

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

37

User-guided sum, average
�The user's input can guide the number of times the

cumulative sum loop repeats:

Scanner console = new Scanner(System.in);
System.out.print("How many numbers to average? ");
int count = console.nextInt();

int sum = 0;
for (int i = 1; i <= count; i++) {

System.out.print("Type a number: ");
sum += console.nextInt();

}

double average = (double) sum / count;
System.out.println("The average is " + average);

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

38

Variation: cumulative product
�The same idea can be used with other operators, such as

multiplication which produces a cumulative product:

Scanner console = new Scanner(System.in);
System.out.print("Raise 2 to what power? ");
int exponent = console.nextInt();

int product = 1;
for (int i = 1; i <= exponent; i++) {

product *= 2;
}
System.out.println("2 to the " + exponent + " = "

+ product);

– Exercise: Change the above code so that it also prompts for the
base, instead of always using 2.

– Exercise: Make the code to compute the powers into a method which
accepts a base a and exponent b as parameters and returns ab .

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

39

The fencepost problem
�Problem: Write a static method named printNumbers that

prints each number from 1 to a given maximum, which is
passed as a parameter, separated by commas. Assume
that the maximum number passed in is greater than 0. For
example, the method call:
printNumbers(5)

should print:
1, 2, 3, 4, 5

�Let's write a solution to this problem...

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

40

Flawed solutions
public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {
System.out.print(i + ", ");

}
System.out.println(); // to end the line of output

}
OUTPUT from printNumbers(5):
1, 2, 3, 4, 5,

� An incorrect attempt to fix the code:
public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {
System.out.print(", " + i);

}
System.out.println(); // to end the line of output

}
OUTPUT from printNumbers(5):
, 1, 2, 3, 4, 5

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

41

Fence posts
�The problem here is that if we are printing n numbers, we

only need n - 1 commas.
�This problem is similar to the task of building a fence, where

lengths of wire are separated by posts.
� If we repeatedly place a post and place a length, we will

never have an end post.
– A flawed algorithm:

for (length of fence):
place some post.
place some wire.

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

42

Fencepost solution
�The key to solving the fencepost problem is to add an extra

statement outside the loop that places the initial post.
– This is sometimes also called the "loop-and-a-half" solution.
– We will encounter this concept many times in this chapter when

using indefinite while loops.
– The revised algorithm:

place a post.
for (length of fence - 1):

place some wire.
place some post.

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

43

Fencepost printNumbers
�A version of printNumbers that works:

public static void printNumbers(int max) {
System.out.print(1);
for (int i = 2; i <= max; i++) {

System.out.print(", " + i);
}
System.out.println(); // to end the line of output

}

OUTPUT from printNumbers(5):
1, 2, 3, 4, 5

� fencepost loop: A loop that correctly handles a "fence post"
issue by issuing part of the loop body's commands outside
the loop.

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

44

Fencepost practice problem
�Write a Java program that reads a base and

a maximum power and prints all of the
powers of the given base up to that max,
separated by commas.

Base: 2
Max exponent: 9

The first 9 powers of 2 are:
2, 4, 8, 16, 32, 64, 128, 256, 512

CS305j Introduction to
Computing

Using Objects, Interactive Programs, Loop
Techniques

45

Fencepost practice problem
�Write a method named printFactors that,

when given a number, prints its factors in the
following format (using an example of 24 for
the parameter value):

[1, 2, 3, 4, 6, 8, 12, 24]

