Topic 16
Queues

"FISH queue: n.

[acronym, by analogy with FIFO (First In,
First Out)] ‘First In, Still Here’. A joking way of
pointing out that processing of a particular
sequence of events or requests has stopped
dead. Also FISH mode and FISHnet; the
latter may be applied to any network that is
running really slowly or exhibiting extreme

flakiness."
-The Jargon File 4.4.7

CS 307 Fundamentals of
Computer Science Queues

Queues
> Similar to Stacks
> Like a line
—In Britain people don't “get in line”
they ‘gqueue up’.

CS 307 Fundamentals of 2
Computer Science Queues

Queue Properties

» Queues are a first in first out data structure
— FIFO (or LILO, but that sounds a bit silly)

» Add items to the end of the queue

» Access and remove from the front

— Access to the element that has been in the
structure the longest amount of time

» Used extensively in operating systems

— Queues of processes, I/O requests, and much
more

CS 307 Fundamentals of
Computer Science Queues

Queues in Operating Systems

> On a computer with 1 CPU, but many processes how
many processes can actually use the CPU at a time?

> One job of OS, schedule the processes for the CPU
> issues: fairness, responsiveness, progress

System Monitor

Monitor Edit View Help 866 Activity Monitor (=)
Processes | Resources l File Systems Q.- Filter Windowed Processes :?}
Load averages for the last 1, 5, 15 minutes: 1.28, 1.49, 1.40 Filter Show
Process Name ¥ Status | % CPU | Nice |ID Mernory . Process ID Process Mame User ¥| %CPU # Threads Real Memory VSIZE
at-spi-registryd Sleeping 0 0 3683 24 MiB EL & Finder steve 0.00 4 21.05MB 238.26 MB
bonobo-activation-server Sleeping 0 0 3158 3320KiE -l '@ Safari e g 2 23.53MB 252.85 MB
— p— o o S179 2120 K3 348 4 loginwindow steve 0.00 2 3.80 MB 1E5.66 MB
-a e eepin . |
HE Ping 367 3 Tunes steve 4,00 10 22.03MB 239.66 MB
alleale Sy o g TGP 371 i Activity Monitor steve 2.80 2 20.11MEB 246.64 MB
dbus-daesmon Sleeping 0 0 3118 164.0KiB | 368 g iPhoto steve 0.00 3 33.39ME 281.90 MB
dbus-launch Sleeping 0 0 3120 0 bytes 374 B Terminal steve 0.00 4 1298 ME 244.08 MB
eggcups Sleeping 0 0 3165 1.6 MiB 360 4 SystemUlSernver steve 0.00 2 5.35MB 227.74 MB
p— Sleeping T IR OAGTE 159 B9 Dock steve 0.00 z 6.43MB 200.11 MB
@ firefox Sleeping 0 0 15110 0 bytes
@ rirefox-bin Sleeping 0 0 15126 1435 MiB { CPU | System Memory Disk Activity = Disk Usage = Network
gam_server Sleeping 0 0 3220 156.0 KiB CPU Usage
gconfd-2 Sleeping 0 0 3126 504.0 KiB %User: 4.50 |l| Threads: 213 -
~ gedit Sleeping 0 0 1464 69 MiB = % System:; 4.00 |.| Processes: €5
S Hice: Dou m -
% Idie: 9150 |!|

CS 307 Fundamentals of 4
Computer Science Queues

Queue operations

» add (Object item)
—a.k.a. enqueue (Object item)
» Object get ()
— a.k.a. Object front (), Object peek|()

» Object remove ()
— a.k.a. Object dequeue ()

» boolean isEmpty ()

» Specify in an interface, allow varied
Implementations

CS 307 Fundamentals of
Computer Science Queues

Queue interface, version 1

public interface Queue
{ //place item at back of this Queue

enqueue (Object i1tem) ;

//access item at front of this queue
//pre: !'isEmpty ()
Object front();

//remove item at front of this queue
//pre: !isEmpty ()
Object dequeue();

boolean isEmpty();
}

CS 307 Fundamentals of
Computer Science Queues

Implementing a Queue

> Given the internal storage container and
choice for front and back of queue what are
the Big O of the queue operations?

ArrayList LinkedList LinkeList
(Singly Linked) (Doubly Linked)
enqueue
front
dequeue
ISEmpty

CS 307 Fundamentals of 7
Computer Science Queues

Attendance Question 1

> If implementing a queue with a singly linked
list with references to the first and last nodes
(head and tail) which end of the list should be
the front of the queue in order to have all
queue operations O(1)?

A. The front of the list should be the front of the
queue

B. The back of the list should be the front of the
queue.

C. D. E. | don’t know, but | am sure looking forward
to taking 307 again some time.

CS 307 Fundamentals of 8
Computer Science Queues

Alternate Implementation

» How about implementing a Queue with a
native array?

— Seems like a step backwards

AWhack

on the Side of the Head |

| How You Can Be More Creative

Rogervon Oech

CS 307 Fundamentals of
Computer Science Queues

Application of Queues

» Radix Sort
— radix is a synonym for base. base 10, base 2

» Multi pass sorting algorithm that only looks
at individual digits during each pass

> Use queues as buckets to store elements
» Create an array of 10 queues

» Starting with the least significant digit place
value in queue that matches digit

» empty queues back into array
» repeat, moving to next least significant digit

CS 307 Fundamentals of 10
Computer Science Queues

Radix Sort in Action: 1s
> original values in array
113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12
> Look at ones place
11§1 7Q! 8@1 12! 9§1 BZ! 49’ 252’ Z! 791 12

» Queues:
0 70,40 5
1 6 386
2 12,252,12 7 37,7
3 113, 93 8

4 9 9,79

CS 307 Fundamentals of
Computer Science Queues

11

Radix Sort in Action: 10s

» Empty queues in order from 0 to 9 back into
array

70,40, 12, 252,12, 113, 93, 86, 37, 7,9, 79
> Now look at 10's place
70, 40, 12, 252, 12, 113, 93, 86, 37, .7, 9, 19

> Queues:
0O 7,9 D 252
112,12, 113 6
2 7 70,79
3 37 8 386
4 40 9 93

CS 307 Fundamentals of 12
Computer Science Queues

Radix Sort in Action: 100s

» Empty queues in order from O to 9 back into array
7,9,12, 12,113, 37, 40, 252, 70, 79, 86, 93

> Now look at 100's place
7,9, 12, 12,113, 37, 40,252, 70, 79, 86, 93

> Queues:
O 7,9, 12, 12, 40, 70, 79, 86, 93)
1 113 6
2 252 7
3 8
4 9

CS 307 Fundamentals of 13
Computer Science Queues

Radix Sort in Action: Final Step

» Empty queues in order from 0 to 9 back into
array

7,9,12,12, 40, 70, 79, 86, 93, 113, 252

CS 307 Fundamentals of 14
Computer Science Queues

Radix Sort Code

public static void sort(int[] list) {
ArraylList<Queue<Integer>> queues = new ArraylList<Queue<Integer>>();
for(int 1 = 0, 1 < 10; 1i++)
queues.add (new LinkedList<Integer>());
int passes = numDigits(1list[0]);

int temp;
for(int 1 = 1; 1 < list.length; 1i++) {

temp = numDigits(list[1i]);
if(temp > passes)
passes = temp;
}
for(int i = 0; 1 < passes; 1i++) {

for(int 7 = 0; 7 < list.length; J++) {

queues.get (valueOfDigit (list[j], 1)) .add(list[3]);
}
int pos = 0;

for (Queue<Integer> g : queues) {
while(!g.i1sEmpty())
list[pos++t] = g.remove();
}
}
}
CS 307 Fundamentals of 15

Computer Science Queues

