
Topic 16
QQueues

"FISH queue: n.
[acronym, by analogy with FIFO (First In,
First Out)] ‘First In, Still Here’. A joking way of
pointing out that processing of a particular
sequence of events or requests has stopped
dead Also FISH mode and FISHnet; thedead. Also FISH mode and FISHnet; the
latter may be applied to any network that is
running really slowly or exhibiting extremerunning really slowly or exhibiting extreme
flakiness."

-The Jargon File 4.4.7

CS 307 Fundamentals of
Computer Science Queues

1

g

Queues
�Si il t St k�Similar to Stacks
�Like a line

–In Britain people don’t “get in line”
they “queue up”.they queue up .

CS 307 Fundamentals of
Computer Science Queues

2

Queue Properties
��Queues are a first in first out data structure

– FIFO (or LILO, but that sounds a bit silly)
�Add items to the end of the queue
�Access and remove from the frontAccess and remove from the front

– Access to the element that has been in the
structure the longest amount of timeg

�Used extensively in operating systems
Queues of processes I/O requests and much– Queues of processes, I/O requests, and much
more

CS 307 Fundamentals of
Computer Science Queues

3

Queues in Operating Systems
�O i h 1 CPU b h�On a computer with 1 CPU, but many processes how

many processes can actually use the CPU at a time?
�O j b f OS h d l th f th CPU�One job of OS, schedule the processes for the CPU
�issues: fairness, responsiveness, progress

CS 307 Fundamentals of
Computer Science Queues

4

Queue operations
��add(Object item)

– a.k.a. enqueue(Object item)
�Object get()

– a.k.a. Object front(), Object peek()j j p
�Object remove()

– a k a Object dequeue()a.k.a. Object dequeue()
�boolean isEmpty()
�S if i i t f ll i d�Specify in an interface, allow varied

implementations

CS 307 Fundamentals of
Computer Science Queues

5

Queue interface, version 1
public interface Queue
{ //place item at back of this Queue

enqueue(Object item);q (j);

//access item at front of this queue
//pre: !isEmpty()//pre: !isEmpty()
Object front();

//remove item at front of this queue
//pre: !isEmpty()
Object dequeue();j q ();

boolean isEmpty();
}

CS 307 Fundamentals of
Computer Science Queues

6

}

Implementing a Queue
�Gi th i t l t t i d�Given the internal storage container and

choice for front and back of queue what are
th Bi O f th ti ?the Big O of the queue operations?

ArrayList LinkedList LinkeListArrayList LinkedList LinkeList
(Singly Linked) (Doubly Linked)

enqueue

front

dequeuedequeue

isEmpty

CS 307 Fundamentals of
Computer Science Queues

7

Attendance Question 1
��If implementing a queue with a singly linked

list with references to the first and last nodes
(head and tail) which end of the list should be
the front of the queue in order to have all

O()?queue operations O(1)?
A. The front of the list should be the front of the

queue
B. The back of the list should be the front of the

queue.
C. D. E. I don’t know, but I am sure looking forward

t t ki 307 i ti
CS 307 Fundamentals of
Computer Science Queues

8

to taking 307 again some time.

Alternate Implementation
��How about implementing a Queue with a

native array?
– Seems like a step backwards

CS 307 Fundamentals of
Computer Science Queues

9

Application of Queues
�R di S t�Radix Sort

– radix is a synonym for base. base 10, base 2
�M lti ti l ith th t l l k�Multi pass sorting algorithm that only looks

at individual digits during each pass
�U b k t t t l t�Use queues as buckets to store elements
�Create an array of 10 queues
�Starting with the least significant digit place

value in queue that matches digit
�empty queues back into array
�repeat, moving to next least significant digit

CS 307 Fundamentals of
Computer Science Queues

10

p g g g

Radix Sort in Action: 1s
��original values in array

113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12
�Look at ones place

113, 70, 86, 12, 93, 37, 40, 252, 7, 79, 12, , , , , , , , , ,
�Queues:

0 70 40 50 70, 40 5
1 6 86
2 12 252 12 7 37 72 12, 252, 12 7 37, 7
3 113, 93 8
4 9 9 79

CS 307 Fundamentals of
Computer Science Queues

11

4 9 9, 79

Radix Sort in Action: 10s
�E t i d f 0 t 9 b k i t�Empty queues in order from 0 to 9 back into

array
70 40 12 252 12 113 93 86 37 7 9 7970, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79

�Now look at 10's place
70 40 12 252 12 113 93 86 37 7 9 7970, 40, 12, 252, 12, 113, 93, 86, 37, 7, 9, 79

�Queues:
0 7 9 5 2520 7, 9 5 252
1 12, 12, 113 6
2 7 70 792 7 70, 79
3 37 8 86
4 40 9 93

CS 307 Fundamentals of
Computer Science Queues

12

4 40 9 93

Radix Sort in Action: 100s
�E i d f 0 9 b k i�Empty queues in order from 0 to 9 back into array

7, 9, 12, 12, 113, 37, 40, 252, 70, 79, 86, 93
�N l k t 100' l�Now look at 100's place

__7, __9, _12, _12, 113, _37, _40, 252, _70, _79, _86, _93
�Q�Queues:

0 7, 9, _12, _12, _40, _70, _79, _86, _93 5
1 113 61 113 6
2 252 7
3 83 8
4 9

CS 307 Fundamentals of
Computer Science Queues

13

Radix Sort in Action: Final Step
��Empty queues in order from 0 to 9 back into

array
7, 9, 12, 12, 40, 70, 79, 86, 93, 113, 252

CS 307 Fundamentals of
Computer Science Queues

14

Radix Sort Code
public static void sort(int[] list){public static void sort(int[] list){

ArrayList<Queue<Integer>> queues = new ArrayList<Queue<Integer>>();
for(int i = 0; i < 10; i++)

queues.add(new LinkedList<Integer>());
int passes = numDigits(list[0]);int passes numDigits(list[0]);
int temp;
for(int i = 1; i < list.length; i++){

temp = numDigits(list[i]);
if(temp > passes)if(temp > passes)

passes = temp;
}
for(int i = 0; i < passes; i++){

for(int j = 0; j < list.length; j++){for(int j 0; j < list.length; j++){
queues.get(valueOfDigit(list[j], i)).add(list[j]);

}
int pos = 0;
for(Queue<Integer> q : queues){for(Queue<Integer> q : queues){

while(!q.isEmpty())
list[pos++] = q.remove();

}
}

CS 307 Fundamentals of
Computer Science Queues

15

}
}

